1
|
Hernandez-Haro N, Solis-Calero C, Casasnovas R, Morell C, Grand A, Frau J, Ortega-Castro J. Formation Mechanism of Inter-Crosslink in DNA by Nitrogen Oxides Pollutants through A Diazonium Intermediate. Int J Mol Sci 2022; 23:10621. [PMID: 36142522 PMCID: PMC9502170 DOI: 10.3390/ijms231810621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Outdoor air pollution is a mixture of multiple atmospheric pollutants, among which nitrogen oxide (NOx) stands out due to its association with several diseases. NOx reactivity can conduct to DNA damage as severe as interstrand crosslinks (ICL) formation, that in turn is able to block DNA replication and transcription. Experimental studies have suggested that the ICL formation due to NOx is realized through a diazonium intermediate (DI). In this work, we have modeled the DI structure, including a DNA double-strand composed of two base pairs GC/CG, being diazotized as one of the guanine nucleotides. The structural stability of DNA with DI lesion was essayed through 500 ns molecular dynamics simulations. It was found that the DNA structure of the oligonucleotide is stable when the DI is present since the loss of a Guanine-Cytosine hydrogen bond is replaced by the presence of two cation-π interactions. Additionally, we have studied the mechanism of formation of a crosslink between the two guanine nucleobases from the modeled DI by carrying out DFT calculations at the M06-L/DNP+ level of theory. Our results show that the mechanism is thermodynamically favored by a strong stabilization of the ICL product, and the process is kinetically viable since its limiting stage is accessible.
Collapse
Affiliation(s)
- Noemi Hernandez-Haro
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
| | - Christian Solis-Calero
- Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Christophe Morell
- Institut des Sciences Analytiques, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5280, CEDEX, 69622 Villeurbanne, France
| | - Andre Grand
- Université Grenoble Alpes, CEA, CNRS, INAC-SyMMES, 38000 Grenoble, France
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| |
Collapse
|
2
|
Márquez-Ruiz G, Holgado F, Ruiz-Méndez MV, Velasco J. Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions. Foods 2021; 10:foods10092035. [PMID: 34574145 PMCID: PMC8471306 DOI: 10.3390/foods10092035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chemical changes occurring in dietary lipid oxidation compounds throughout the gastrointestinal tract are practically unknown. The first site for potential chemical modifications is the stomach due to the strong acidic conditions. In this study, model lipids representative of the most abundant groups of dietary oxidation compounds were subjected to in vitro gastric conditions. Thus, methyl linoleate hydroperoxides were used as representative of the major oxidation compounds formed in food storage at low and moderate temperatures. Methyl 9,10-epoxystearate, 12-oxostearate and 12-hydroxystearate were selected as model compounds bearing the oxygenated functional groups predominantly found in oxidation compounds formed at the high temperatures of frying. Analyses were performed using gas-liquid chromatography/flame ionization detection/mass spectrometry and high performance-liquid chromatography/ultraviolet detection. Losses of methyl 9,10-epoxystearate and linoleate hydroperoxides in the ranges 17.8–58.8% and 42.3–61.7% were found, respectively, whereas methyl 12-oxostearate and methyl 12-hydroxystearate remained unaltered. Although quantitative data of the compounds formed after digestion were not obtained, methyl 9,10-dihydroxystearate was detected after digestion of methyl 9,10-epoxystearate, and some major volatiles were detected after digestion of linoleate hydroperoxides. Overall, the results showed that significant modifications of dietary oxidized lipids occurred during gastric digestion and supported that the low pH of the gastric fluid played an important role.
Collapse
Affiliation(s)
- Gloria Márquez-Ruiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), 28040 Madrid, Spain;
- Correspondence:
| | - Francisca Holgado
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), 28040 Madrid, Spain;
| | - María Victoria Ruiz-Méndez
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), 41089 Sevilla, Spain; (M.V.R.-M.); (J.V.)
| | - Joaquín Velasco
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (IG-CSIC), 41089 Sevilla, Spain; (M.V.R.-M.); (J.V.)
