1
|
Santos LC, Dos Anjos Cordeiro JM, da Silva Santana L, Barbosa EM, Santos BR, Mendonça LD, Cunha MCDSG, Machado WM, Santana LR, Kersul MG, Henriques PC, Lopes RA, Snoeck PPDN, Szawka RE, Silva JF. Kisspeptin treatment reverses high prolactin levels and improves gonadal function in hypothyroid male rats. Sci Rep 2023; 13:16819. [PMID: 37798396 PMCID: PMC10556046 DOI: 10.1038/s41598-023-44056-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
We evaluated whether the administration of kisspeptin-10 (Kp10) is capable of restoring gonadal function in hypothyroid male rats. Hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals were treated with Kp10. Hypothyroidism reduced testicular and sex gland mass, decreased the proliferation of the seminiferous epithelium, and compromised sperm morphology, motility, and vigor. A decrease in plasma LH and testosterone levels and an increase in prolactin secretion were observed in the hypothyroid rats. Hypothyroidism reduced Kiss1 and Kiss1r protein and gene expression and Star and Cyp11a1 mRNA levels in the testis. Furthermore, it reduced Lhb, Prl, and Drd2 and increased Tshb and Gnrhr expression in the pituitary. In the hypothalamus, hypothyroidism increased Pdyn and Kiss1r while reducing Gnrh1. Kp10 treatment in hypothyroid rats restored testicular and seminal vesicle morphology, improved sperm morphology and motility, reversed high prolactin levels, and increased LH and testosterone levels. In addition, Kp10 increased testicular expression of Kiss1, Kiss1r, Fshr, and Nr5a1 and pituitary Kiss1 expression. Our findings describe the inhibitory effects of hypothyroidism on the male gonadal axis and sperm quality and demonstrate that Kp10 treatment reverses high prolactin levels and improves gonadal function and sperm quality in hypothyroid rats.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Larissa da Silva Santana
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Maria Clara da Silva Galrão Cunha
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - William Morais Machado
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Larissa Rodrigues Santana
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Maíra Guimarães Kersul
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Patrícia Costa Henriques
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Roberta Araújo Lopes
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Paola Pereira das Neves Snoeck
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Raphael Escorsim Szawka
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil.
| |
Collapse
|
2
|
Luzardo-Ocampo I, Ocampo-Ruiz AL, Dena-Beltrán JL, Martínez de la Escalera G, Clapp C, Macotela Y. The Diversity of Gut Microbiota at Weaning Is Altered in Prolactin Receptor-Null Mice. Nutrients 2023; 15:3447. [PMID: 37571383 PMCID: PMC10420910 DOI: 10.3390/nu15153447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Maternal milk supports offspring development by providing microbiota, macronutrients, micronutrients, immune factors, and hormones. The hormone prolactin (PRL) is an important milk component with protective effects against metabolic diseases. Because maternal milk regulates microbiota composition and adequate microbiota protect against the development of metabolic diseases, we aimed to investigate whether PRL/PRL receptor signaling regulates gut microbiota composition in newborn mice at weaning. 16SrRNA sequencing of feces and bioinformatics analysis was performed to evaluate gut microbiota in PRL receptor-null mice (Prlr-KO) at weaning (postnatal day 21). The normalized colon and cecal weights were higher and lower, respectively, in the Prlr-KO mice relative to the wild-type mice (Prlr-WT). Relative abundances (Simpson Evenness Index), phylogenetic diversity, and bacterial concentrations were lower in the Prlr-KO mice. Eleven bacteria species out of 470 differed between the Prlr-KO and Prlr-WT mice, with two genera (Anaerotruncus and Lachnospiraceae) related to metabolic disease development being the most common in the Prlr-KO mice. A higher metabolism of terpenoids and polyketides was predicted in the Prlr-KO mice compared to the Prlr-WT mice, and these metabolites had antimicrobial properties and were present in microbe-associated pathogenicity. We concluded that the absence of the PRL receptor altered gut microbiota, resulting in lower abundance and richness, which could contribute to metabolic disease development.
