1
|
Polyphenol-Rich Lentils and Their Health Promoting Effects. Int J Mol Sci 2017; 18:ijms18112390. [PMID: 29125587 PMCID: PMC5713359 DOI: 10.3390/ijms18112390] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
Polyphenols are a group of plant metabolites with potent antioxidant properties, which protect against various chronic diseases induced by oxidative stress. Evidence showed that dietary polyphenols have emerged as one of the prominent scientific interests due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are measured based on the human consumption and their bioavailability. Lentil (Lens culinaris; Family: Fabaceae) is a great source of polyphenol compounds with various health-promoting properties. Polyphenol-rich lentils have a potential effect on human health, possessing properties such as antioxidant, antidiabetic, anti-obesity, anti-hyperlipidemic, anti-inflammatory and anticancer. Based on the explorative study, the current comprehensive review aims to give up-to-date information on nutritive compositions, bioactive compounds and the health-promoting effect of polyphenol-rich lentils, which explores their therapeutic values for future clinical studies. All data of in vitro, in vivo and clinical studies of lentils and their impact on human health were collected from a library database and electronic search (Science Direct, PubMed and Google Scholar). Health-promoting information was gathered and orchestrated in the suitable place in the review.
Collapse
|
2
|
Wolters-Eisfeld G, Schumacher U. Lectin Histochemistry for Metastasizing and Non-metastasizing Cancer Cells. Methods Mol Biol 2017; 1560:121-132. [PMID: 28155149 DOI: 10.1007/978-1-4939-6788-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Changes in glycosylation of the cancer cell glycocalyx are a hallmark of metastasizing cancers and critically contribute to distant metastasis. In this chapter we concentrate on two lectins capable of specifically binding tumor-associated glycans in cryostat or formalin-fixed, paraffin-embedded tissue sections derived from primary clinical material, genetically engineered mouse models with endogenous cancer formation or xenograft mouse models. The snail lectin of Helix pomatia (HPA) binds N-acetylgalactosamine (GalNAc) that is expressed among others as Tn antigen (O-linked GalNAc) in primary tumors and metastases in several human adenocarcinomas. Another lectin, Phaseolus vulgaris leucoagglutinin (PHA-L) binds to complex β1-6 branched N-linked oligosaccharides associated with increased metastatic potential in breast, colon, and prostate cancer. Using these two lectins both O- and N-linked alterations in the glycocalyx of cancer cells can be monitored. As they are commercially available in a biotinylated or fluorescence-labeled form they can be readily used in cancer metastasis studies.
Collapse
Affiliation(s)
- Gerrit Wolters-Eisfeld
- Medical Glycobiology Group, Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
3
|
Milde-Langosch K, Schütze D, Oliveira-Ferrer L, Wikman H, Müller V, Lebok P, Pantel K, Schröder C, Witzel I, Schumacher U. Relevance of βGal-βGalNAc-containing glycans and the enzymes involved in their synthesis for invasion and survival in breast cancer patients. Breast Cancer Res Treat 2015; 151:515-28. [PMID: 25975956 DOI: 10.1007/s10549-015-3425-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/08/2015] [Indexed: 11/30/2022]
Abstract
To study the influence of glycosylation on breast cancer progression by analyses on glycan, mRNA, and protein level. For detection of glycan structures, we performed lectin histochemistry with five lectins of different specificity (UEA-1, HPA, GNA, PNA, and PHA-L) on a tissue microarray with >400 breast cancer samples. For comparison, mRNA expression of glycosylation enzymes involved in the synthesis of HPA and PNA binding glycostructures (GALNT family members and C1GALT1) was analyzed in microarray data of 194 carcinomas. Additionally, C1GALT1 protein expression was analyzed by Western blot analysis in 106 tumors. Correlations with clinical and histological parameters including recurrence-free (RFS) and overall survival (OAS) were calculated. Positive binding of four lectins (HPA, GNA, PNA, and PHA-L) correlated significantly with parameters involved in tumor metastasis, namely lymphangiosis, vascular invasion, lymph node involvement, and presence of disseminated tumor cells in bone marrow. HPA and PNA binding also showed a negative prognostic impact in our cohort. Correspondingly, high expression of C1GALT1, GALNT1, GALNT8, or GALNT14 mRNA and C1GALT1 protein correlated significantly with shorter OAS. Notably, combined overexpression of C1GALT1/GALNT1 or C1GALT1/GALNT8 mRNA was associated with a significantly reduced OAS (HR 3.15 and 2.73) and RFS (HR 2.01 and 1.94), pointing to an additive influence of these enzymes. This prognostic impact retained significance in multivariate analysis including classical prognostic markers. Our data indicate that glycan structures containing βGal-βGalNAc residues and the enzymes involved in their synthesis play a role in breast cancer progression, at least partly by their promoting influence on haematogenic and lymphatic spread.