| |
Collapse
|
3
|
Analyses of repeated failures in cancer therapy for solid tumors: poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin Transl Med 2018. [PMID: 29541939 PMCID: PMC5852245 DOI: 10.1186/s40169-018-0185-6] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
For over six decades reductionist approaches to cancer chemotherapies including recent immunotherapy for solid tumors produced outcome failure-rates of 90% (±5) according to governmental agencies and industry. Despite tremendous public and private funding and initial enthusiasm about missile-therapy for site-specific cancers, molecular targeting drugs for specific enzymes such as kinases or inhibitors of growth factor receptors, the outcomes are very bleak and disappointing. Major scientific reasons for repeated failures of such therapeutic approaches are attributed to reductionist approaches to research and infinite numbers of genetic mutations in chaotic molecular environment of solid tumors that are bases of drug development. Safety and efficacy of candidate drugs tested in test tubes or experimental tumor models of rats or mice are usually evaluated and approved by FDA. Cost-benefit ratios of such ‘targeted’ therapies are also far from ideal as compared with antibiotics half a century ago. Such alarming records of failure of clinical outcomes, the increased publicity for specific vaccines (e.g., HPV or flu) targeting young and old populations, along with increasing rise of cancer incidence and death created huge and unsustainable cost to the public around the globe. This article discusses a closer scientific assessment of current cancer therapeutics and vaccines. We also present future logical approaches to cancer research and therapy and vaccines.
Collapse
|
4
|
Vilanova B, Fernández D, Casasnovas R, Pomar AM, Alvarez-Idaboy JR, Hernández-Haro N, Grand A, Adrover M, Donoso J, Frau J, Muñoz F, Ortega-Castro J. Formation mechanism of glyoxal-DNA adduct, a DNA cross-link precursor. Int J Biol Macromol 2017; 98:664-675. [PMID: 28192135 DOI: 10.1016/j.ijbiomac.2017.01.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/08/2023]
Abstract
DNA nucleobases undergo non-enzymatic glycation to nucleobase adducts which can play important roles in vivo. In this work, we conducted a comprehensive experimental and theoretical kinetic study of the mechanisms of formation of glyoxal-guanine adducts over a wide pH range in order to elucidate the molecular basis for the glycation process. Also, we performed molecular dynamics simulations to investigate how open or cyclic glyoxal-guanine adducts can cause structural changes in an oligonucleotide model. A thermodynamic study of other glycating agents including methylglyoxal, acrolein, crotonaldehyde, 4-hydroxynonenal and 3-deoxyglucosone revealed that, at neutral pH, cyclic adducts were more stable than open adducts; at basic pH, however, the open adducts of 3-deoxyglucosone, methylglyoxal and glyoxal were more stable than their cyclic counterparts. This result can be ascribed to the ability of the adducts to cross-link DNA. The new insights may contribute to improve our understanding of the connection between glycation and DNA cross-linking.
Collapse
Affiliation(s)
- B Vilanova
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain.
| | - D Fernández
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - R Casasnovas
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - A M Pomar
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J R Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico
| | | | - A Grand
- Univ. Greboble Alpes, INAC-SCIB, F-38000 Grenoble, France; CEA, INAC-SyMMES, F-38000 Grenoble, France; Universidad Autónoma de Chile, Carlos Antúnez 1920, 7500566, Providencia, Santiago de, Chile
| | - M Adrover
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J Donoso
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J Frau
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - F Muñoz
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| | - J Ortega-Castro
- Department de Química, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain; Instituto de Investigación Sanitaria de Palma (IdISPA), 07010 Palma de Mallorca, Spain
| |
Collapse
|
5
|
Asikin Y, Takahashi M, Mizu M, Takara K, Oku H, Wada K. DNA damage protection against free radicals of two antioxidant neolignan glucosides from sugarcane molasses. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1209-1215. [PMID: 25865605 DOI: 10.1002/jsfa.7208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/02/2015] [Accepted: 04/03/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Sugarcane molasses is a potential by-product of the sugarcane manufacturing industry that is rich in antioxidant materials. The present study aimed to obtain antioxidative compounds from sugarcane molasses and to evaluate their ability to protect DNA from oxidative damage. RESULTS Two neolignan glucosides were isolated from sugarcane molasses using bioassay and UV spectra monitoring-guided fractionation. The compounds were elucidated as (7R,8S)-dehydrodiconiferyl alcohol-4-O-β-d-glucoside (1) and (7S,8R)-simulanol-9'-O-β-d-glucoside (2). Neolignan glucoside 2 protected against DNA damage caused by free radicals more effectively than did neolignan glucoside 1 (13.62 and 9.08 µmol L(-1) for peroxyl and hydroxyl radicals, respectively, compared to 48.07 and 14.42 µmol L(-1) ). Additionally, neolignan glucoside 2 exhibited superior DNA protection against free radicals compared with various known antioxidative compounds, including p-coumaric acid, ferulic acid, vanillic acid and epigallocatechin gallate. CONCLUSION The isolated neolignan glucosides from sugarcane molasses are able to protect DNA from oxidative damage caused by free radicals. This is the first identification of these two compounds in sugarcane molasses. The sugarcane molasses can therefore be used as potential nutraceutical preventative agents, and the findings may foster the utilization of this by-product as a bioresource-based product. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yonathan Asikin