Collapse
Affiliation(s)
| | | | | | | | | | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico; (I.L.-O.); (A.L.O.-R.); (J.L.D.-B.); (G.M.d.l.E.); (C.C.)
| |
Collapse
|
3
|
Ferraris J. Is prolactin receptor signaling a target in dopamine-resistant prolactinomas? Front Endocrinol (Lausanne) 2023; 13:1057749. [PMID: 36714572 PMCID: PMC9877409 DOI: 10.3389/fendo.2022.1057749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The hypothalamic neuroendocrine catecholamine dopamine regulates the lactotroph function, including prolactin (PRL) secretion, proliferation, and apoptosis. The treatment of PRL-secreting tumors, formerly known as prolactinomas, has relied mainly on this physiological characteristic, making dopamine agonists the first therapeutic alternative. Nevertheless, the group of patients that do not respond to this treatment has few therapeutical options. Prolactin is another physiological regulator of lactotroph function, acting as an autocrine/paracrine factor that controls PRL secretion and cellular turnover, inducing apoptosis and decreasing proliferation. Furthermore, the signaling pathways related to these effects, mainly JAK/STAT and PI3K/Akt, and MAPK, have been extensively studied in prolactinomas and other tumors as therapeutic targets. In the present work, the relationship between PRL pathophysiology and prolactinoma development is explored, aiming to comprehend the value of PRL and PRLR-associated pathways as exploratory fields alternative to dopamine-related approaches, which are worth physiological characteristics that might be impaired and can be potentially restored or upregulated to provide more options to the patients.
Collapse
Affiliation(s)
- Jimena Ferraris
- Department of Biophysics and Biochemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
de Oliveira LS, da Silva TQM, Barbosa EM, Dos Anjos Cordeiro JM, Santos LC, Henriques PC, Santos BR, Gusmao DDO, de Macedo IO, Szawka RE, Silva JF. Kisspeptin Treatment Restores Ovarian Function in Rats with Hypothyroidism. Thyroid 2022; 32:1568-1579. [PMID: 35765915 DOI: 10.1089/thy.2021.0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Hypothyroidism causes ovarian dysfunction and infertility in women, in addition to being associated with hyperprolactinemia and reduced hypothalamic expression of kisspeptin (Kp). However, it remains unknown whether and how Kp is able to reverse the ovarian dysfunction caused by hypothyroidism. Methods: Hypothyroidism was induced in adult female Wistar rats using 6-propyl-2-thiouracil for 3 months. In the last month, half of the animals received Kp10. Blood samples were collected for dosage of free thyroxine, thyrotropin (TSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2), and uteruses and ovaries were collected for histomorphometry. Body and ovarian weight and the number of corpora lutea were also evaluated. Half of the brains were evaluated by immunohistochemistry to Kp, and the other half had the arcuate nucleus of hypothalamus (ARC) and preoptic area microdissected for gene evaluation of Kiss1, Nkb, Pdyn, and Gnrh1. The pituitary gland and corpora lutea were also dissected for gene evaluation. Results: Hypothyroidism kept the animals predominantly acyclic and promoted a reduction in ovarian weight, number of corpora lutea, endometrial thickness, number of endometrial glands, and plasma LH, in addition to increasing the luteal messenger RNA (mRNA) expression of Star and Cyp11a1 and reducing 20αHsd. An increase in plasma PRL and P4 levels was also caused by hypothyroidism. Kp immunoreactivity and Kiss1 and Nkb mRNA levels in the ARC and Kiss1 in the anteroventral periventricular nucleus of hypothalamus were reduced in hypothyroid rats. Hypothyroid animals had lower pituitary gene expression of Gnrhr, Lhb, Prl, and Drd2, and an increase in Tshb. The treatment with Kp10 restored estrous cyclicality, plasma LH, ovarian and uterine morphology, and Cyp11a1, 3βHsd, and 20αHsd mRNA levels in the corpora lutea. Kp10 treatment did not alter gene expression for Kiss1 or Nkb in the ARC of hypothyroid rats. Nevertheless, Kp10 increased Lhb mRNA levels and reduced Tshb in the pituitary compared with the hypothyroid group. Conclusions: The present findings characterize the inhibitory effects of hypothyroidism on the hypothalamic-pituitary-gonadal axis in female rats and demonstrate that Kp10 is able to reverse the ovarian dysfunction caused by hypothyroidism, regardless of hyperprolactinemia.
