1
|
George IA, Chauhan R, Dhawale R, Iyer R, Limaye S, Sankaranarayanan R, Venkataramanan R, Kumar P. Insights into therapy resistance in cervical cancer. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 6:100074. [DOI: 10.1016/j.adcanc.2022.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Yang WY, Izzi B, Bress AP, Thijs L, Citterio L, Wei FF, Salvi E, Delli Carpini S, Manunta P, Cusi D, Hoylaerts MF, Luttun A, Verhamme P, Hardikar S, Nawrot TS, Staessen JA, Zhang ZY. Association of colorectal cancer with genetic and epigenetic variation in PEAR1—A population-based cohort study. PLoS One 2022; 17:e0266481. [PMID: 35390065 PMCID: PMC8989234 DOI: 10.1371/journal.pone.0266481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Platelet Endothelial Aggregation Receptor 1 (PEAR1) modulates angiogenesis and platelet contact-induced activation, which play a role in the pathogenesis of colorectal cancer. We therefore tested the association of incident colorectal cancer and genetic and epigenetic variability in PEAR1 among 2532 randomly recruited participants enrolled in the family-based Flemish Study on Environment, Genes and Health Outcomes (51.2% women; mean age 44.8 years). All underwent genotyping of rs12566888 located in intron 1 of the PEAR1 gene; in 926 participants, methylation at 16 CpG sites in the PEAR1 promoter was also assessed. Over 18.1 years (median), 49 colorectal cancers occurred, all in different pedigrees. While accounting for clustering of risk factors within families and adjusting for sex, age, body mass index, the total-to-HDL cholesterol ratio, serum creatinine, plasma glucose, smoking and drinking, use of antiplatelet and nonsteroidal anti-inflammatory drug, the hazard ratio of colorectal cancer contrasting minor-allele (T) carriers vs. major-allele (GG) homozygotes was 2.17 (95% confidence interval, 1.18–3.99; P = 0.013). Bootstrapped analyses, from which we randomly excluded from two to nine cancer cases, provided confirmatory results. In participants with methylation data, we applied partial least square discriminant analysis (PLS-DA) and identified two methylation sites associated with higher colorectal cancer risk and two with lower risk. In-silico analysis suggested that methylation of the PEAR1 promoter at these four sites might affect binding of transcription factors p53, PAX5, and E2F-1, thereby modulating gene expression. In conclusion, our findings suggest that genetic and epigenetic variation in PEAR1 modulates the risk of colorectal cancer in white Flemish. To what extent, environmental factors as exemplified by our methylation data, interact with genetic predisposition and modulate penetrance of colorectal cancer risk is unknown.
Collapse
Affiliation(s)
- Wen-Yi Yang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Adam P Bress
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Lutgarde Thijs
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Lorena Citterio
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fang-Fei Wei
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Erika Salvi
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Simona Delli Carpini
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Manunta
- School of Nephrology, University Vita-Salute San Raffaele, Milan, Italy
| | | | | | - Aernout Luttun
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Sheetal Hardikar
- Department of Population Health Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Jan A Staessen
- Biomedical Science Group, University of Leuven, Leuven, Belgium
- Research Institute Association for the Promotion of Preventive Medicine, Mechelen, Belgium
| | - Zhen-Yu Zhang
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Laugsand EA, Brenne SS, Skorpen F. DNA methylation markers detected in blood, stool, urine, and tissue in colorectal cancer: a systematic review of paired samples. Int J Colorectal Dis 2021; 36:239-251. [PMID: 33030559 PMCID: PMC7801356 DOI: 10.1007/s00384-020-03757-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Methylated cell-free DNA in liquid biopsies are promising non-invasive biomarkers for colorectal cancer (CRC). Optimal markers would have high sensitivity and specificity for early detection of CRC and could be detected in more than one type of material from the patient. We systematically reviewed the literature on DNA methylation markers of colorectal cancer, detected in more than one type of material, regarding their potential as contributors to a panel for screening and follow-up of CRC. METHODS The databases MEDLINE, Web of Science, and Embase were systematically searched. Data extraction and review was performed by two authors independently. Agreement between methylation status in tissue and other materials (blood/stool/urine) was analyzed using the McNemar test and Cohen's kappa. RESULTS From the 51 included studies, we identified seven single markers with sensitivity ≥ 75% and specificity ≥ 90% for CRC. We also identified one promising plasma panel and two stool panels. The correspondence of methylation status was evaluated as very good for four markers, but only marginal for most of the other markers investigated (12 of 21). CONCLUSION The included studies reported only some of the variables and markers of interest and included few patients. Hence, a meta-analysis was not possible at this point. Larger, prospective studies must be designed to study the discordant detection of markers in tissue and liquid biopsies. When reporting their findings, such studies should use a standardized format.
Collapse
Affiliation(s)
- Eivor Alette Laugsand
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway.
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| | - Siv Sellæg Brenne
- Department of Surgery, Levanger Hospital, Nord-Trøndelag Hospital trust, N-7600, Levanger, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Frank Skorpen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| |
Collapse
|
4
|
Höglund A, Henriksen R, Fogelholm J, Churcher AM, Guerrero-Bosagna CM, Martinez-Barrio A, Johnsson M, Jensen P, Wright D. The methylation landscape and its role in domestication and gene regulation in the chicken. Nat Ecol Evol 2020; 4:1713-1724. [PMID: 32958860 PMCID: PMC7616959 DOI: 10.1038/s41559-020-01310-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
Domestication is one of the strongest examples of artificial selection and has produced some of the most extreme within-species phenotypic variation known. In the case of the chicken, it has been hypothesized that DNA methylation may play a mechanistic role in the domestication response. By inter-crossing wild-derived red junglefowl with domestic chickens, we mapped quantitative trait loci for hypothalamic methylation (methQTL), gene expression (eQTL) and behaviour. We find large, stable methylation differences, with 6,179 cis and 2,973 trans methQTL identified. Over 46% of the trans effects were genotypically controlled by five loci, mainly associated with increased methylation in the junglefowl genotype. In a third of eQTL, we find that there is a correlation between gene expression and methylation, while statistical causality analysis reveals multiple instances where methylation is driving gene expression, as well as the reverse. We also show that methylation is correlated with some aspects of behavioural variation in the inter-cross. In conclusion, our data suggest a role for methylation in the regulation of gene expression underlying the domesticated phenotype of the chicken.