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Makoto Takahashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Masami Mizu
- Product Development Division, Mitsui Sugar Co. Ltd, Tokyo, 103-8423, Japan
| | - Kensaku Takara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Koji Wada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
6
|
Jena NR, Mishra PC. Formation of ring-opened and rearranged products of guanine: mechanisms and biological significance. Free Radic Biol Med 2012; 53:81-94. [PMID: 22583701 DOI: 10.1016/j.freeradbiomed.2012.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/30/2012] [Accepted: 04/06/2012] [Indexed: 11/16/2022]
Abstract
DNA damage by endogenous and exogenous agents is a serious concern, as the damaged products can affect genome integrity severely. Damage to DNA may arise from various factors such as DNA base modifications, strand break, inter- and intrastrand crosslinks, and DNA-protein crosslinks. Among these factors, DNA base modification is a common and important form of DNA damage that has been implicated in mutagenesis, carcinogenesis, and many other pathological conditions. Among the four DNA bases, guanine (G) has the smallest oxidation potential, because of which it is frequently modified by reactive species, giving rise to a plethora of lethal lesions. Similarly, 8-oxo-7,8-dihydroguanine (8-oxoG), an oxidatively damaged guanine lesion, also undergoes various degradation reactions giving rise to several mutagenic species. The various products formed from reactions of G or 8-oxoG with different reactive species are mainly 2,6-diamino-4-oxo-5-formamidopyrimidine, 2,5-diamino-4H-imidazolone, 2,2,4-triamino-5-(2H)-oxazolone, 5-guanidino-4-nitroimidazole, guanidinohydantoin, spiroiminodihydantoin, cyanuric acid, parabanic acid, oxaluric acid, and urea, among others. These products are formed from either ring opening or ring opening and subsequent rearrangement. The main aim of this review is to provide a comprehensive overview of various possible reactions and the mechanisms involved, after which these ring-opened and rearranged products of guanine would be formed in DNA. The biological significance of oxidatively damaged products of G is also discussed.
Collapse
Affiliation(s)
- N R Jena
- Department of Physics, Indian Institute of Information Technology, Design and Manufacturing, Khamaria, Jabalpur 482005, India.
| | | |
Collapse
|
7
|
Ye XJ, Ng T, Nagai R. Inhibitory effect of fermentation byproducts on formation of advanced glycation end-products. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Neergheen VS, Bahorun T, Taylor EW, Jen LS, Aruoma OI. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 2009; 278:229-41. [PMID: 19850100 DOI: 10.1016/j.tox.2009.10.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 10/06/2009] [Accepted: 10/09/2009] [Indexed: 02/08/2023]
Abstract
Natural phytochemicals derived from dietary sources or medicinal plants have gained significant recognition in the potential management of several human clinical conditions. Much research has also been geared towards the evaluation of plant extracts as effective prophylactic agents since they can act on specific and/or multiple molecular and cellular targets. Plants have been an abundant source of highly effective phytochemicals which offer great potential in the fight against cancer by inhibiting the process of carcinogenesis through the upregulation of cytoprotective genes that encode for carcinogen detoxifying enzymes and antioxidant enzymes. The mechanistic insight into chemoprevention further includes induction of cell cycle arrest and apoptosis or inhibition of signal transduction pathways mainly the mitogen-activated protein kinases (MAPK), protein kinases C (PKC), phosphoinositide 3-kinase (PI3K), glycogen synthase kinase (GSK) which lead to abnormal cyclooxygenase-2 (COX-2), activator protein-1 (AP-1), nuclear factor-kappaB (NF-κB) and c-myc expression. Effectiveness of chemopreventive agents reflects their ability to counteract certain upstream signals that leads to genotoxic damage, redox imbalances and other forms of cellular stress. Targeting malfunctioning molecules along the disrupted signal transduction pathway in cancer represent a rational strategy in chemoprevention. NF-κB and AP-1 provide mechanistic links between inflammation and cancer, and moreover regulate tumor angiogenesis and invasiveness, indicating that signaling pathways that mediate their activation provide attractive targets for new chemotherapeutic approaches. Thus cell signaling cascades and their interacting factors have become important targets of chemoprevention and phenolic phytochemicals and plant extracts seem to be promising in this endeavor.