Collapse
Affiliation(s)
- Luciana Santos de Oliveira
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | | | - Erikles Macedo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | | | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Patrícia Costa Henriques
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Daniela de Oliveira Gusmao
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Oliveira de Macedo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| |
Collapse
|
5
|
Expression of Prolactin Receptor mRNA in Lactotrophs and Somatotrophs of the Chicken Anterior Pituitary Gland. J Poult Sci 2018; 55:150-154. [PMID: 32055168 PMCID: PMC6756486 DOI: 10.2141/jpsa.0170082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Prolactin (PRL) is a hormone mainly secreted by the anterior pituitary gland. In birds, PRL exerts a variety of physiological functions in target tissues expressing the PRL receptor (PRLR). In chicken, the PRLR mRNA is abundant in the anterior pituitary gland, but its regional and cellular localization are unknown. In the present study, we investigated the expression of the PRLR mRNA in cephalic and caudal lobes of the chicken anterior pituitary gland. Real-time polymerase chain reaction (PCR) revealed high levels of PRLR mRNA in both cephalic and caudal lobes. In situ hybridization revealed that the PRLR mRNA was distributed in a wide area of both lobes, and co-localized with the PRL and growth hormone (GH) mRNAs in the cephalic and caudal lobes, respectively. These results suggest that PRL exerts autocrine/paracrine effects through PRLR on PRL-producing lactotrophs and GH-producing somatotrophs in the chicken anterior pituitary gland.
Collapse
|
6
|
Yamaguchi Y, Moriyama S, Lerner DT, Grau EG, Seale AP. Autocrine Positive Feedback Regulation of Prolactin Release From Tilapia Prolactin Cells and Its Modulation by Extracellular Osmolality. Endocrinology 2016; 157:3505-16. [PMID: 27379370 PMCID: PMC6285229 DOI: 10.1210/en.2015-1969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/27/2016] [Indexed: 12/24/2022]
Abstract
Prolactin (PRL) is a vertebrate hormone with diverse actions in osmoregulation, metabolism, reproduction, and in growth and development. Osmoregulation is fundamental to maintaining the functional structure of the macromolecules that conduct the business of life. In teleost fish, PRL plays a critical role in osmoregulation in fresh water. Appropriately, PRL cells of the tilapia are directly osmosensitive, with PRL secretion increasing as extracellular osmolality falls. Using a model system that employs dispersed PRL cells from the euryhaline teleost fish, Oreochromis mossambicus, we investigated the autocrine regulation of PRL cell function. Unknown was whether these PRL cells might also be sensitive to autocrine feedback and whether possible autocrine regulation might interact with the well-established regulation by physiologically relevant changes in extracellular osmolality. In the cell-perfusion system, ovine PRL and two isoforms of tilapia PRL (tPRL), tPRL177 and tPRL188, stimulated the release of tPRLs from the dispersed PRL cells. These effects were significant within 5-10 minutes and lasted the entire course of exposure, ceasing within 5-10 minutes of removal of tested PRLs from the perifusion medium. The magnitude of response varied between tPRL177 and tPRL188 and was modulated by extracellular osmolality. On the other hand, the gene expression of tPRLs was mainly unchanged or suppressed by static incubations of PRL cells with added PRLs. By demonstrating the regulatory complexity driven by positive autocrine feedback and its interaction with osmotic stimuli, these findings expand upon the knowledge that pituitary PRL cells are regulated complexly through multiple factors and interactions.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Shunsuke Moriyama
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Andre P Seale
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| |
Collapse
|
7
|