Collapse
Affiliation(s)
- Andrey Höglund
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Rie Henriksen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Jesper Fogelholm
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | | | - Carlos M Guerrero-Bosagna
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
- Evolutionary Biology Centrum, Dept of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Johnsson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden.
| |
Collapse
|
5
|
Yuan W, Chen J, Shu Y, Liu S, Wu L, Ji J, Liu Z, Tang Q, Zhou Z, Cheng Y, Jiang B, Shu X. Correlation of DAPK1 methylation and the risk of gastrointestinal cancer: A systematic review and meta-analysis. PLoS One 2017; 12:e0184959. [PMID: 28934284 PMCID: PMC5608298 DOI: 10.1371/journal.pone.0184959] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE One of the critical mechanisms of gastrointestinal cancer pathogenesis is the silencing of death associated protein kinase 1 (DAPK1), which could be caused by aberrant methylation of the promoter. However, the relationship between DAPK1 methylation and the risk of gastrointestinal cancer is still controversial. Hence, we conducted this study to determine the potential correlation. METHODS Eligible publications were searched in the Pubmed, Embase, and Cochrane Library through November 2016 according to the inclusion criteria and exclusion criteria. Revman 5.3 and Stata 12.0 software were used to analyze the relevant data regarding the association between the frequency of DAPK1 methylation and gastrointestinal cancer. RESULTS A total of 22 studies with 2406 patients were included in this meta analysis. Methylation of DAPK1 was positively related with the risk of gastrointestinal cancer (odds ratio [OR] = 5.35, 95% confidence interval [CI]: 2.76-10.38, P<0.00001, random effects model). The source of heterogeneity was analyzed by sensitivity analysis and subgroup analysis. After omitting one heterogeneous study, the I2 decreased and the OR increased in pooled analysis. Also, the heterogeneity decreased most significantly in the subgroup of studies that had a sample size of less than 60 cases. Then, the correlations between DAPK1 methylation and clinicopathological features of gastrointestinal cancer were assessed. DAPK1 methylation was positively correlated with the lymph node (N) stage (positive vs. negative, OR = 1.45, 95%CI: 1.01-2.06, P = 0.04, fixed effects model) and poor differentiation (OR = 1.55, 95%CI: 1.02-2.35, P = 0.04, fixed effects model) in gastric cancer, and the association was significant among Asian patients. However, among cases of gastrointestinal cancer, the association between DAPK1 methylation and tumor (T) stage, N stage, distant metastasis (M) stage, and cancer differentiation were not statistically significant. CONCLUSIONS DAPK1 methylation is a potential biomarker for the early diagnosis of gastrointestinal cancer. Further analysis of the clinicopathological features indicated that aberrant methylation of DAPK1 is positively associated with the tumorigenesis of gastrointestinal cancer, and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Wenzheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shu
- College of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Sanguang Liu
- Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Liang Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintong Ji
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifeng Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Jiang
- Department Breast & Thyroid Surgery, TongJi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
6
|
Mangano A, Mangano A, Lianos GD, Cassinotti E, Roukos DH, Dionigi G, Boni L. Circulating free DNA in plasma or serum as biomarkers of carcinogenesis in colon cancer. Future Oncol 2016; 11:1455-8. [PMID: 25963422 DOI: 10.2217/fon.15.63] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Alberto Mangano
- 1st Department of General Surgery, Ospedale di Circolo e Fondazione Macchi Varese, Department of Surgical & Morphological Sciences, Insubria University Varese-Como, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Chen CC, Lee KD, Pai MY, Chu PY, Hsu CC, Chiu CC, Chen LT, Chang JY, Hsiao SH, Leu YW. Changes in DNA methylation are associated with the development of drug resistance in cervical cancer cells. Cancer Cell Int 2015; 15:98. [PMID: 26464562 PMCID: PMC4604021 DOI: 10.1186/s12935-015-0248-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022] Open
Abstract
Background and propose Changes in DNA methylation are associated with changes in somatic cell fate without the alteration of coding sequences. In addition to its use as a traceable biomarker, reversible DNA methylation could also serve as a therapeutic target. In particular, if the development of drug resistance is associated with changes in DNA methylation, then demethylation might reverse the resistance phenotype. The reversion of the drug-resistance might then be feasible if the association between abnormal DNA methylation and the development of drug-resistance could be identified. Methods Methylation differences between the drug-resistance cervical cancer cell, SiHa, and its derived oxaliplatin-resistant S3 cells were detected by methylation specific microarray. The drug-resistance cells were treated with demethylation agent to see if the resistance phenotype were reversed. Targeted methylation of one of the identified locus in normal cell is expected to recapitulate the development of resistance and a two-component reporter system is adopted to monitor the increase of DNA methylation in live cells. Results In this report, we identified methylation changes, both genome-wide and within individual loci, in the oxaliplatin-resistant cervical cancer cell S3 compared with its parental cell line SiHa. Treatment of S3 with a demethylation agent reversed increases in methylation and allowed the expression of methylation-silenced genes. Treatment with the demethylation agent also restored the sensitivity of S3 to cisplatin, taxol, and oxaliplatin to the same level as that of SiHa. Finally, we found that methylation of the target gene Casp8AP2 is sufficient to increase drug resistance in different cells. Conclusions These results suggest that global methylation is associated with the development of drug resistance and could serve as a biomarker and therapeutic target for drug resistance in cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0248-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan ; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Kuan-Der Lee
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan ; Chang Gung Institute of Technology, Taoyuan, Taiwan
| | - Mei-Yu Pai
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City, Taiwan
| | - Chia-Chen Hsu
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Chia-Chen Chiu
- Department of Hematology and Oncology, Chang Gung Memorial Hospital, Chiayi, Chang Gung University College of Medicine, Taoyuan, Taiwan ; Chang Gung Institute of Technology, Taoyuan, Taiwan ; Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County 350 Taiwan
| | - Jang-Yang Chang
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704 Taiwan
| | - Shu-Huei Hsiao
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| | - Yu-Wei Leu
- Department of Life Science, Human Epigenomics Center, Institute of Molecular Biology and Institute of Biomedical Science, National Chung Cheng University, Chiayi, 621 Taiwan
| |
Collapse
|
8
|
Zhang X, Song YF, Lu HN, Wang DP, Zhang XS, Huang SL, Sun BL, Huang ZG. Combined detection of plasma GATA5 and SFRP2 methylation is a valid noninvasive biomarker for colorectal cancer and adenomas. World J Gastroenterol 2015; 21:2629-2637. [PMID: 25759530 PMCID: PMC4351212 DOI: 10.3748/wjg.v21.i9.2629] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/31/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate GATA5, SFRP2, and ITGA4 methylation in plasma DNA as noninvasive biomarkers for colorectal cancer (CRC) or adenomas.
