1
|
Zhang Y, Cui J, Lu Y, Huang C, Liu H, Xu S. Selenium Deficiency Induces Inflammation via the iNOS/NF-κB Pathway in the Brain of Pigs. Biol Trace Elem Res 2020; 196:103-109. [PMID: 31749063 DOI: 10.1007/s12011-019-01908-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
Selenium (Se) is an essential trace element to maintain homeostasis in humans and animals. The aim of the present study was to clarify the mechanism of Se deficiency-induced inflammation in the pig's brain. Twenty-four healthy pigs were randomly divided into two groups (n = 12/group): control group (group C) was fed diet with 0.3 mg/kg inorganic Se, and Se-deficient group (group L) was fed diet with 0.007 mg/kg inorganic Se. At the 90th day of the experiment, the histology in the pig's brain was observed by the microscope, the NO levels and iNOS activity were assayed, and the mRNA and protein expression levels of inflammatory cytokines (iNOS, COX-2, NF-κB, and PTGEs) and HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90) were detected by real-time quantitative PCR and Western blot. Compared with group C, both of NO levels and iNOS activity were increased in group L, and the mRNA and protein expression levels of inflammatory cytokines (iNOS, COX-2, NF-κB, and PTGEs) and HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90) were also upregulated; histological observation displayed inflammatory response in the brain of pig. In summary, diet with Se deficiency can activate the iNOS/NF-κB pathway to upregulate the expression of inflammatory cytokines, thereby leading to inflammatory lesions in the pig's brain, and HSPs are involved in the compensatory regulation of inflammation. This study provides a reference for the prevention of pig brain inflammation from the perspective of nutrition.
Collapse
Affiliation(s)
- Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jiawen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yingfei Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chunzheng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Honggui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
2
|
Liu T, Yang T, Pan T, Liu C, Li S. Effect of Low-Selenium/High-Fat Diet on Pig Peripheral Blood Lymphocytes: Perspectives from Selenoproteins, Heat Shock Proteins, and Cytokines. Biol Trace Elem Res 2018; 183:102-113. [PMID: 28812292 DOI: 10.1007/s12011-017-1122-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/04/2017] [Indexed: 01/15/2023]
Abstract
The aim of the present study was to clarify the effect of low selenium (Se)/high fat on the mRNA expression of selenoproteins, heat shock proteins (HSPs) and cytokines in pig peripheral blood lymphocytes. Forty crossbred boar piglets with healthy lean body weights of 10 kg were randomly divided into four treatment groups (group C, group L-Se, group H-fat, and group L-Se-H-fat) (n = 10/group) and fed with the corresponding diet for 16 weeks. The pig peripheral blood lymphocytes were extracted, and the mRNA expression of selenoproteins, HSPs, and cytokines was measured. Most mRNA levels for selenoproteins decreased in group L-Se, group H-fat, and group L-Se-H-fat, except Gpx1, Gpx2, Selt, and Selm, which were elevated in group H-fat. At the same time, low-Se/high-fat diet increased the expression of HSPs (HSP40, HSP60, HSP70, and HSP90) and inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-8, IL-9, iNOS, COX-2, NF-κB, and TNF-α) in group L-Se, group H-fat, and group L-Se-H-fat, and genes in group L-Se-H-fat showed greater increases. Also, low-Se/high-fat diet inhibits the expression of TGF-β1 and IFN-γ. In summary, a low-Se/high-fat diet can cause relevant selenoprotein expression changes and promote the expression of pro-inflammatory factors and HSPs, and low Se enhances the expression of HSPs and inflammation factors induced by high fat. This information is helpful for understanding the effects of low-Se and high-fat diet on pig peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Tianqi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tianshu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Tingru Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