Lin C, Jiang X, Hu G, Ko WKW, Wong AOL. Grass carp prolactin: molecular cloning, tissue expression, intrapituitary autoregulation by prolactin and paracrine regulation by growth hormone and luteinizing hormone. Mol Cell Endocrinol 2015; 399:267-83. [PMID: 25458702 DOI: 10.1016/j.mce.2014.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 01/25/2023]
Abstract
Prolactin (PRL), a pituitary hormone with diverse functions, is well-documented to be under the control of both hypothalamic and peripheral signals. Intrapituitary modulation of PRL expression via autocrine/paracrine mechanisms has also been reported, but similar information is still lacking in lower vertebrates. To shed light on autocrine/paracrine regulation of PRL in fish model, grass carp PRL was cloned and its expression in the carp pituitary has been confirmed. In grass carp pituitary cells, local secretion of PRL could suppress PRL release with concurrent rises in PRL production and mRNA levels. Paracrine stimulation by growth hormone (GH) was found to up- regulate PRL secretion, PRL production and PRL transcript expression, whereas the opposite was true for the local actions of luteinizing hormone (LH). Apparently, local interactions of PRL, GH and LH via autocrine/paracrine mechanisms could modify PRL production in carp pituitary cells through differential regulation of PRL mRNA stability and gene transcription.
Collapse
Affiliation(s)
- Chengyuan Lin
- School of Biological Sciences, University of Hong Kong, Hong Kong; YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Xue Jiang
- School of Biological Sciences, University of Hong Kong, Hong Kong
| | - Guangfu Hu
- School of Biological Sciences, University of Hong Kong, Hong Kong
| | - Wendy K W Ko
- School of Biological Sciences, University of Hong Kong, Hong Kong
| | | |
Collapse
|
8
|
Ferraris J, Zárate S, Jaita G, Boutillon F, Bernadet M, Auffret J, Seilicovich A, Binart N, Goffin V, Pisera D. Prolactin induces apoptosis of lactotropes in female rodents. PLoS One 2014; 9:e97383. [PMID: 24859278 PMCID: PMC4032245 DOI: 10.1371/journal.pone.0097383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/16/2014] [Indexed: 11/18/2022] Open
Abstract
Anterior pituitary cell turnover occurring during female sexual cycle is a poorly understood process that involves complex regulation of cell proliferation and apoptosis by multiple hormones. In rats, the prolactin (PRL) surge that occurs at proestrus coincides with the highest apoptotic rate. Since anterior pituitary cells express the prolactin receptor (PRLR), we aimed to address the actual role of PRL in the regulation of pituitary cell turnover in cycling females. We showed that acute hyperprolactinemia induced in ovariectomized rats using PRL injection or dopamine antagonist treatment rapidly increased apoptosis and decreased proliferation specifically of PRL producing cells (lactotropes), suggesting a direct regulation of these cell responses by PRL. To demonstrate that apoptosis naturally occurring at proestrus was regulated by transient elevation of endogenous PRL levels, we used PRLR-deficient female mice (PRLRKO) in which PRL signaling is totally abolished. According to our hypothesis, no increase in lactotrope apoptotic rate was observed at proestrus, which likely contributes to pituitary tumorigenesis observed in these animals. To decipher the molecular mechanisms underlying PRL effects, we explored the isoform-specific pattern of PRLR expression in cycling wild type females. This analysis revealed dramatic changes of long versus short PRLR ratio during the estrous cycle, which is particularly relevant since these isoforms exhibit distinct signaling properties. This pattern was markedly altered in a model of chronic PRLR signaling blockade involving transgenic mice expressing a pure PRLR antagonist (TGΔ1-9-G129R-hPRL), providing evidence that PRL regulates the expression of its own receptor in an isoform-specific manner. Taken together, these results demonstrate that i) the PRL surge occurring during proestrus is a major proapoptotic signal for lactotropes, and ii) partial or total deficiencies in PRLR signaling in the anterior pituitary may result in pituitary hyperplasia and eventual prolactinoma development, as observed in TGΔ1-9-G129R-hPRL and PRLRKO mice, respectively.