METHODS: There were 57 CRC patients, 30 adenomas patients, and 47 control patients enrolled in this study. Methylation-specific polymerase chain reaction was used to determine the promoter methylation status of GATA5, SFRP2, and ITGA4 genes in plasma DNA, and their association with clinical outcome in CRC. The predictive ability of GATA5, SFRP2, and ITGA4 methylation, individually or in combination, to detect CRC or adenomas was further analyzed.
RESULTS: Hypermethylated GATA5 was detected in plasma in 61.4% (35/57) of CRC cases, 43.33% (13/30) of adenoma cases, and 21.28% (10/47) of control cases. The hypermethylation of SFRP2 was detected in 54.39% (31/57), 40.00% (12/30), and 27.66% (13/47) in plasma samples from CRC, adenomas, and controls, respectively. ITGA4 methylation was detected in 36.84% (21/57) of plasma samples of CRC patients and in 30.00% (9/30) of plasma samples from patients with colorectal adenomas, and the specificity of this individual biomarker was 80.85% (9/47). Moreover, GATA5 methylation in the plasma was significantly correlated with larger tumor size (P = 0.019), differentiation status (P = 0.038), TNM stage (P = 0.008), and lymph node metastasis (P = 0.008). SFRP2 and ITGA4 methylation in plasma significantly correlated with differentiation status (SFRP2, P = 0.012; ITGA4, P = 0.007), TNM stage (SFRP2, P = 0.034; ITGA4, P = 0.021), and lymph node metastasis (SFRP2, P = 0.034; ITGA4, P = 0.021). From the perspective of predictive power and cost-performance, using GATA5 and SFRP2 together as methylation markers seemed the most favorable predictor for CRC (OR = 8.06; 95%CI: 2.54-25.5; P < 0.01) and adenomas (OR = 3.35; 95%CI: 1.29-8.71; P = 0.012).
CONCLUSION: A combination of GATA5 and SFRP2 methylation could be promising as a marker for the detection and diagnosis of CRC and adenomas.
Collapse
|
9
|
Abstract
Colorectal cancer (CRC) is one of most common malignancies and a leading cause of cancer related deaths worldwide. Epigenetic change is an important mechanism of colorectal carcinogenesis. Accumulation of epigenetic changes was found in colorectal cancer and other tumors. Aberrant changes in DNA methylation, histone modification, imprinting, and noncoding RNAs were frequently found in human colorectal cancer. Epigenetic changes may serve as a diagnostic, prognostic, and chemo-sensitive marker. It also becomes a cancer preventive or therapeutic target in some circumstances.
Collapse
Affiliation(s)
- Wenji Yan
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China
| | | |
Collapse
|
10
|
Melotte V, Yi JM, Lentjes MHFM, Smits KM, Van Neste L, Niessen HEC, Wouters KAD, Louwagie J, Schuebel KE, Herman JG, Baylin SB, van Criekinge W, Meijer GA, Ahuja N, van Engeland M. Spectrin repeat containing nuclear envelope 1 and forkhead box protein E1 are promising markers for the detection of colorectal cancer in blood. Cancer Prev Res (Phila) 2014; 8:157-64. [PMID: 25538088 DOI: 10.1158/1940-6207.capr-14-0198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Identifying biomarkers in body fluids may improve the noninvasive detection of colorectal cancer. Previously, we identified N-Myc downstream-regulated gene 4 (NDRG4) and GATA binding protein 5 (GATA5) methylation as promising biomarkers for colorectal cancer in stool DNA. Here, we examined the utility of NDRG4, GATA5, and two additional markers [Forkhead box protein E1 (FOXE1) and spectrin repeat containing nuclear envelope 1 (SYNE1)] promoter methylation as biomarkers in plasma DNA. Quantitative methylation-specific PCR was performed on plasma DNA from 220 patients with colorectal cancer and 684 noncancer controls, divided in a training set and a test set. Receiver operating characteristic analysis was performed to measure the area under the curve of GATA5, NDRG4, SYNE1, and FOXE1 methylation. Functional assays were performed in SYNE1 and FOXE1 stably transfected cell lines. The sensitivity of NDRG4, GATA5, FOXE1, and SYNE1 methylation in all stages of colorectal cancer (154 cases, 444 controls) was 27% [95% confidence interval (CI), 20%-34%), 18% (95% CI, 12%-24%), 46% (95% CI, 38%-54%), and 47% (95% CI, 39%-55%), with a specificity of 95% (95% CI, 93%-97%), 99% (95% CI, 98%-100%), 93% (95% CI, 91%-95%), and 96% (95% CI, 94%-98%), respectively. Combining SYNE1 and FOXE1, increased the sensitivity to 56% (95% CI, 48%-64%), while the specificity decreased to 90% (95% CI, 87%-93%) in the training set and to 58% sensitivity (95% CI, 46%-70%) and 91% specificity (95% CI, 80%-100%) in a test set (66 cases, 240 controls). SYNE1 overexpression showed no major differences in cell proliferation, migration, and invasion compared with controls. Overexpression of FOXE1 significantly decreased the number of colonies in SW480 and HCT116 cell lines. Overall, our data suggest that SYNE1 and FOXE1 are promising markers for colorectal cancer detection.