Collapse
Affiliation(s)
- Vidushi S Neergheen
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius.
| | | | | | | | | |
Collapse
|
9
|
Maeda H. Controlling oxidative stress: therapeutic and delivery strategies. Preface. Adv Drug Deliv Rev 2009; 61:285-6. [PMID: 19236897 DOI: 10.1016/j.addr.2009.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Kuwahara H, Kariu T, Fang J, Maeda H. Generation of drug-resistant mutants of Helicobacter pylori in the presence of peroxynitrite, a derivative of nitric oxide, at pathophysiological concentration. Microbiol Immunol 2009; 53:1-7. [PMID: 19161551 DOI: 10.1111/j.1348-0421.2008.00089.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study it has been shown that the reactive nitrogen species, peroxynitrite, can cause at least a 7.1-fold increase in the frequency of occurrence of drug-resistant mutants of Helicobacter pylori at a pathophysiological concentration (e.g. 1.0 microM) and in the presence of CLR. Furthermore, the CLR MIC of these resistant H. pylori strains increased by at least 250 times or higher in CLR susceptibility. In the 45 resistant strains, the modification of 23S rRNA A2142G was the predominant mutation (22/45), followed by A2143G (17/45) within the sequences of 23S rRNA. The other mutants were one each (1/45) in A2142T, and T2269G, and two each (2/45) in C2695G and T1944C, respectively. These results show that the inflammatory host reaction involving induction of reactive oxygen species (e.g. O(.-)2), and the inducible form of nitric oxide synthase, is a significant cause of mutation via peroxynitrite formation, particularly in drug-resistant bacterial strains.
Collapse
Affiliation(s)
- Hideo Kuwahara
- Kumamoto Health Science University, Izumimachi 325, Kumamoto 861-5598, Japan
| | | | | | | |
Collapse
|
11
|
Kruszewski M, Iwaneńko T, Bartłomiejczyk T, Woliński J, Starzyński RR, Gralak MA, Zabielski R, Lipiński P. Hepatic iron content corresponds with the susceptibility of lymphocytes to oxidative stress in neonatal pigs. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 657:146-9. [DOI: 10.1016/j.mrgentox.2008.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 07/25/2008] [Accepted: 08/27/2008] [Indexed: 11/30/2022]
|
12
|
Márquez-Ruiz G, García-Martínez M, Holgado F. Changes and Effects of Dietary Oxidized Lipids in the Gastrointestinal Tract. Lipid Insights 2008. [DOI: 10.4137/lpi.s904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This paper is focused on the present state-of-the art of modifications and effects of dietary oxidized lipids during their transit along the gastrointestinal tract. A survey of the literature reporting changes and effects of oxidized lipids before absorption, first in the stomach and then during enzymatic lipolysis in the small intestine, are addressed. Also, the fate of non-absorbed compounds and their potential implications at the colorectal level are discussed. Among the results found, it is shown that acidic gastric conditions and the influence of other dietary components may lead to either further oxidation or antioxidative effects in the stomach. Also, changes in oxidized functions, especially of hydroperoxy and epoxy groups, seem likely to occur. Enzymatic hydrolysis by pancreatic lipase is not effective for triacylglycerol polymers, and hence they can be found as non-absorbed oxidized lipids in the large intestine. Interactions of oxidized lipids with cholesterol absorption in the small intestine and with microflora metabolism have been also observed.
