1
|
Timmermans S, Verhoog NJD, Van Looveren K, Dewaele S, Hochepied T, Eggermont M, Gilbert B, Boerema-de Munck A, Vanderhaeghen T, Vanden Berghe J, Garcia Gonzalez N, Vandewalle J, Bloch Y, Provost M, Savvides SN, De Bosscher K, Declercq W, Rottier RJ, Louw A, Libert C. Point mutation I634A in the glucocorticoid receptor causes embryonic lethality by reduced ligand binding. J Biol Chem 2022; 298:101574. [PMID: 35007536 PMCID: PMC8808175 DOI: 10.1016/j.jbc.2022.101574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022] Open
Abstract
The glucocorticoid (GC) receptor (GR) is essential for normal development and in the initiation of inflammation. Healthy GRdim/dim mice with reduced dimerization propensity due to a point mutation (A465T) at the dimer interface of the GR DNA-binding domain (DBD) (here GRD/D) have previously helped to define the functions of GR monomers and dimers. Since GRD/D retains residual dimerization capacity, here we generated the dimer-nullifying double mutant GRD+L/D+L mice, featuring an additional mutation (I634A) in the ligand-binding domain (LBD) of GR. These mice are perinatally lethal, as are GRL/L mice (these mice have the I634A mutation but not the A465T mutation), displaying improper lung and skin formation. Using embryonic fibroblasts, high and low doses of dexamethasone (Dex), nuclear translocation assays, RNAseq, dimerization assays, and ligand-binding assays (and Kd values), we found that the lethal phenotype in these mice is due to insufficient ligand binding. These data suggest there is some correlation between GR dimerization potential and ligand affinity. We conclude that even a mutation as subtle as I634A, at a position not directly involved in ligand interactions sensu stricto, can still influence ligand binding and have a lethal outcome.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Kelly Van Looveren
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sylviane Dewaele
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Melanie Eggermont
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Barbara Gilbert
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joke Vanden Berghe
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Natalia Garcia Gonzalez
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yehudi Bloch
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mathias Provost
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Department of Biochemistry, Ghent University, Ghent, Belgium; Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Wim Declercq
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Tien ES, Hannon DB, Thompson JT, Vanden Heuvel JP. Examination of Ligand-Dependent Coactivator Recruitment by Peroxisome Proliferator-Activated Receptor-alpha (PPARalpha). PPAR Res 2011; 2006:69612. [PMID: 17259669 PMCID: PMC1664713 DOI: 10.1155/ppar/2006/69612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 03/30/2006] [Accepted: 04/25/2006] [Indexed: 12/02/2022] Open
Abstract
The ligand-dependent recruitment of coactivators to peroxisome
proliferator-activated receptor-α (PPARα) was
examined. PPAR-binding protein (PBP), PPARγ coactivator-1α (PGC-1α), steroid receptor
coactivator-1 (SRC-1), and CBP/p300-interacting transactivator
with ED-rich tail 2 (CITED2) affected PPARα activity in the
presence of Wy-14,643. The effects on PPARα activity in
light of increased or decreased expression of these coactivators
were qualitatively different depending on the ligand examined.
Diminished expression of PGC-1α, SRC-1, or PBP by RNAi
plasmids affected natural or synthetic agonist activity whereas
only Wy-14,643 was affected by decreased PGC-1α. The
interaction of PPARα with an LXXLL-containing peptide
library showed ligand-specific patterns, indicative of differences
in conformational change. The association of coactivators to
PPARα occurs predominantly
via the carboxyl-terminus and
mutating 456LHPLL to 456LHPAA resulted in a
dominant-negative construct. This research confirms that
coactivator recruitment to PPARα is ligand-dependent and
that selective receptor modulators (SRMs) of this important
protein are likely.