Collapse
Affiliation(s)
- Jimena Ferraris
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Jaita
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
| | - Florence Boutillon
- INSERM, Unit 1151, Institut Necker Enfants Malades (INEM), Team “PRL/GH Pathophysiology”, University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment LERICHE, 14 Rue Maria Helena Vieira Da Silva, CS61431, 75993 Paris Cedex 14, France
| | - Marie Bernadet
- INSERM, Unit 1151, Institut Necker Enfants Malades (INEM), Team “PRL/GH Pathophysiology”, University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment LERICHE, 14 Rue Maria Helena Vieira Da Silva, CS61431, 75993 Paris Cedex 14, France
| | - Julien Auffret
- INSERM U693 and Université Paris-Sud, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin-Bicêtre, F-94276 France
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nadine Binart
- INSERM U693 and Université Paris-Sud, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin-Bicêtre, F-94276 France
| | - Vincent Goffin
- INSERM, Unit 1151, Institut Necker Enfants Malades (INEM), Team “PRL/GH Pathophysiology”, University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment LERICHE, 14 Rue Maria Helena Vieira Da Silva, CS61431, 75993 Paris Cedex 14, France
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
9
|
Mechanisms of pituitary tumorigenesis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Ferraris J, Bernichtein S, Pisera D, Goffin V. Use of prolactin receptor antagonist to better understand prolactin regulation of pituitary homeostasis. Neuroendocrinology 2013; 98:171-9. [PMID: 23969780 DOI: 10.1159/000354701] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022]
Abstract
The anterior pituitary is permanently regulated by processes of apoptosis and proliferation in order to maintain tissue homeostasis. Several factors have been implicated in this regulation and lately, prolactin (PRL) has been included into that list. However, since PRL is secreted by anterior pituitary lactotropes, the actual outcome of its autocrine/paracrine actions on pituitary cells has remained difficult to assess. The availability of the pure PRL receptor antagonist Del1-9-G129R-hPRL has been helpful to circumvent this problem. While PRL has been traditionally associated with increased cell proliferation, recent studies revealed that this hormone actually induces apoptosis and decreases proliferation of anterior pituitary cells, by mechanisms involving the PRL receptor. The aim of this short review is to overview our current understanding of the regulation of pituitary homeostasis by PRL. Moreover, studies involving Del1-9-G129R-hPRL have helped anticipate to what extent future treatments involving PRL receptor inhibitors may interfere with processes regulated by PRL at the central level.