Collapse
Affiliation(s)
- Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joo Mi Yi
- Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan, South Korea
| | - Marjolein H F M Lentjes
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kim M Smits
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands. Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Leander Van Neste
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands. MDxHealth, Herstal, Belgium
| | - Hanneke E C Niessen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kim A D Wouters
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Kornel E Schuebel
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James G Herman
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Gerrit A Meijer
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Nita Ahuja
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland. Department of Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Abstract
Death associated protein kinase 1 (DAPK) is an important serine/theoreine kinase involved in various cellular processes such as apoptosis, autophagy and inflammation. DAPK expression and activity are misregulated in multiple diseases including cancer, neuronal death, stoke, et al. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. In this review, we summarize the pathological status and functional roles of DAPK in disease and compare the published reagents that can manipulate the expression or activity of DAPK. The pleiotropic functions of DAPK make it an intriguing target and the barriers and opportunities for targeting DAPK for future clinical application are discussed.
Collapse
|
12
|
Reimers MS, Engels CC, Kuppen PJK, van de Velde CJH, Liefers GJ. How does genome sequencing impact surgery? Nat Rev Clin Oncol 2014; 11:610-8. [PMID: 24958181 DOI: 10.1038/nrclinonc.2014.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer is a leading cause of death worldwide. Great efforts are dedicated to the development of prognostic and predictive biomarkers to improve diagnosis and achieve optimal treatment selection, thereby, introducing precision medicine in the multimodality treatment of cancer. Genomic aberrations are the basis of tumour development, representing excellent candidates for the development of promising clinical biomarkers. Over the past decade, single-gene mutations and genomic profiling have been increasingly used in multidisciplinary consultations for risk-assessment and treatment planning for patients with cancer. We discuss the impact of such genetic-based information on surgical decision-making. Single-gene mutations have already influenced surgical decision-making in breast, colorectal and thyroid cancer. However, the direct impact of genomic profiling on surgical care has not yet been fully established. We discuss the direct and indirect influences of genomic profiling on surgery, and analyse the limitations and unresolved issues of a genotypic-approach to the surgical management of cancer.
Collapse
Affiliation(s)
- Marlies S Reimers
- Department of Surgery, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, Netherlands
| | - Charla C Engels
- Department of Surgery, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, Netherlands
| | | | - Gerrit J Liefers
- Department of Surgery, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, Netherlands
| |
Collapse
|
13
|
Goel A, Boland CR. Epigenetics of colorectal cancer. Gastroenterology 2012; 143:1442-1460.e1. [PMID: 23000599 PMCID: PMC3611241 DOI: 10.1053/j.gastro.2012.09.032] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 09/04/2012] [Accepted: 09/13/2012] [Indexed: 12/18/2022]
Abstract
In the early years of the molecular biology revolution, cancer research was mainly focused on genetic changes (ie, those that altered DNA sequences). Although this has been extremely useful as our understanding of the pathogenesis and biology of cancer has grown and matured, there is another realm in tumor development that does not involve changing the sequence of cellular DNA. This field is called "epigenetics" and broadly encompasses changes in the methylation of cytosines in DNA, changes in histone and chromatin structure, and alterations in the expression of microRNAs, which control the stability of many messenger RNAs and serve as "master regulators" of gene expression. This review focuses on the epigenetics of colorectal cancer and illustrates the impact epigenetics has had on this field.
Collapse
Affiliation(s)
- Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA.
| | | |
Collapse
|
14
|
Promoter CpG island methylation in colorectal cancer:. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Cassinotti E, Melson J, Liggett T, Melnikov A, Yi Q, Replogle C, Mobarhan S, Boni L, Segato S, Levenson V. DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. Int J Cancer 2011; 131:1153-7. [PMID: 22020530 DOI: 10.1002/ijc.26484] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/15/2011] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) screening rates are currently suboptimal. Blood-based screening could improve rates of earlier detection for CRC and adenomatous colorectal polyps. In this study, we evaluated the feasibility of plasma-based detection of early CRC and adenomatous polyps using array-mediated analysis methylation profiling of 56 genes implicated in carcinogenesis. Methylation of 56 genes in patients with Stages I and II CRC (N=30) and those with adenomatous polyps (N=30) were compared with individuals who underwent colonoscopy and were found to have neither adenomatous changes nor CRC. Composite biomarkers were developed for adenomatous polyps and CRC, and their sensitivity and specificity was estimated using five-fold cross validation. Six promoters (CYCD2, HIC1, PAX 5, RASSF1A, RB1 and SRBC) were selected for the biomarker, which differentiated CRC patients and controls with 84% sensitivity and 68% specificity. Three promoters (HIC1, MDG1 and RASSF1A) were selected for the biomarker, which differentiated patients with adenomatous polyps and controls with sensitivity of 55% and specificity of 65%. Methylation profiling of plasma DNA can detect early CRC with significant accuracy and shows promise as a methodology to develop biomarkers for CRC screening.
Collapse
Affiliation(s)
- Elisa Cassinotti
- Department of Surgical Sciences, Minimally Invasive Surgery Research Center, University of Insubria, Varese, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zeller C, Brown R. Therapeutic modulation of epigenetic drivers of drug resistance in ovarian cancer. Ther Adv Med Oncol 2011; 2:319-29. [PMID: 21789144 DOI: 10.1177/1758834010375759] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic changes in tumours are associated not only with cancer development and progression, but also with resistance to chemotherapy. Aberrant DNA methylation at CpG islands and associated epigenetic silencing are observed during the acquisition of drug resistance. However, it remains unclear whether all of the observed changes are drivers of drug resistance, causally associated with response of tumours to chemotherapy, or are passenger events representing chance DNA methylation changes. Systematic approaches that link DNA methylation and expression with chemosensitivity will be required to identify key drivers. Such drivers will be important prognostic or predicitive biomarkers, both to existing chemotherapies, but also to epigenetic therapies used to modulate drug resistance.
Collapse
Affiliation(s)
- Constanze Zeller
- Department of Oncology, IRDB, Hammersmith Hospital Campus, Imperial College London, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
17
|
Abstract
Epigenetic changes frequently occur in human colorectal cancer. Genomic global hypomethylation, gene promoter region hypermethylation, histone modifications, and alteration of miRNA patterns are major epigenetic changes in colorectal cancer. Loss of imprinting (LOI) is associated with colorectal neoplasia. Folate deficiency may cause colorectal Carcinogenesis by inducing gene-specific hypermethylation and genomic global hypomethylation. HDAC inhibitors and demethylating agents have been approved by the FDA for myelodysplastic syndrome and leukemia treatment. Non-coding RNA is regarded as another kind of epigenetic marker in colorectal cancer. This review is mainly focused on DNA methylation, histone modification, and microRNA changes in colorectal cancer.