3
|
The role of selenoprotein W in inflammatory injury in chicken immune tissues and cultured splenic lymphocyte. Biometals 2014; 28:75-87. [PMID: 25351959 DOI: 10.1007/s10534-014-9804-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/19/2014] [Indexed: 12/21/2022]
Abstract
Selenoprotein W (SelW) is mainly understood in terms of its antioxidant effects in the cellular defense system. Inflammation is an important indicator of animal tissue injury, and the inflammatory cells may trigger a sophisticated and well-orchestrated inflammatory cascade, resulting in exaggerated oxidative stress. To investigate the role of SelW in inflammatory injury in chicken immune tissues and cultured splenic lymphocyte, in this report, the effects of selenium (Se) on mRNA expressions of SelW and inflammatory factors (iNOS, COX-2, NF-κB, PTGEs, and TNF-α) in the chicken immune organs (spleen, thymus and bursa of Fabricius) and cultured splenic lymphocyte treated with sodium selenite and H2O2, or knocked down SelW with small interfering RNAs (siRNAs) were examined. The results showed that Se-deficient diets effectively decreased the mRNA expression of SelW (P < 0.05), and induced a significantly up-regulation of COX-2, iNOS, NF-κB, PTGEs and TNF-α mRNA levels (P < 0.05). The histopathological analysis showed that immune tissues were obviously injured in the low-Se groups. In vitro, H2O2 induced a significantly up-regulation of the mRNA levels of inflammation-related genes (iNOS, COX-2, NF-κB, PTGEs, and TNF-α) in cultured splenic lymphocyte (P < 0.05). When lymphocytes were pretreated with Se before treated with H2O2, the inflammation-related genes were significantly decreased (P < 0.05). Silencing of SelW significantly up-regulated the inflammation-related genes (iNOS, COX-2, NF-κB, PTGEs, and TNF-α) in cultured splenic lymphocyte (P < 0.05). The results suggested that the expression levels of inflammatory factors (iNOS, COX-2, NF-κB, PTGEs, and TNF-α) and SelW can be influenced by Se in birds. SelW commonly played an important role in the protection of immune organs of birds from inflammatory injury by the regulations of inflammation-related genes.
Collapse
|
4
|
Zhao FQ, Zhang ZW, Wang C, Zhang B, Yao HD, Li S, Xu SW. The role of heat shock proteins in inflammatory injury induced by cold stress in chicken hearts. Cell Stress Chaperones 2013; 18:773-83. [PMID: 23636703 PMCID: PMC3789878 DOI: 10.1007/s12192-013-0429-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to investigate the effects of cold stress on the expression levels of heat shock proteins (Hsps90, 70, 60, 40, and 27) and inflammatory factors (iNOS, COX-2, NF-κB, TNF-α, and PTGEs) and oxidative indexes in hearts of chickens. Two hundred forty 15-day-old male chickens were randomly divided into 12 groups and kept at the temperature of 12 ± 1 °C for acute and chronic cold stress. There were one control group and five treatment groups for acute cold stress, three control groups, and three treatment groups for chronic cold stress. After cold stress, malondialdehyde level increased in chicken heart; the activity of superoxide dismutase and glutathione peroxidase in the heart first increased and then decreased. The inflammatory factors mRNA levels were increased in cold stress groups relative to control groups. The histopathological analysis showed that heart tissues were seriously injured in the cold stress group. Additionally, the mRNA levels of Hsps (70, 60, 40, and 27) increased significantly (P < 0.05) in the cold stress groups relative to the corresponding control group. Meanwhile, the mRNA level and protein expression of Hsp90 decreased significantly (P < 0.05) in the stress group, and showed a gradually decreasing tendency. These results suggested that the levels of inflammatory factors and Hsps expression levels in heart tissues can be influenced by cold stress. Hsps commonly played an important role in the protection of the heart after cold stress.