Collapse
Affiliation(s)
- Karin Milde-Langosch
- Department of Gynecology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jacob F, Hitchins MP, Fedier A, Brennan K, Nixdorf S, Hacker NF, Ward R, Heinzelmann-Schwarz VA. Expression of GBGT1 is epigenetically regulated by DNA methylation in ovarian cancer cells. BMC Mol Biol 2014; 15:24. [PMID: 25294702 PMCID: PMC4193910 DOI: 10.1186/1471-2199-15-24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/24/2014] [Indexed: 01/25/2023] Open
Abstract
Background The GBGT1 gene encodes the globoside alpha-1,3-N-acetylgalactosaminyltransferase 1. This enzyme catalyzes the last step in the multi-step biosynthesis of the Forssman (Fs) antigen, a pentaglycosyl ceramide of the globo series glycosphingolipids. While differential GBGT1 mRNA expression has been observed in a variety of human tissues being highest in placenta and ovary, the expression of GBGT1 and the genes encoding the glycosyltransferases and glycosidases involved in the biosynthesis of Fs as well as the possible involvement of DNA methylation in transcriptional regulation of GBGT1 expression have not yet been investigated. Results RT-qPCR profiling showed high GBGT1 expression in normal ovary surface epithelial (HOSE) cell lines and low GBGT1 expression in all (e.g. A2780, SKOV3) except one (OVCAR3) investigated ovarian cancer cell lines, a finding that was confirmed by Western blot analysis. Hierarchical cluster analysis showed that GBGT1 was even the most variably expressed gene of Fs biosynthesis-relevant glycogenes and among the investigated cell lines, whereas NAGA which encodes the alpha-N-acetylgalactosaminidase hydrolyzing Fs was not differentially expressed. Bisulfite- and COBRA-analysis of the CpG island methylation status in the GBGT1 promoter region demonstrated high or intermediate levels of GBGT1 DNA methylation in all ovarian cancer cell lines (except for OVCAR3) but marginal levels of DNA methylation in the two HOSE cell lines. The extent of DNA methylation inversely correlated with GBGT1 mRNA and protein expression. Bioinformatic analysis of GBGT1 in The Cancer Genome Atlas ovarian cancer dataset demonstrated that this inverse correlation was also found in primary ovarian cancer tissue samples confirming our cell line-based findings. Restoration of GBGT1 mRNA and protein expression in low GBGT1-expressing A2780 cells was achieved by 5-aza-2’-deoxycytidine treatment and these treated cells exhibited increased helix pomatia agglutinin-staining, reflecting the elevated presence of Fs disaccharide on these cells. Conclusions GBGT1 expression is epigenetically silenced through promoter hypermethylation in ovarian cancer. Our findings not only suggest an involvement of DNA methylation in the synthesis of Fs antigen but may also explain earlier studies showing differential GBGT1 expression in various human tissue samples and disease stages.
Collapse
Affiliation(s)
- Francis Jacob
- Gynecological Research Group, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, CH-4013 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Dresch RR, Zanetti GD, Irazoqui FJ, Sendra VG, Zlocowski N, Bernardi A, Rosa RM, Battastini AMO, Henriques AT, Vozári-Hampe MM. Staining tumor cells with biotinylated ACL-I, a lectin isolated from the marine sponge, Axinella corrugata. Biotech Histochem 2012; 88:1-9. [PMID: 22954064 DOI: 10.3109/10520295.2012.717304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Axinella corrugata lectin 1 (ACL-1) was purified from aqueous extracts of the marine sponge, Axinella corrugata. ACL-1 strongly agglutinates native rabbit erythrocytes. The hemagglutination is inhibited by N-acetyl derivatives, particularly N, N', N"-triacetylchitotriose, N-acetyl-D-glucosamine, N-acetyl-D-mannosamine and N-acetyl-D-galactosamine. We investigated the capacity of biotinylated ACL-1 to stain several transformed cell lines including breast (T-47D, MCF7), colon (HT-29), lung (H460), ovary (OVCAR-3) and bladder (T24). ACL-I may bind to both monosaccharides and oligosaccharides of tumor cells, N-acetyl-D-galactosamine, and N-acetyl-D- glucosamine glycan types. The lectins are useful, not only as markers and diagnostic parameters, but also for tissue mapping in suspicious neoplasms. In addition, they provide a better understanding of neoplasms at the cytological and molecular levels. Furthermore, the use of potential metastatic markers such as lectins is crucial for developing successful tools for therapy against cancer. We observed that biotinylated ACL-I stains tumor cells and may hold potential as a probe for identifying transformed cells and for studying glycan structures synthesized by such cells.