Collapse
Affiliation(s)
- Eric S. Tien
- Department of Veterinary and Biomedical Sciences and
Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University,
201 Life Sciences Building, University Park, PA 16802, USA
- NIEHS, MD E4-07, PO Box 12233, Research Triangle
Park, NC 27709, USA
| | - Daniel B. Hannon
- Department of Veterinary and Biomedical Sciences and
Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University,
201 Life Sciences Building, University Park, PA 16802, USA
| | - Jerry T. Thompson
- Department of Veterinary and Biomedical Sciences and
Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University,
201 Life Sciences Building, University Park, PA 16802, USA
| | - John P. Vanden Heuvel
- Department of Veterinary and Biomedical Sciences and
Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University,
201 Life Sciences Building, University Park, PA 16802, USA
- *John P. Vanden Heuvel:
| |
Collapse
|
3
|
Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor? Mol Pharmacol 2007; 72:799-809. [PMID: 17622575 DOI: 10.1124/mol.107.038794] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids (corticosteroids) are highly effective in combating inflammation in the context of a variety of diseases. However, clinical utility can be compromised by the development of side effects, many of which are attributed to the ability of the glucocorticoid receptor (GR) to induce the transcription of, or transactivate, certain genes. By contrast, the anti-inflammatory effects of glucocorticoids are due largely to their ability to reduce the expression of pro-inflammatory genes. This effect has been predominantly attributed to the repression of key inflammatory transcription factors, including AP-1 and NF-kappaB, and is termed transrepression. The ability to functionally separate these transcriptional functions of GR has prompted a search for dissociated GR ligands that can differentially induce transrepression but not transactivation. In this review, we present evidence that post-transcriptional mechanisms of action are highly important to the anti-inflammatory actions of glucocorticoids. Furthermore, we present the case that mechanistically distinct forms of glucocorticoid-inducible gene expression are critical to the development of anti-inflammatory effects by repressing inflammatory signaling pathways and inflammatory gene expression at multiple levels. Considerable care is therefore required to avoid loss of anti-inflammatory effectiveness in the development of novel transactivation-defective ligands of GR.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | | |
Collapse
|
5
|
Huang Y, Simons SS. Functional analysis of R651 mutations in the putative helix 6 of rat glucocorticoid receptors. Mol Cell Endocrinol 1999; 158:117-30. [PMID: 10630412 DOI: 10.1016/s0303-7207(99)00171-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trypsin digestion of steroid-free, but not steroid-bound, rat glucocorticoid receptor (GR) has recently been reported to occur at arginine-651 (R651). This residue is close to the affinity labeled Cys-656 and thus could be a sensitive probe of steroid binding. This hypothesis is supported by the current model of the GR ligand binding domain (LBD), which is based on the X-ray structures of several related receptor LBDs and places R651 in the middle of the putative alpha-helix 6 (649-EQRMS-653 of rat GR), close to the bound steroid. To test this model, R651, which could be involved in hydrophilic and/or hydrogen bonding, was mutated to alanine (A), which favors alpha-helices, the helix breakers proline (P) and glycine (G), or tryptophan (W). All receptors were expressed at about the same level, as determined by Western blots, but the cell-free binding activity of R651P was reduced twofold. The cell-free binding affinities were all within a factor of 10 of wild type receptors. Whole cell biological activity with transiently transfected receptors was determined with a variety of GR agonists (dexamethasone and deacylcortivazol) or antagonists (dexamethasone mesylate, RU486, and progesterone). Reporters containing both simple (GRE) and complex (MMTV) enhancers were used to test for alterations in GR interactions with enhancer/promoter complexes. Surprisingly, no correlation was observed between biological activity and ability to preserve alpha-helical structures for each point mutation. Finally, similar trypsin digestion patterns indicated no major differences in the tertiary structure of the mutant receptors. Collectively, these results argue that the polar/ionizable residue R651 is not required for GR activity and is not part of an alpha-helix in the steroid-free or bound GR. The effect of these mutations on GR structure and activity may result from a cascade of initially smaller perturbations. These LBD alterations were the most varied for interactions with deacylcortivazol and RU 486, which have recently been predicted to be sub-optimal binders due to their large size. However, further analyses of ligand size versus affinity suggest that there is no narrowly defined optimal size for ligand binding, although larger ligands may be more sensitive to modifications of LBD structure. Finally, the changes in GR activity with the various mutations seem to result from altered LBD interactions with common, as opposed to enhancer specific, transcription factors.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Blotting, Western