Collapse
Affiliation(s)
- Yan Jia
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | | |
Collapse
|
18
|
Kraus S, Goel A, Arber N. Blood-based peptide, genetic, and epigenetic biomarkers for diagnosing gastrointestinal cancers. ACTA ACUST UNITED AC 2010; 4:459-71. [DOI: 10.1517/17530059.2010.532208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Lecomte T, Ceze N, Dorval E, Laurent-Puig P. Circulating free tumor DNA and colorectal cancer. ACTA ACUST UNITED AC 2010; 34:662-81. [PMID: 20832215 DOI: 10.1016/j.gcb.2009.04.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 04/15/2009] [Accepted: 04/25/2009] [Indexed: 12/18/2022]
Abstract
Cancer is characterized by multiple somatic genetic and epigenetic alterations that could be useful as molecular markers for detecting tumor DNA in different bodily fluids. In patients with various diseases as well as in healthy subjects, circulating plasma and serum carry small amounts of non-cell-bound DNA. In this free circulating DNA, tumor-associated molecular alterations can be detected in patients who have cancer. In many instances, the alterations identified are the same as those found in the primary tumor tissue, thereby suggesting tumor origin from a fraction of the circulating free DNA. In fact, various types of DNA alterations described in colorectal cancer have been detected in the circulating free DNA of patients with colorectal cancer. These alterations include KRAS2, APC and TP53 mutations, DNA hypermethylation, microsatellite instability (MSI) and loss of heterozygosity (LOH). Also, advances in polymerase chain reaction (PCR)-based technology now allow the detection and quantification of extremely small amounts of tumor-derived circulating free DNA in colorectal cancer patients. The present report summarizes the literature available so far on the mechanisms of circulating free DNA, and on the studies aimed at assessing the clinical and biological significance of tumor-derived circulating free DNA in colorectal cancer patients. Thus, tumor-derived circulating free DNA could serve as a marker for the diagnosis, prognosis and early detection of recurrence, thereby significantly improving the monitoring of colorectal cancer patients.
Collapse
Affiliation(s)
- T Lecomte
- Université François-Rabelais, parc Grandmont, 37200 Tours, France. lecomt
| | | | | | | |
Collapse
|
20
|
Kuester D, Guenther T, Biesold S, Hartmann A, Bataille F, Ruemmele P, Peters B, Meyer F, Schubert D, Bohr UR, Malfertheiner P, Lippert H, Silver ARJ, Roessner A, Schneider-Stock R. Aberrant methylation of DAPK in long-standing ulcerative colitis and ulcerative colitis-associated carcinoma. Pathol Res Pract 2010; 206:616-24. [PMID: 20630662 DOI: 10.1016/j.prp.2010.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/19/2010] [Indexed: 02/08/2023]
Abstract
Death-associated protein kinase (DAPK) has pro-apoptotic functions and participates in various apoptotic systems. DAPK acts as a tumor suppressor, and its inactivation by promoter hypermethylation has been frequently observed in various human cancers. As alterations of pro-apoptotic genes might cause instability in the balance of cell-turnover during chronic inflammatory processes, epigenetic silencing of DAPK might be involved in the carcinogenesis of ulcerative colitis-associated carcinoma (UCC). To evaluate the role of DAPK in the inflammation-driven carcinogenesis of ulcerative colitis (UC), we analyzed promoter hypermethylation and protein expression of DAPK using methylation-specific PCR and immunohistochemistry in 43 UCCs and paired UC-background mucosa, as well as in UC-background mucosa of 50 patients without UCC. The frequency of methylation of DAPK in UCCs was low (27.6%) compared to overall non-neoplastic UC-background mucosa (48.3%; p=0.02) and sporadic colorectal carcinoma (57.4%, p=0.019). The difference in the methylation frequency in UC-background mucosa in patients without UCC (54.2%), compared to those with UCC (40.0%), was not significant (p=0.141). Promoter methylation correlated significantly with decreased DAPK protein expression (p<0.001) and severity of inflammatory activity (p=0.024). In unmethylated UC-background mucosa, DAPK protein expression increased with activity of UC-associated inflammation, suggesting a protective role of the pro-apoptotic DAPK during the chronic inflammatory process of UC. Thus, inactivation of DAPK by promoter hypermethylation might be crucial for accumulation of DNA damage in inflamed mucosa of UC, and might therefore contribute to the initiation of the neoplastic process and development of UC-associated carcinoma.
Collapse
Affiliation(s)
- Doerthe Kuester
- Department of Pathology, Hepatology and Infectious Diseases, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shivapurkar N, Gazdar AF. DNA methylation based biomarkers in non-invasive cancer screening. Curr Mol Med 2010; 10:123-32. [PMID: 20196733 PMCID: PMC3397200 DOI: 10.2174/156652410790963303] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 05/10/2009] [Indexed: 12/31/2022]
Abstract
DNA methylation plays a critical role in the regulation of gene expression, differentiation and in the development of cancer and other diseases. Hypermethylation of CpG islands located in the promoter regions of tumor suppressor genes is now firmly established as the most frequent mechanism for gene inactivation in cancers. Feasibility of using DNA methylation based biomarkers for early detection of cancer has been shown. Potential of using DNA methylation for prediction of therapeutic outcome and patient survival has also been shown. DNA originated from cancer cells has been routinely detected in clinical specimens (ex. Plasma/serum, sputum, urine etc.) from cancer patients. Presence of methylated DNA sequences in clinical specimens and potential of using them as biomarkers have been recognized. Novel methylation based biomarkers that can be used in clinical specimens, obtained non-invasively from cancer patients, offer significant practical advantages. More resources need to be committed to this area of biomarker research. Thus, we review recent findings on DNA methylation based cancer biomarkers with particular focus on these applicable to the clinical specimens obtained non-invasively from cancer patients.