Collapse
Affiliation(s)
- Fu-Qing Zhao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Zi-Wei Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Chao Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bo Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Hai-Dong Yao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Shu Li
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Shi-Wen Xu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
5
|
Liew CY, Lam KW, Kim MK, Harith HH, Tham CL, Cheah YK, Sulaiman MR, Lajis NH, Israf DA. Effects of 3-(2-Hydroxyphenyl)-1-(5-methyl-furan-2-y-l) propenone (HMP) upon signalling pathways of lipopolysaccharide-induced iNOS synthesis in RAW 264.7 cells. Int Immunopharmacol 2011; 11:85-95. [DOI: 10.1016/j.intimp.2010.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/02/2010] [Accepted: 10/13/2010] [Indexed: 01/13/2023]
|
6
|
Liew CY, Tham CL, Lam KW, Mohamad AS, Kim MK, Cheah YK, Zakaria ZA, Sulaiman MR, Lajis MN, Israf DA. A synthetic hydroxypropenone inhibits nitric oxide, prostaglandin E2, and proinflammatory cytokine synthesis. Immunopharmacol Immunotoxicol 2010; 32:495-506. [PMID: 20109039 DOI: 10.3109/08923970903575708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HMP [3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l) propenone] was evaluated for its ability to inhibit the synthesis of major proinflammatory mediators and cytokines in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells and phorbol myristate acetate (PMA)-differentiated/LPS-induced U937 cells. HMP suppressed the production of nitric oxide (NO) with significant inhibitory effects at doses as low as 0.78 microM (P < 0.05). Prostaglandin E2 (PGE2) secretion was also inhibited at doses of 12.5 microM and above (P < 0.01). The secretion of both TNF-alpha and IL-6 were only inhibited at the highest dose used (25 microM; P < 0.001). IL-1beta secretion was also inhibited from 12.5 microM onwards (P < 0.01). This inhibition was demonstrated to be caused by down-regulation of inducible enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), without direct effect upon iNOS or COX-2 enzyme activity. HMP only inhibited iNOS (P < 0.001) and IL-1beta (P < 0.05) gene expression at the highest tested concentration. HMP did not affect the secretion of chemokines IL-8 and monocyte chemotactic protein-1 (MCP-1) and the anti-inflammatory cytokine IL-10. The most striking effect of HMP was its NO inhibitory activity and therefore we conclude that HMP is a selective inhibitor of iNOS.
Collapse
Affiliation(s)
- Choi Yi Liew
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Israf DA, Tham CL, Syahida A, Lajis NH, Sulaiman MR, Mohamad AS, Zakaria ZA. Atrovirinone inhibits proinflammatory mediator synthesis through disruption of NF-kappaB nuclear translocation and MAPK phosphorylation in the murine monocytic macrophage RAW 264.7. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:732-739. [PMID: 20378317 DOI: 10.1016/j.phymed.2010.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In a previous communication we showed that atrovirinone, a 1,4-benzoquinone isolated from the roots of Garcinia atroviridis, was able to inhibit several major proinflammatory mediators of inflammation. In this report we show that atrovirinone inhibits NO and PGE(2) synthesis through inhibition of iNOS and COX-2 expression. We also show that atrovirinone inhibits the secretion of IL-1beta and IL-6 in a dose dependent fashion whereas the secretion of IL-10, the anti-inflammatory cytokine, was enhanced. Subsequently we determined that the inhibition of proinflammatory cytokine synthesis and inducible enzyme expression was due to a dose-dependent inhibition of phosphorylation of p38 and ERK1/2. We also showed that atrovirinone prevented phosphorylation of I-kappaBalpha, which resulted in a reduction of p65NF-kappaB nuclear translocation as demonstrated by expression analysis. We conclude that atrovirinone is a potential anti-inflammatory drug lead that targets both the MAPK and NF-kappaB pathway.
Collapse
Affiliation(s)
- D A Israf
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lee HJ, Oh TH, Yoon WJ, Kang GJ, Yang EJ, Park SS, Lee NH, Kang HK, Yoo ES. Eutigoside C inhibits the production of inflammatory mediators (NO, PGE2, IL-6) by down-regulating NF-κB and MAP kinase activity in LPS-stimulated RAW 264.7 cells. J Pharm Pharmacol 2010; 60:917-24. [DOI: 10.1211/jpp.60.7.0014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Abstract
Eutigoside C, a compound isolated from the leaves of Eurya emarginata, is thought to be an active anti-inflammatory compound which operates through an unknown mechanism. In the present study we investigated the molecular mechanisms of eutigoside C activity in lipopolysacchardide (LPS)-stimulated murine macrophage RAW 264.7 cells. Treatment with eutigoside C inhibited LPS-stimulated production of nitric oxide (NO), prostaglandin E2 (PGE2) and interleukin-6 (IL-6). To further elucidate the mechanism of this inhibitory effect of eutigoside C, we studied LPS-induced nuclear factor (NF)-κB activation and mitogen-activated protein (MAP) kinase phosphorylation. Eutigoside C suppressed NF-κB DNA binding activity, interfering with nuclear translocation of NF-κB. Eutigoside C suppressed the phosphorylation of three MAP kinases (ERK1/2, JNK and p38). These results suggest that eutigoside C inhibits the production of inflammatory mediators (NO, PGE2 and interleukin-6) by suppressing the activation and translocation of NF-κB and the phosphorylation of MAP kinases (ERK1/2, JNK and p38) in LPS-stimulated murine macrophage RAW 264.7 cells.