Collapse
Affiliation(s)
- Jimena Ferraris
- Institute of Biomedical Research, School of Medicine, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
11
|
Ferraris J, Boutillon F, Bernadet M, Seilicovich A, Goffin V, Pisera D. Prolactin receptor antagonism in mouse anterior pituitary: effects on cell turnover and prolactin receptor expression. Am J Physiol Endocrinol Metab 2012; 302:E356-64. [PMID: 22094470 DOI: 10.1152/ajpendo.00333.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Since anterior pituitary expresses prolactin receptors, prolactin secreted by lactotropes could exert autocrine or paracrine actions on anterior pituitary cells. In fact, it has been observed that prolactin inhibits its own expression by lactotropes. Our hypothesis is that prolactin participates in the control of anterior pituitary cell turnover. In the present study, we explored the action of prolactin on proliferation and apoptosis of anterior pituitary cells and its effect on the expression of the prolactin receptor. To determine the activity of endogenous prolactin, we evaluated the effect of the competitive prolactin receptor antagonist Δ1-9-G129R-hPRL in vivo, using transgenic mice that constitutively and systemically express this antagonist. The weight of the pituitary gland and the anterior pituitary proliferation index, determined by BrdU incorporation, were higher in transgenic mice expressing the antagonist than in wild-type littermates. In addition, blockade of prolactin receptor in vitro by Δ1-9-G129R-hPRL increased proliferation and inhibited apoptosis of somatolactotrope GH3 cells and of primary cultures of male rat anterior pituitary cells, including lactotropes. These results suggest that prolactin acts as an autocrine/paracrine antiproliferative and proapoptotic factor in the anterior pituitary gland. In addition, anterior pituitary expression of the long isoform of the prolactin receptor, measured by real-time PCR, increased about 10-fold in transgenic mice expressing the prolactin receptor antagonist, whereas only a modest increase in the S3 short-isoform expression was observed. These results suggest that endogenous prolactin may regulate its own biological actions in the anterior pituitary by inhibiting the expression of the long isoform of the prolactin receptor. In conclusion, our observations suggest that prolactin is involved in the maintenance of physiological cell renewal in the anterior pituitary. Alterations in this physiological role of prolactin could contribute to pituitary tumor development.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Line
- Cell Proliferation/drug effects
- Cells, Cultured
- Gene Expression Regulation/drug effects
- Hormone Antagonists/metabolism
- Hormone Antagonists/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Organ Size
- Pituitary Gland, Anterior/cytology
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/metabolism
- Pituitary Gland, Anterior/pathology
- Prolactin/analogs & derivatives
- Prolactin/antagonists & inhibitors
- Prolactin/genetics
- Prolactin/metabolism
- Prolactin/pharmacology
- Prolactin/physiology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jimena Ferraris
- Instituto de Investigaciones en Reproducción, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
12
|
Asa SL, Ezzat S. The pathogenesis of pituitary tumors. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:97-126. [PMID: 19400692 DOI: 10.1146/annurev.pathol.4.110807.092259] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recently there has been significant progress in our understanding of pituitary development, physiology, and pathology. New information has helped to clarify the classification of pituitary tumors. Epidemiologic analyses have identified a much higher incidence of pituitary tumors than previously thought. We review the pathogenetic factors that have been implicated in pituitary tumorigenesis and the application of novel targeted therapies that underscore the increasingly important role of the pathologist in determining accurate diagnoses and facilitating appropriate treatment of patients with these disorders.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network and Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
13
|
Ezzat S, Asa SL. Mechanisms of disease: The pathogenesis of pituitary tumors. ACTA ACUST UNITED AC 2006; 2:220-30. [PMID: 16932287 DOI: 10.1038/ncpendmet0159] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 12/29/2005] [Indexed: 11/08/2022]
Abstract
Pituitary tumors exhibit a spectrum of biology, with variable growth and hormonal behaviors. They therefore provide an opportunity to examine pathogenetic mechanisms that underlie the neoplastic process. These include alterations in hormone regulation, growth-factor stimulation, cell-cycle control and cell-stromal interactions that result from genetic mutations or epigenetic disruption of gene expression. Mouse models have validated the roles of these alterations, which can be targets for the development of therapies that can manage these lesions. These therapies are increasingly recognized as critical for quality of life.