Collapse
Affiliation(s)
- N Shivapurkar
- Hamon Center for Therapeutic Oncology Research, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
| | | |
Collapse
|
22
|
Lee BB, Lee EJ, Jung EH, Chun HK, Chang DK, Song SY, Park J, Kim DH. Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 2009; 15:6185-91. [PMID: 19773381 DOI: 10.1158/1078-0432.ccr-09-0111] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To identify epigenetic molecular makers in plasma for the early detection of colorectal cancer. EXPERIMENTAL DESIGN We retrospectively analyzed the methylation status of 10 genes in fresh-frozen tissues and corresponding plasma samples from 243 patients with stage I and II sporadic colorectal cancer, 276 healthy individuals, and plasma from 64 colorectal adenoma patients using methylation-specific PCR. The methylation score (Mscore) was used to find molecular markers with high sensitivity and specificity. RESULTS Of the 243 colorectal cancer tissues, methylation was detected in 18% for p14, 34% for p16, 27% for APC, 34% for DAPK, 32% for HLTF, 21% for hMLH1, 39% for MGMT, 24% for RARbeta2, 58% for RASSF2A, and 74% for Wif-1. Receiver operator characteristic curve analysis in plasma from 243 patients with cancer and 276 healthy individuals showed that the M score of any single gene had a sensitivity of <40% after controlling for age, sex, and tumor location. The specificity of the M score was not different between multigene and single gene analyses, but the sensitivity of the M score was significantly increased by multigene analysis. For all patients, the M score in a model including APC, MGMT, RASSF2A, and Wif-1 genes had a sensitivity of 86.5% and a specificity of 92.1% when 1.6 was used as a cutoff. In this model, the M score had a positive predictive value of 90.6% and a negative predictive value of 88.8%. CONCLUSION The present study suggests that tumor-specific methylation of APC, MGMT, RASSF2A, and Wif-1 genes might be a valuable biomarker in plasma for the early detection of colorectal cancer.
Collapse
Affiliation(s)
- Bo Bin Lee
- Molecular Cell Biology, Samsung Medical Center, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang YC, Yu ZH, Liu C, Xu LZ, Yu W, Lu J, Zhu RM, Li GL, Xia XY, Wei XW, Ji HZ, Lu H, Gao Y, Gao WM, Chen LB. Detection of RASSF1A promoter hypermethylation in serum from gastric and colorectal adenocarcinoma patients. World J Gastroenterol 2008; 14:3074-80. [PMID: 18494062 PMCID: PMC2712178 DOI: 10.3748/wjg.14.3074] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the diagnostic role of serum RASSF1A promoter hypermethylation in gastric and colorectal adenocarcinoma.
METHODS: Methylation-specific polymerase chain reaction (MSPCR) was used to examine the promoter methylation status of the serum RASSF1A gene in 47 gastric adenocarcinoma patients, 45 colorectal adenocarcinoma patients, 60 patients with benign gastrointestinal disease (30 with benign gastric disease and 30 with benign colorectal disease), and 30 healthy donor controls. A paired study of RASSF1A promoter methylation status in primary tumor, adjacent normal tissue, and postoperative serum were conducted in 25 gastric and colorectal adenocarcinoma patients who later were underwent surgical therapy.
RESULTS: The frequencies of detection of serum RASSF1A promoter hypermethylation in gastric (34.0%) and colorectal (28.9%) adenocarcinoma patients were significantly higher than those in patients with benign gastric (3.3%) or colorectal (6.7%) disease or in healthy donors (0%) (P < 0.01). The methylation status of RASSF1A promoter in serum samples was consistent with that in paired primary tumors, and the MSPCR results for RASSF1A promoter methylation status in paired preoperative samples were consistent with those in postoperative serum samples. The serum RASSF1A promoter hypermethylation did not correlate with patient sex, age, tumor differentiation grade, surgical therapy, or serum carcinoembryonic antigen level. Although the serum RASSF1A promoter hypermethylation frequency tended to be higher in patients with distant metastases, there was no correlation between methylation status and metastasis.
CONCLUSION: Aberrant CpG island methylation within the promoter region of RASSF1A is a promising biomarker for gastric and colorectal cancer.
Collapse
|
24
|
Board RE, Knight L, Greystoke A, Blackhall FH, Hughes A, Dive C, Ranson M. DNA Methylation in Circulating Tumour DNA as a Biomarker for Cancer. Biomark Insights 2008. [DOI: 10.1177/117727190700200003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Free circulating DNA, which is thought to be derived from the primary tumour, can be detected in the blood of patients with cancer. Detection of genetic and epigenetic alteration in this tumour DNA offers a potential source of development of prognostic and predictive biomarkers for cancer. One such change is DNA methylation of the promotor region of tumour suppressor genes. This causes down regulation of tumour suppressor gene expression, a frequent event in carcinogenesis. Hypermethylation of the promotor region of a number of genes has been detected in many tumour types and more recently these changes have been detected in circulating tumour DNA. This review will summarise the literature detailing DNA methylation in circulating tumour DNA and discuss some of the current controversies and technical challenges facing its use as a potential biomarker for cancer.