Collapse
Affiliation(s)
- Hye-Ja Lee
- Department of Pharmacology, College of Medicine, Cheju National University, Jeju 690-756, South Korea
| | - Tae-Heon Oh
- Department of Chemistry, College of Natural Science, Cheju National University, Jeju 690-756, South Korea
| | - Weon-Jong Yoon
- Department of Pharmacology, College of Medicine, Cheju National University, Jeju 690-756, South Korea
| | - Gyeoung-Jin Kang
- Department of Pharmacology, College of Medicine, Cheju National University, Jeju 690-756, South Korea
| | - Eun-Jin Yang
- Department of Pharmacology, College of Medicine, Cheju National University, Jeju 690-756, South Korea
| | - Sun-Soon Park
- Department of Pharmacology, College of Medicine, Cheju National University, Jeju 690-756, South Korea
| | - Nam-Ho Lee
- Department of Chemistry, College of Natural Science, Cheju National University, Jeju 690-756, South Korea
| | - Hee-Kyoung Kang
- Department of Pharmacology, College of Medicine, Cheju National University, Jeju 690-756, South Korea
| | - Eun-Sook Yoo
- Department of Pharmacology, College of Medicine, Cheju National University, Jeju 690-756, South Korea
| |
Collapse
|
9
|
Im J, Choi HS, Kim SK, Woo SS, Ryu YH, Kang SS, Yun CH, Han SH. A food-born heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), suppresses tumor necrosis factor-α expression in lipoteichoic acid-stimulated RAW 264.7 cells. Cancer Lett 2009; 274:109-17. [DOI: 10.1016/j.canlet.2008.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 07/18/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
|
10
|
Kim HJ, Tsoyi K, Heo JM, Kang YJ, Park MK, Lee YS, Lee JH, Seo HG, Yun-Choi HS, Chang KC. Regulation of Lipopolysaccharide-Induced Inducible Nitric-Oxide Synthase Expression through the Nuclear Factor-κB Pathway and Interferon-β/Tyrosine Kinase 2/Janus Tyrosine Kinase 2-Signal Transducer and Activator of Transcription-1 Signaling Cascades by 2-Naphthylethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (THI 53), a New Synthetic Isoquinoline Alkaloid. J Pharmacol Exp Ther 2006; 320:782-9. [PMID: 17108235 DOI: 10.1124/jpet.106.112052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The effects of 2-naphthylethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (THI 53), on nitric oxide (NO) production and inducible nitric-oxide synthase (iNOS) protein induction by lipopolysaccharide (LPS) were investigated in RAW 264.7 cells and mice. In cells, THI 53 concentration dependently reduced NO production and iNOS protein induction by LPS. In addition, THI 53 inhibited NO production and iNOS protein induction in LPS-treated mice. LPS-mediated iNOS protein induction was inhibited significantly by the specific tyrosine kinase inhibitor alpha-cyano-(3-hydroxy-4-nitro)cinnamonitrile (AG126) as well as by THI 53. In addition, a c-Jun NH(2)-terminal kinase (JNK) inhibitor anthra[1,9-cd]pyrazole-6 (2H)-one) (SP600125) but not an extracellular regulated kinase inhibitor [2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98029)] or a p38 inhibitor [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB230580)] reduced the iNOS protein level induced by LPS. Moreover, a Janus kinase 2 (JAK2) inhibitor alpha-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG490) dose-dependently prevented LPS-mediated iNOS protein induction. LPS activated phosphorylations of tyrosine kinases, especially tyrosine kinase 2 (Tyk2) and signal transducer and activator of transcription-1 (STAT-1); these were reduced by THI 53. LPS also phosphorylated the JNK pathway; however, this phosphorylation was unaffected by THI 53. Interestingly, a JNK inhibitor (SP600125) and another tyrosine kinase inhibitor (genistein) significantly inhibited STAT-1 phosphorylation, suggesting that the LPS-activated JNK pathway and a tyrosine kinase pathway (especially Tyk2) may link to the STAT-1 pathway, which is involved in iNOS induction. However, THI 53 regulates LPS-mediated iNOS protein induction by affecting the Tyk2/JAK2-STAT-1 pathway, not the JNK pathway. The inhibition by THI 53 of LPS-induced NO production was recovered by a tyrosine phosphatase inhibitor (Na(3)VO(4)), which supports the possibility that THI 53 inhibits the LPS-induced inflammatory response through regulation of tyrosine kinase pathways. THI 53 also inhibited LPS-mediated interferon (IFN)-beta production and nuclear factor-kappaB (NF-kappaB) activation. Thus, THI 53 may regulate LPS-mediated inflammatory response through both the NF-kappaB and IFN-beta/Tyk2/JAK2-STAT-1 pathways.