Collapse
Affiliation(s)
- G. Márquez-Ruiz
- Instituto del Frío (CSIC), José Antonio Novais 10, 28040 Madrid
| | | | - F. Holgado
- Instituto del Frío (CSIC), José Antonio Novais 10, 28040 Madrid
| |
Collapse
|
13
|
Cao X, Tsukamoto T, Seki T, Tanaka H, Morimura S, Cao L, Mizoshita T, Ban H, Toyoda T, Maeda H, Tatematsu M. 4-Vinyl-2,6-dimethoxyphenol (canolol) suppresses oxidative stress and gastric carcinogenesis in Helicobacter pylori-infected carcinogen-treated Mongolian gerbils. Int J Cancer 2008; 122:1445-54. [PMID: 18059022 DOI: 10.1002/ijc.23245] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress is linked to gastric carcinogenesis because of its ability to damage DNA. Here we examined antioxidative and anti-inflammatory effects of 4-vinyl-2,6-dimethoxyphenol (canolol), a recently identified potent antioxidative compound obtained from crude canola oil, on Helicobacter (H.) pylori-induced gastritis and gastric carcinogenesis using a Mongolian gerbil model. The animals were allocated to H. pylori-infection alone (12 weeks) or H.pylori + N-methyl-N-nitrosourea (MNU) administration (52 weeks). After oral inoculation of H. pylori, they were fed for 10 and 44 weeks with or without 0.1% canolol. H. pylori-induced gastritis, 5'-bromo-2'-deoxyuridine (BrdU) labeling and scores for cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) immunohistochemistry were attenuated in the canolol-treated groups. Expression of interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), COX-2 and iNOS mRNA in the gastric mucosa, and serum 8-hydroxy-2'-deoxyguanosine (8-OHdG), anti-H. pylori IgG and gastrin levels were also significantly lower in canolol-treated groups. Furthermore, the incidence of gastric adenocarcinomas was markedly reduced in the H. pylori + MNU + canolol-treated group [15.0% (6/40)] compared to the control group [39.4% (13/33)] (p < 0.05). These data indicate canolol to be effective for suppressing inflammation, gastric epithelial cell proliferation and gastric carcinogenesis in H. pylori-infected Mongolian gerbils. Interestingly, the viable H. pylori count was not changed by the canolol containing diet. Thus, the data point to the level of inflammation because of H. pylori rather than the existence of the bacteria as the determining factor. Importantly, canolol appears to suppress induction of mRNAs for inflammatory cytokines.
Collapse
Affiliation(s)
- Xueyuan Cao
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xue L, Greenberg MM. Use of fluorescence sensors to determine that 2-deoxyribonolactone is the major alkali-labile deoxyribose lesion produced in oxidatively damaged DNA. Angew Chem Int Ed Engl 2007; 46:561-4. [PMID: 17154191 PMCID: PMC1780038 DOI: 10.1002/anie.200603454] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Marc M. Greenberg
- Department of Chemistry Johns Hopkins University 3400 N. Charles St., Baltimore, MD 21218 (USA) Fax: (+1) 410-516-7044 E-mail:
| |
Collapse
|
15
|
Kurokawa T, Itagaki S, Yamaji T, Nakata C, Noda T, Hirano T, Iseki K. Antioxidant activity of a novel extract from bamboo grass (AHSS) against ischemia-reperfusion injury in rat small intestine. Biol Pharm Bull 2007; 29:2301-3. [PMID: 17077533 DOI: 10.1248/bpb.29.2301] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Production of free radical species in cells and body tissues is known to cause many pathological disorders. Therefore, free radical scavengers play an important role in the prevention of various human diseases. Bamboo grass, Sasa senanensis, is a native Japanese plant. Sasa has been used for medicine in Japan for many centuries. In this study, we investigated the antioxidative activity of Absolutely Hemicellulose Senanensis (AHSS), a novel extract from Sasa. In the first part of this study, we found that AHSS has antioxidant activities by the assay using superoxide anion-2-methyl-6-methoxyphenylethynylimidazopyrazynone (MPEC) reaction kit. We then confirmed its antioxidative activity using a rat ischemia and subsequent reperfusion (I/R) injury model. Breakdown of the intestinal wall caused by intestinal I/R was attenuated by pretreatment with AHSS. Moreover, AHSS inhibited the production of lipid peroxide by intestinal I/R. AHSS could be an important source of ingredients for use in functional foods and other applications.