Collapse
Affiliation(s)
- Ruth E Board
- Clinical and Experimental Pharmacology, Paterson Institute of Cancer Research, Wilmslow Road, Manchester M20 4BX
| | - Lucy Knight
- Discovery Medicine, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire. SK10 4TG
| | - Alastair Greystoke
- Clinical and Experimental Pharmacology, Paterson Institute of Cancer Research, Wilmslow Road, Manchester M20 4BX
| | - Fiona H Blackhall
- CRUK Department of Medical Oncology, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX
| | - Andrew Hughes
- Discovery Medicine, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire. SK10 4TG
| | - Caroline Dive
- Clinical and Experimental Pharmacology, Paterson Institute of Cancer Research, Wilmslow Road, Manchester M20 4BX
| | - Malcolm Ranson
- CRUK Department of Medical Oncology, Christie Hospital NHS Trust, Wilmslow Road, Manchester M20 4BX
| |
Collapse
|
25
|
Ebert MPA, Model F, Mooney S, Hale K, Lograsso J, Tonnes-Priddy L, Hoffmann J, Csepregi A, Röcken C, Molnar B, Schulz HU, Malfertheiner P, Lofton-Day C. Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology 2006; 131:1418-30. [PMID: 17101318 DOI: 10.1053/j.gastro.2006.08.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 08/03/2006] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS The identification of novel genetic and epigenetic markers indicative of changes in the pathogenesis of colon cancer, along with easier-to-use, more sensitive assay methods, may improve the detection, treatment, and overall prognosis of this malignancy. METHODS Using methylation-specific arbitrarily primed polymerase chain reaction, a fragment of the Aristaless-like homeobox-4 (ALX4) gene that was highly methylated in colon adenomas and cancer was identified. Methylation of ALX4 was analyzed in colorectal adenomas and cancers, in the liver metastases of patients with colorectal cancer, and in 61 other neoplasias, including gastric, esophageal, and hepatocellular cancer and cholangiocarcinoma. ALX4 methylation was also analyzed in the serum of 30 patients with colon cancer. RESULTS ALX4 gene methylation was confirmed in colon adenomas (11/13) and more frequently present in primary colorectal cancers (30/47) compared with the normal colon mucosa (0/21) (P < .0001). In addition, ALX4 methylation was frequently observed in adenocarcinomas of the esophagus (12/14), stomach (11/15), and bile ducts (4/5) compared with all other cancers (P < .001). ALX4 gene methylation was also more frequently found in sera of patients with colon cancer compared with noncancer controls (P < .0001). Using a cutoff of 41.4 pg/mL, sensitivity and specificity were 83.3% and 70%, respectively. CONCLUSIONS Apart from colon adenomas and primary and metastatic colorectal cancers, ALX4 is frequently methylated in adenocarcinomas of the gastrointestinal tract. ALX4 gene methylation in sera of patients with cancer may thus serve as a methylation-specific test for colon and other gastrointestinal cancers.
Collapse
Affiliation(s)
- Matthias P A Ebert
- Epigenomics Inc, Seattle, Washington; Fred Hutchinson Cancer Center, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta Rev Cancer 2006; 1775:181-232. [PMID: 17137717 DOI: 10.1016/j.bbcan.2006.10.001] [Citation(s) in RCA: 422] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 12/23/2022]
Abstract
It has been known for decades that it is possible to detect small amounts of extracellular nucleic acids in plasma and serum of healthy and diseased human beings. The unequivocal proof that part of these circulating nucleic acids (CNAs) is of tumor origin, initiated a surge of studies which confirmed and extended the original observations. In the past few years many experiments showed that tumor-associated alterations can be detected at the DNA and RNA level. At the DNA level the detection of point mutations, microsatellite alterations, chromosomal alterations, i.e. inversion and deletion, and hypermethylation of promoter sequences were demonstrated. At the RNA level the overexpression of tumor-associated genes was shown. These observations laid the foundation for the development of assays for an early detection of cancer as well as for other clinical means.
Collapse
Affiliation(s)
- M Fleischhacker
- Charité, Universitätsmedizin Berlin, Medizinische Klinik mS Onkologie u Hämatologie, CCM, Charitéplatz 1, 10117 Berlin, Germany.
| | | |
Collapse
|
27
|
Chen RH, Wang WJ, Kuo JC. The tumor suppressor DAP-kinase links cell adhesion and cytoskeleton reorganization to cell death regulation. J Biomed Sci 2006; 13:193-9. [PMID: 16456710 DOI: 10.1007/s11373-005-9063-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Accepted: 12/19/2005] [Indexed: 01/01/2023] Open
Abstract
Death-associated protein (DAP)-kinase, an actin-cytoskeleton localized serine/threonine kinase, functions as a novel tumor suppressor and participates in a wide variety of cell death systems. Recent studies indicate that DAP-kinase elicits a potent cytoskeletal reorganization effect and is capable of modulating integrin inside-out signaling. Using this understanding of DAP-kinase protein function as a framework, we discuss the functional mechanisms of this kinase in regulating death-associated morphological and signaling events. Furthermore, a potential role of DAP-kinase to be a drug target is also discussed.
Collapse
Affiliation(s)
- Ruey-Hwa Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan,
| | | | | |
Collapse
|
28
|
Schneider-Stock R, Kuester D, Ullrich O, Mittag F, Habold C, Boltze C, Peters B, Krueger S, Hintze C, Meyer F, Hartig R, Roessner A. Close localization of DAP-kinase positive tumour-associated macrophages and apoptotic colorectal cancer cells. J Pathol 2006; 209:95-105. [PMID: 16575786 DOI: 10.1002/path.1951] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The death-associated protein kinase (DAP-kinase) is a cytoskeleton-associated protein crucially involved in the induction of early apoptotic pathways. Aberrant hypermethylation of the DAP-kinase promoter plays a major role in tumorigenesis. We aimed to investigate the inactivation of DAP-kinase and its association with apoptotic cell death in 94 colorectal carcinomas. DAP-kinase promoter hypermethylation and mRNA expression were investigated using methylation-specific PCR and real-time RT-PCR, respectively. The expression of DAP-kinase, Fas, and Fas-ligand (FasL) proteins was studied by immunohistochemistry and immunofluorescence. Apoptosis of tumour cells was investigated using the TUNEL assay. DAP-kinase was expressed in tumour cells and tumour-invading macrophages and was closely associated with high numbers of apoptotic tumour cells. DAP-kinase expression co-localized with FasL overexpression in tumour-associated macrophages, and aberrant promoter hypermethylation was verified in more than 50% of carcinomas. There was a tendency for proximal tumours to show DAP-kinase promoter methylation more frequently (p = 0.07). Promoter methylation resulted in a decrease or loss of DAP-kinase protein expression in tumour cells and tumour-associated macrophages. Simultaneously, a decreased apoptotic count and loss of Fas/FasL expression was observed in tumour cells. Our study is the first to demonstrate DAP-kinase expression in invading tumour-associated macrophages in colorectal cancer. The presence of similar expression levels of DAP-kinase in tumour cells and associated macrophages, and their dependence on the promoter methylation status of the tumour cells, suggests cross talk between these cell types during apoptotic cell death.
Collapse
Affiliation(s)
- R Schneider-Stock
- Department of Pathology, Otto-von-Guericke University Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Their use for cancer staging and personalization of therapy at the time of diagnosis could improve patient care. However, translation from bench to bedside outside of the research setting has proved more difficult than might have been expected. Understanding how and when biomarkers can be integrated into clinical care is crucial if we want to translate the promise into reality.