- Cell Line
- Enhancer Elements, Genetic
- Ligands
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutation, Missense
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Steroids/metabolism
- Steroids/pharmacology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Y Huang
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
6
|
Giannoukos G, Silverstein AM, Pratt WB, Simons SS. The seven amino acids (547-553) of rat glucocorticoid receptor required for steroid and hsp90 binding contain a functionally independent LXXLL motif that is critical for steroid binding. J Biol Chem 1999; 274:36527-36. [PMID: 10593951 DOI: 10.1074/jbc.274.51.36527] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp90 association with glucocorticoid receptors (GRs) is required for steroid binding. We recently reported that seven amino acids (547-553) overlapping the amino-terminal end of the rat GR ligand-binding domain are necessary for hsp90 binding, and consequently steroid binding. The role of a LXXLL motif at the COOH terminus of this sequence has now been analyzed by determining the properties of Leu to Ser mutations in full-length GR and glutathione S-transferase chimeras. Surprisingly, these mutations decreased steroid binding capacity without altering receptor levels, steroid binding affinity, or hsp90 binding. Single mutations in the context of the full-length receptor did not affect the transcriptional activity but the double mutant (L550S/L553S) was virtually inactive. This biological inactivity was found to be due to an increased rate of steroid dissociation from the activated mutant complex. These results, coupled with those from trypsin digestion studies, suggest a model in which the GR ligand-binding domain is viewed as having a "hinged pocket," with the hinge being in the region of the trypsin digestion site at Arg(651). The pocket would normally be kept shut via the intramolecular interactions of the LXXLL motif at amino acids 550-554 acting as a hydrophobic clasp.
Collapse
Affiliation(s)
- G Giannoukos
- Steroid Hormones Section, NIDDK/LMCB, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | | | |
Collapse
|
7
|
Szapary D, Huang Y, Simons SS. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor-regulated gene expression. Mol Endocrinol 1999; 13:2108-21. [PMID: 10598585 DOI: 10.1210/mend.13.12.0384] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A distinguishing, but unexplained, characteristic of steroid hormone action is the dose-response curve for the regulation of gene expression. We have previously reported that the dose-response curve for glucocorticoid induction of a transfected reporter gene in CV-1 and HeLa cells is repositioned in the presence of increasing concentrations of glucocorticoid receptors (GRs). This behavior is now shown to be independent of the reporter, promoter, or enhancer, consistent with our proposal that a transacting factor(s) was being titrated by added receptors. Candidate factors have been identified by the observation that changes in glucocorticoid induction parameters in CV-1 cells could be reproduced by varying the cellular levels of coactivators [transcriptional intermediary factor 2 (TIF2), steroid receptor coactivator 1 (SRC-1), and amplified in breast cancer 1 (AIB1)], comodulator [CREB-binding protein (CBP)], or corepressor [silencing mediator for retinoid and thyroid-hormone receptors (SMRT)] without concomitant increases in GR. Significantly, the effects of TIF2 and SMRT were mutually antagonistic. Similarly, additional SMRT could reverse the action of increased levels of GRs in HeLa cells, thus indicating that the effects of cofactors on transcription may be general for GR in a variety of cells. These data further indicate that GRs are yet an additional target of the corepressor SMRT. At the same time, these cofactors were found to be capable of regulating the level of residual agonist activity displayed by antiglucocorticoids. Finally, these observations suggest that a novel role for cofactors is to participate in processes that determine the dose-response curve, and partial agonist activity, of GR-steroid complexes. This new activity of cofactors is disconnected from their ability to increase or decrease GR transactivation. An equilibrium model is proposed in which the ratio of coactivator-corepressor bound to either receptor-agonist or -antagonist complexes regulates the final transcriptional properties.
Collapse
Affiliation(s)
- D Szapary
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Molecular and Cellular Biology, National Institutes of Health, Bethesda, Maryland 20892-0805, USA
| | | | | |
Collapse
|