Collapse
Affiliation(s)
- Toshimitsu Kurokawa
- Department of Clinical Pharmaceutics & Therapeutics, Graduate School of Pharmaceutics Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Xue L, Greenberg M. Use of Fluorescence Sensors To Determine that 2-Deoxyribonolactone Is the Major Alkali-Labile Deoxyribose Lesion Produced in Oxidatively Damaged DNA. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200603454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Ohshima H, Tazawa H, Sylla BS, Sawa T. Prevention of human cancer by modulation of chronic inflammatory processes. Mutat Res 2005; 591:110-22. [PMID: 16083916 DOI: 10.1016/j.mrfmmm.2005.03.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 03/02/2005] [Accepted: 03/04/2005] [Indexed: 02/07/2023]
Abstract
Chronic inflammation induced by biological, chemical and physical factors has been associated with increased risk of human cancer at various sites. Inflammation facilitates the initiation of normal cells and their growth and progression to malignancy through production of pro-inflammatory cytokines and diverse reactive oxygen and nitrogen species. These also activate signaling molecules involved in inflammation and carcinogenesis such as nuclear transcription factor (NF-kappaB), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Several chemopreventive agents act through inhibition of signaling pathways (e.g. NF-kappaB), inhibition of oxidant-generating enzymes (e.g. iNOS) and mediators of inflammation (e.g. COX-2), scavenging reactive oxygen and nitrogen species, and modulation of xenobiotic-metabolizing enzymes (especially phase II enzyme induction). Some anti-inflammatory drugs have been tested in clinical trials to prevent human cancer at several sites. Better understanding of the molecular mechanisms by which chronic inflammation increases cancer risk will lead to further development of new strategies for cancer prevention at many sites.
Collapse
Affiliation(s)
- Hiroshi Ohshima
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France.
| | | | | | | |
Collapse
|
18
|
Kocyigit A, Keles H, Selek S, Guzel S, Celik H, Erel O. Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 585:71-8. [PMID: 16005255 DOI: 10.1016/j.mrgentox.2005.04.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 03/01/2005] [Accepted: 04/13/2005] [Indexed: 01/08/2023]
Abstract
Cutaneous leishmaniasis (CL) is a chronic infectious and granulomatous disease caused by the Leishmania parasite that invades the skin. Reactive oxygen and nitrogen species (ROS and RNS) produced during an inflammatory response are an important part of host-defense strategies of organisms to kill the parasite. However, it is not well known whether these intermediates cause DNA damage in CL patients. We investigated the effect of Leishmania infection on basal levels of DNA strand breaks and on the oxidative/anti-oxidative status of patients with CL, and compared the data with those of healthy subjects. Twenty-five CL patients and 19 age- and sex-matched control subjects were enrolled in the study. We used the single-cell gel electrophoresis (also called comet assay) to measure DNA strand breaks in peripheral blood mononuclear leukocytes. Plasma protein carbonyl (PC), malondialdehyde (MDA) and total peroxide (TP) concentrations were measured to determine oxidative status and total anti-oxidative response (TAR) in plasma was measured to determine anti-oxidative status. The mean values of DNA damage and MDA and TP concentrations were significantly higher in CL patients than in the control group (p<0.001, p<0.01 and p<0.001, respectively). PC levels were also higher in patients, but this was not statistically significant (p>0.05). There was a significantly positive correlation between plasma MDA and DNA damage (r=0.524, p<0.01), and a negative correlation between TAR and TP levels (r=-0.790, p<0.001) in the patient group. These findings support the notion that ROS and RNS produced by the organism as a defense strategy may amplify the leishmanicidal activity in patients with CL. However, these intermediates not only cause the killing of the parasite but also induce oxidative damage in non-infected cells. Therefore, these patients must be treated urgently to counteract the oxidative DNA damage.