Collapse
Affiliation(s)
- Joseph A Ludwig
- Genomics and Bioinformatics Group, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
30
|
Mittag F, Kuester D, Vieth M, Peters B, Stolte B, Roessner A, Schneider-Stock R. DAPK promotor methylation is an early event in colorectal carcinogenesis. Cancer Lett 2005; 240:69-75. [PMID: 16246486 DOI: 10.1016/j.canlet.2005.08.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 08/30/2005] [Accepted: 08/31/2005] [Indexed: 11/19/2022]
Abstract
Death-associated protein kinase (DAPK) is frequently inactivated by promotor hypermethylation in various human cancers. At present, little is known about the significance of DAPK inactivation in colorectal carcinogenesis. We therefore, investigated macrodissected samples of 22 formalin-fixed and paraffin-embedded T1-carcinomas showing normal colon mucosa, intraepithelial neoplasia and carcinoma tissue on the same slice. Dissected carcinoma areas showed a higher frequency of DAPK promotor methylation (81.2%) compared to intraepithelial neoplasia (68.2%). Colon mucosa adjacent to intraepithelial neoplasia or carcinoma showed DAPK promotor methylation in only two of eight cases (25%). We suggest that DAPK promotor hypermethylation may play an important role in the early steps of tumor progression in colorectal carcinoma.
Collapse
Affiliation(s)
- Falk Mittag
- Department of Pathology, Otto-von-Guericke University Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Yamaguchi S, Kato H, Miyazaki T, Sohda M, Kimura H, Ide M, Asao T, Kuwano H. RASSF1A gene promoter methylation in esophageal cancer specimens. Dis Esophagus 2005; 18:253-6. [PMID: 16128782 DOI: 10.1111/j.1442-2050.2005.00501.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SUMMARY. RASSF1A is frequently inactivated by promoter methylation in human cancers. To understand the involvement of the RASSF1A gene in esophageal squamous cell cancer (ESCC), we investigated the methylation of the RASSF1A gene in primary ESCC to define the frequency of this epigenetic aberration and its clinicopathological significance. Methylation-specific polymerase chain reaction (MSP) was used to detect RASSF1A gene methylation in DNA from 55 cases of ESCC. Methylation of the RASSF1A gene was found in 13 of 55 (24%) cases of primary ESCC. No association was found between the promoter methylation of the RASSF1A gene in primary ESCC and age, gender, localization, invasion depth, or tumor stage. Association was found with tumor differentiation. There was no correlation with its prognosis. In conclusion, it was suggested that an inactivation of the RASSF1A gene due to promoter methylation was associated with de-differentiation of the tumor in ESCC.
Collapse
Affiliation(s)
- S Yamaguchi
- Department of General Surgical Science, Gunma University Graduate School, Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Epigenetic abnormalities, such as aberrant methylation of CpG islands, are inherited over cell divisions, and play important roles in carcinogenesis. Aberrant methylation of CpG islands specific to tumor cells can be used as a marker to detect cancer cells or cancer-derived DNA, taking advantage of the high sensitivity of methods to detect aberrant methylation. Methylations of specific genes or methylation patterns of groups of genes were found to be associated with responses to chemotherapeutics and prognosis. Methylation in non-cancerous tissues is now attracting attention as a tumor risk marker, and is emerging as a target for cancer prevention. Epigenetic alterations are potentially reversible. The use of DNA demethylating agents has turned out to be effective for hematological malignancies, and is being tested in solid tumors. Histone deacetylase inhibitors and methods for gene-specific epigenetic modification are being developed. Application of epigenetics to cancer diagnostics and therapeutics, and possibly to cancer prevention, is coming into clinics.
Collapse
Affiliation(s)
- Kazuaki Miyamoto
- Carcinogenesis Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | | |
Collapse
|
33
|
Tang X, Wu W, Sun SY, Wistuba II, Hong WK, Mao L. Hypermethylation of the Death-Associated Protein Kinase Promoter Attenuates the Sensitivity to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Human Non–Small Cell Lung Cancer Cells. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.685.2.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Death-associated protein (DAP) kinase plays an important role in IFN-γ, tumor necrosis factor (TNF)-α, or Fas–ligand induced apoptosis. TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF ligand family and can induce caspase-dependent apoptosis in cancer cells while sparing most of the normal cells. However, some of the cancer cell lines are insensitive to TRAIL, and such resistance cannot be explained by the dysfunction of TRAIL receptors or their known downstream targets. We reported previously that DAP kinase promoter is frequently methylated in non-small cell lung cancer (NSCLC), and such methylation is associated with a poor clinical outcome. To determine whether DAP kinase promoter methylation contributes to TRAIL resistance in NSCLC cells, we measured DAP kinase promoter methylation and its gene expression status in 11 NSCLC cell lines and correlated the methylation/expression status with the sensitivity of cells to TRAIL. Of the 11 cell lines, 1 had a completely methylated DAP kinase promoter and no detectable DAP kinase expression, 4 exhibited partial promoter methylation and substantially decreased gene expression, and the other 6 cell lines showed no methylation in the promoter and normal DAP kinase expression. Therefore, the amount of DAP kinase expression amount was negatively correlated to its promoter methylation (r = −0.77; P = 0.003). Interestingly, the cell lines without the DAP kinase promoter methylation underwent substantial apoptosis even in the low doses of TRAIL, whereas those with DAP kinase promoter methylation were resistant to the treatment. The resistance to TRAIL was reciprocally correlated to DAP kinase expression in 10 of the 11 cell lines at 10 ng/mL concentration (r = 0.91; P = 0.001). We treated cells resistant to TRAIL with 5-aza-2′-deoxycytidine, a demethylating reagent, and found that these cells expressed DAP kinase and became sensitive to TRAIL. These results suggest that DAP kinase is involved in TRAIL-mediated cell apoptosis and that a demethylating agent may have a role in enhancing TRAIL-mediated apoptosis in some NSCLC cells by reactivation of DAP kinase.
Collapse
Affiliation(s)
- Ximing Tang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Weiguo Wu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Shi-yong Sun
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ignacio I. Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Li Mao
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|