Collapse
Affiliation(s)
- Hye Jung Kim
- Department of Pharmacology, College of Medicine, Gyeongsang National University, 92 Chilam-dong, Jinju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wadsworth TL, Koop DR. Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced release of nitric oxide. Chem Biol Interact 2001; 137:43-58. [PMID: 11518563 DOI: 10.1016/s0009-2797(01)00208-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Administration of bacterial lipopolysaccharide (LPS) to laboratory animals and cultured macrophages is known to induce the production of nitric oxide (NO) from inducible nitric oxide synthase (iNOS). Here we show that pre-treatment with Ginkgo biloba extract (EGb 761) suppresses the in vivo production of NO (measured by the Griess reaction) after challenge with LPS. In order to begin to understand the mechanism of this inhibition, we evaluated in vitro effects of EGb 761 and its flavonoid component, quercetin, on LPS-treated RAW 264.7 macrophages. Pre-treatment with EGb 761 or quercetin dose-dependently inhibited NO release. Both substances scavenged NO generated from the decomposition of sodium nitroprusside. Western analysis showed that EGb 761 and quercetin inhibited LPS-induced levels of iNOS protein. Northern blotting demonstrated that EGb 761 and quercetin decreased LPS-induced iNOS mRNA levels without altering the half-life. Activation of mitogen activated protein kinases (MAPKs) and the redox-sensitive transcription factors, nuclear factor-kappaB (NF-kappaB) and activator protein 1 (AP-1) are key events in the signal transduction pathways mediating iNOS induction. In our studies, both EGb 761 and quercetin inhibited p38 MAPK activity, which is necessary for iNOS expression in LPS-stimulated RAW 264.7 macrophages. However, differences in the response of NF-kappaB, AP-1, and Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK) and its downstream substrates to EGb 761 and quercetin suggest that quercetin is not the sole component responsible for the in vivo inhibition of LPS-induced iNOS activation by EGb 761.
Collapse
Affiliation(s)
- T L Wadsworth
- Department of Physiology and Pharmacology, Oregon Health Sciences University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97201-3098, USA
| | | |
Collapse
|
12
|
Castrillo A, de Las Heras B, Hortelano S, Rodriguez B, Villar A, Bosca L. Inhibition of the nuclear factor kappa B (NF-kappa B) pathway by tetracyclic kaurene diterpenes in macrophages. Specific effects on NF-kappa B-inducing kinase activity and on the coordinate activation of ERK and p38 MAPK. J Biol Chem 2001; 276:15854-60. [PMID: 11278990 DOI: 10.1074/jbc.m100010200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The anti-inflammatory action of most terpenes has been explained in terms of the inhibition of nuclear factor kappaB (NF-kappaB) activity. Ent-kaurene diterpenes are intermediates of the synthesis of gibberellins and inhibit the expression of NO synthase-2 and the release of tumor necrosis factor-alpha in J774 macrophages challenged with lipopolysaccharide. These diterpenes inhibit NF-kappaB and IkappaB kinase (IKK) activation in vivo but failed to affect in vitro the function of NF-kappaB, the phosphorylation and targeting of IkappaBalpha, and the activity of IKK-2. Transient expression of NF-kappaB-inducing kinase (NIK) activated the IKK complex and NF-kappaB, a process that was inhibited by kaurenes, indicating that the inhibition of NIK was one of the targets of these diterpenes. These results show that kaurenes impair the inflammatory signaling by inhibiting NIK, a member of the MAPK kinase superfamily that interacts with tumor necrosis factor receptor-associated factors, and mediate the activation of NF-kappaB by these receptors. Moreover, kaurenes delayed the phosphorylation of p38, ERK1, and ERK2 MAPKs, but not that of JNK, in response to lipopolysaccharide treatment of J774 cells. The absence of a coordinate activation of MAPK and IKK might contribute to a deficient activation of NF-kappaB that is involved in the anti-inflammatory activity of these molecules.
Collapse
Affiliation(s)
- A Castrillo
- Instituto de Bioquimica, Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|