Collapse
Affiliation(s)
- Abdurrahim Kocyigit
- Harran University, Medical Faculty, Department of Biochemistry, 63200 Sanliurfa, Turkey.
| | | | | | | | | | | |
Collapse
|
19
|
Kuwahara H, Kanazawa A, Wakamatu D, Morimura S, Kida K, Akaike T, Maeda H. Antioxidative and antimutagenic activities of 4-vinyl-2,6-dimethoxyphenol (canolol) isolated from canola oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:4380-4387. [PMID: 15237940 DOI: 10.1021/jf040045+] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A potent antioxidative compound in crude canola oil, canolol, was recently identified, and reported herein are studies of its scavenging capacity against the endogenous mutagen peroxynitrite (ONOO(-)). ONOO(-) is generated by the reaction between superoxide anion radical and nitric oxide, both of which are produced by inflammatory leukocytes. Among various antioxidative substances of natural or synthetic origin, canolol was one of the most potent antimutagenic compounds when Salmonella typhimurium TA102 was used in the modified Ames test. Its potency was higher than that of flavonoids (e.g., rutin) and alpha-tocopherol and was equivalent to that of ebselen. Canolol suppressed ONOO(-)-induced bactericidal action. It also reduced intracellular oxidative stress and apoptosis in human cancer SW480 cells when used at a concentration below 20 microM under H(2)O(2)-induced oxidative stress. In addition, canolol suppressed plasmid DNA (pUC19) strand breakage induced by ONOO(-), as revealed by agarose gel electrophoresis.
Collapse
Affiliation(s)
- Hideo Kuwahara
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Chronic inflammation induced by biological, chemical, and physical factors has been associated with increased risk of human cancer at various sites. Inflammation activates a variety of inflammatory cells, which induce and activate several oxidant-generating enzymes such as NADPH oxidase, inducible nitric oxide synthase, myeloperoxidase, and eosinophil peroxidase. These enzymes produce high concentrations of diverse free radicals and oxidants including superoxide anion, nitric oxide, nitroxyl, nitrogen dioxide, hydrogen peroxide, hypochlorous acid, and hypobromous acid, which react with each other to generate other more potent reactive oxygen and nitrogen species such as peroxynitrite. These species can damage DNA, RNA, lipids, and proteins by nitration, oxidation, chlorination, and bromination reactions, leading to increased mutations and altered functions of enzymes and proteins (e.g., activation of oncogene products and/or inhibition of tumor-suppressor proteins) and thus contributing to the multistage carcinogenesis process. Appropriate treatment of inflammation should be explored further for chemoprevention of human cancers.
Collapse
Affiliation(s)
- Hiroshi Ohshima
- Unit of Endogenous Cancer Risk Factors, International Agency for Research on Cancer, 150 Cours Albert-Thomas, 69372 Lyon Cedex 08, France.
| | | | | |
Collapse
|
21
|
Shane RA, Ingold KU. Cleavage of supercoiled DNA by horseradish peroxidase plus tert-butyl hydroperoxide is not due to tert-butylperoxyl radicals. Chem Res Toxicol 2002; 15:1324-9. [PMID: 12387632 DOI: 10.1021/tx020043o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two supercoiled (SC), double-stranded DNAs, pBR 322 and pUC 19, have been subjected to oxidative stress using horseradish peroxidase (HRP) and HRP + tert-butyl hydroperoxide (BOOH). HRP alone causes single-strand cleavage of these SC DNAs. Strand cleavage is enhanced substantially in the presence of commercial BOOH (which contains H(2)O(2)) but is, at best, only very slightly enhanced in the presence of pure BOOH. In the HRP/pure BOOH system, the DNA single-strand-scission which does occur appears to be due to a direct action of oxidized HRP. It is not due to tert-butylperoxyl radicals because strand-scision is not even retarded by 10 mM Trolox, an outstanding water-soluble trap for peroxyl radicals. The present results are congruent with our earlier conclusion [Paul, T., et al. (2000) Biochemistry 39, 4129] that neutral alkylperoxyl radicals produce little or no direct single-strand-scission in SC DNAs.
Collapse
Affiliation(s)
- R Adam Shane
- National Research Council, Ottawa, Ontario, Canada K1A 0R6
| | | |
Collapse
|