Collapse
Affiliation(s)
- Shereen Ezzat
- The Freeman Centre for Endocrine Oncology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Liang Y, Cui J, Yang G, Leung FCC, Zhang X. Polymorphisms of 5' flanking region of chicken prolactin gene. Domest Anim Endocrinol 2006; 30:1-16. [PMID: 15970423 DOI: 10.1016/j.domaniend.2005.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 11/17/2022]
Abstract
The polymorphisms of 5' flanking region of chicken prolactin (cPRL) gene were examined in several populations of Chinese native Yuehuang, Taihe Silkie and imported White Leghorn Layer chickens. The 5' flanking regions (2638 bp) from Yuehuang, Taihe Silkie and White Leghorn chickens were subjected to sequencing analysis. Four single nucleotide polymorphisms (SNPs) were identified at position -2425(C/T), -2215(T/C), -2063(G/A) and -1967(A/G). A 24-bp indel (insertion or deletion) and a polyA length polymorphism were also identified. For the 24-bp indel locus, three genotypes (AA, AB and BB) were found in Yuehuang chickens, while only two genotypes were detected in Taihe Silkie (AB and BB) and Leghorn chickens (AA and BB). The genotype frequencies of AA, AB and BB were significantly different among the three breeds. For the polyA locus, although three genotypes (CC, CD and DD) were found, only one genotype (CC) was detected in White Leghorn chickens, while two or three genotypes were observed in Chinese native chickens. We used real-time quantitative PCR and radioimmunology assay to investigate the potential association of the 24-bp indel locus with cPRL mRNA expression, plasma cPRL and brooding behaviors, and observed that chickens with genotype AB, which are of the highest incidence of broodiness, had the highest cPRL mRNA levels, providing the possibility that this polymorphic site might be related to the broodiness in chickens via modulating the transcriptional level of cPRL gene. The dissociation among cPRL gene transcription, mRNA storage and hormone release was also observed.
Collapse
Affiliation(s)
- Yong Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | | | | | | | | |
Collapse
|
15
|
Chowanadisai W, Kelleher SL, Lönnerdal B. Maternal zinc deficiency raises plasma prolactin levels in lactating rats. J Nutr 2004; 134:1314-9. [PMID: 15173390 DOI: 10.1093/jn/134.6.1314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is an inverse relation between zinc (Zn) intake and plasma prolactin in men and nonpregnant women. Whether a relation exists in lactating women is unknown, despite the potential consequences of perturbations in prolactin regulation on lactation performance. We examined the effects of low Zn intake on prolactin concentration, the prolactin regulatory pathway in the pituitary gland, and lactation performance in lactating rats. Female rats were fed diets containing 7 (zinc deficient; ZD), 10 (marginally zinc deficient; MZD) or 25 mg Zn/kg (control) from 70 d preconception to lactation d 11. Rats were killed, pituitary glands dissected, and tissues and plasma collected and analyzed for prolactin concentration. Pituitary gland pituitary factor 1 (Pit-1), dopamine 2 receptor (D2R), and prolactin receptor mRNA expression were measured in the pituitary gland. Liver, mammary gland, plasma, and milk Zn were measured. Milk intake of the pups was also recorded. Plasma prolactin concentration was higher in rats fed the ZD (125.9 microg/L) diet compared with control rats (21.7 microg/L). Pituitary gland prolactin concentration was higher in rats fed the ZD diet (69.8 mg/g total protein) compared with controls (29.0 mg/g). Plasma Zn concentration was lower in rats fed the MZD and ZD diets, and mammary gland and milk Zn concentrations were lower in rats fed the ZD diet compared with control rats. Rats fed the ZD diet had lower D2R, prolactin receptor, and Pit-1 mRNA levels, whereas rats fed the MZD diet had lower prolactin receptor and Pit-1 mRNA levels compared with control rats. Milk intake was lower in pups of rats fed the MZD and ZD diets. Our results suggest that marginal Zn nutriture may compromise milk production despite increased prolactin levels. In addition, increased circulating prolactin concentration is not due to altered nursing behavior, but may be due to alterations in the prolactin regulatory pathway in the pituitary gland.
Collapse
|
16
|
Affiliation(s)
- Sylvia L Asa
- Department of Pathology and Laboratory Medicine, University of Toronto, University Health Network and Toronto Medical Laboratories, 610 University Avenue, Toronto, Ontario, Canada M5G 2M5.
| | | |
Collapse
|