Collapse
Affiliation(s)
- R R Dresch
- Postgraduation Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Siddiqui SF, Pawelek J, Handerson T, Lin CY, Dickson RB, Rimm DL, Camp RL. Coexpression of beta1,6-N-acetylglucosaminyltransferase V glycoprotein substrates defines aggressive breast cancers with poor outcome. Cancer Epidemiol Biomarkers Prev 2006; 14:2517-23. [PMID: 16284372 DOI: 10.1158/1055-9965.epi-05-0464] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Beta1,6-n-acetylglucosaminyltransferase-V (GnT-V) catalyzes the addition of complex oligosaccharide side chains to glycoproteins, regulating the expression and function of several proteins involved in tumor metastasis. We analyzed the expression of five cell-surface glycoprotein substrates of GnT-V, matriptase, beta1-integrin, epidermal growth factor receptor, lamp-1, and N-cadherin, on a tissue microarray cohort of 670 breast carcinomas with 30-year follow-up. Phaseolus vulgaris leukocytic phytohemagglutinin (LPHA), a lectin specific for beta1,6-branched oligosaccharides, was used to assay GnT-V activity. Our results show a high degree of correlation of the LPHA staining with matriptase, lamp-1, and N-cadherin expressions, but not with epidermal growth factor receptor or beta1-integrin expressions. In addition, many of the GnT-V substrate proteins exhibited strong coassociations. Elevated levels of GnT-V substrates were correlated with various markers of tumor progression, including positive node status, large tumor size, estrogen receptor negativity, HER2/neu overexpression, and high nuclear grade. Furthermore, LPHA and matriptase showed significant association with disease-related survival. Unsupervised hierarchical clustering of the GnT-V substrate protein expression and LPHA revealed two distinct clusters: one with higher expression of all markers and poor patient outcome and one with lower expression and good outcome. These clusters showed independent prognostic value for disease-related survival when compared with traditional markers of tumor progression. Our results indicate that GnT-V substrate proteins represent a unique subset of coexpressed tumor markers associated with aggressive disease.
Collapse
Affiliation(s)
- Summar F Siddiqui
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8023, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
De Mejía EG, Prisecaru VI. Lectins as Bioactive Plant Proteins: A Potential in Cancer Treatment. Crit Rev Food Sci Nutr 2005; 45:425-45. [PMID: 16183566 DOI: 10.1080/10408390591034445] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Plant lectins, a unique group of proteins and glycoproteins with potent biological activity, occur in foods like wheat, corn, tomato, peanut, kidney bean, banana, pea, lentil, soybean, mushroom, rice, and potato. Thus, dietary intakes by humans can be significant. Many lectins resist digestion, survive gut passage, and bind to gastrointestinal cells and/or enter the circulation intact, maintaining full biological activity. Several lectins have been found to possess anticancer properties in vitro, in vivo, and in human case studies; they are used as therapeutic agents, preferentially binding to cancer cell membranes or their receptors, causing cytotoxicity, apoptosis, and inhibition of tumor growth. These compounds can become internalized into cells, causing cancer cell agglutination and/or aggregation. Ingestion of lectins also sequesters the available body pool of polyamines, thereby thwarting cancer cell growth. They also affect the immune system by altering the production of various interleukins, or by activating certain protein kinases. Lectins can bind to ribosomes and inhibit protein synthesis. They also modify the cell cycle by inducing non-apoptotic G1-phase accumulation mechanisms, G2/M phase cell cycle arrest and apoptosis, and can activate the caspase cascade. Lectins can also downregulate telomerase activity and inhibit angiogenesis. Although lectins seem to have great potential as anticancer agents, further research is still needed and should include a genomic and proteomic approach.
Collapse
Affiliation(s)
- Elvira González De Mejía
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Chicago, IL, USA.
| | | |
Collapse
|
8
|
Ma Z, Zhang J, Kong F. Concise syntheses of β-GlcNAcp-(1→6)-α-Manp-(1→6)-Manp and its dimer, and β-GlcNAcp-(1→2)-α-Manp-(1→6)-Manp. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0957-4166(03)00570-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Durgawale PP, Shukla PS, Sontakke SD, Chougule PG. Differential erythrocyte agglutination pattern in normal and cancer patients with Synadenium grantii root (Hook f) lectin. Indian J Clin Biochem 2001; 16:110-2. [PMID: 23105302 PMCID: PMC3453605 DOI: 10.1007/bf02867578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the present study the property of lectin agglutination in blood on normal and different cancer patients has been observed. The purifiedSynadenium grantii root lectin was non blood group specific and its utility as a diagnostic tool in malignancy was studied. Hemagglutination (units/ml) of red blood cells of different types of cancer was compared with the normal control's red blood cells. Out of 113 total cancer patients, only a group of 29 breast cancer patients showed significant increase in titre value (P<0.05) compared to normal control.
Collapse
Affiliation(s)
| | - P. S. Shukla
- Dept of Biochemistry, Krishna Institute of Medical Sciences, 415110 Karad
| | | | - P. G. Chougule
- Dept of Surgery, Krishna Institute of Medical Sciences, 415110 Karad
| |
Collapse
|