1
|
Takeda M, Suzuki T. Circadian and Neuroendocrine Basis of Photoperiodism Controlling Diapause in Insects and Mites: A Review. Front Physiol 2022; 13:867621. [PMID: 35812309 PMCID: PMC9257128 DOI: 10.3389/fphys.2022.867621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The photoperiodic system is concealed in the highly complex black-box, comprising four functional subunits: 1) a photo/thermo-sensitive input unit, 2) a photoperiodic clock based on a circadian system, 3) a condenser unit counting the number of inductive signals, and 4) a neuroendocrine switch that triggers a phenotypic shift. This review aims to summarize the research history and current reach of our understanding on this subject to connect it with the molecular mechanism of the circadian clock rapidly being unveiled. The review also focuses on the mode of intersubunit information transduction. It will scan the recent advancement in research on each functional subunit, but special attention will be given to the circadian clock-endocrine conjunct and the role of melatonin signaling in the regulation of insect photoperiodism. Prothoracicotropic hormone (PTTH) probably plays the most crucial role in the regulation of pupal diapause, which is the simplest model system of diapause regulation by hormones investigated so far, particularly in the Chinese oak silkmoth (Antheraea pernyi). A search for the trigger to release the PTTH found some candidates, that is, indoleamines. Indolamine metabolism is controlled by arylalkylamine N-acetyltransferase (aaNAT). Indolamine dynamics and aaNAT enzymatic activity changed according to photoperiods. aaNAT activity and melatonin content in the brain showed not only a photoperiodic response but also a circadian fluctuation. aaNAT had multiple E-boxes, suggesting that it is a clock-controlled gene (ccg), which implies that cycle (cyc, or brain-muscle Arnt-like 1 = Bmal1)/Clock (Clk) heterodimer binds to E-box and stimulates the transcription of aaNAT, which causes the synthesis of melatonin. RNAi against transcription modulators, cyc, or Clk downregulated aaNAT transcription, while RNAi against repressor of cyc/Clk, per upregulated aaNAT transcription. Immunohistochemical localization showed that the circadian neurons carry epitopes of melatonin-producing elements such as aaNAT, the precursor serotonin, HIOMT, and melatonin as well as clock gene products such as cyc-ir, Per-ir, and dbt-ir, while PTTH-producing neurons juxtaposed against the clock neurons showed hMT2-ir in A. pernyi brain. Melatonin probably binds to the putative melatonin receptor (MT) that stimulates Ca2+ influx, which in turn activates PKC. This induces Rab 8 phosphorylation and exocytosis of PTTH, leading to termination of diapause. All the PTTH-expressing neurons have PKC-ir, and Rab8-ir. When diapause is induced and maintained under short days, serotonin binding to 5HTR1B suppresses PTTH release in a yet unknown way. RNAi against this receptor knocked out photoperiodism; short day response is blocked and diapause was terminated even under the short day condition. The result showed that a relatively simple system controls both induction and termination in pupal diapause of A. pernyi: the circadian system regulates the transcription of aaNAT as a binary switch, the enzyme produces a melatonin rhythm that gates PTTH release, and 5HTR1B and MT are probably also under photoperiodic regulation. Finally, we listed the remaining riddles which need to be resolved, to fully understand this highly complex system in future studies.
Collapse
Affiliation(s)
- Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
2
|
Kobayashi T, Hiragaki S, Suzuki T, Ochiai N, Canlas LJ, Tufail M, Hayashi N, Mohamed AAM, Dekeyser MA, Matsuda K, Takeda M. A unique primary structure of RDL (resistant to dieldrin) confers resistance to GABA-gated chloride channel blockers in the two-spotted spider mite Tetranychus urticae Koch. J Neurochem 2020; 155:508-521. [PMID: 32895930 DOI: 10.1111/jnc.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/13/2020] [Accepted: 08/19/2020] [Indexed: 11/30/2022]
Abstract
The primary structure of the second transmembrane (M2) segment of resistant to dieldrin (RDL), an ionotropic γ-aminobutyric acid receptor (GABAR) subunit, and the structure-function relationships in RDL are well conserved among insect species. An amino acid substitution at the 2' position in the M2 segment (Ala to Ser or Gly) confers resistance to non-competitive antagonists (NCAs) of GABARs. Here, a cDNA encoding RDL was cloned from the two-spotted spider mite Tetranychus urticae Koch. Unlike insect homologs, native TuRDL has His at the 2' position (H305) and Ile at 6' (I309) in the M2 segment and is insensitive to NCAs. Single and multiple mutations were introduced in the M2 segment of TuRDL, and the mutant proteins were expressed in Xenopus oocytes and examined for the restoration of sensitivity to NCAs. The sensitivity of a double mutant (H305A and I309T in the M2 segment) was greatly increased but was still considerably lower than that of insect RDLs. We therefore constructed chimeric RDLs consisting of TuRDL and Drosophila melanogaster RDL and examined their sensitivities to NCAs. The results show that the N-terminal region containing the Cys-loop as well as the M2 segment confers functional specificity; thus, our current understanding of the mechanism underlying NCA binding to GABARs requires reappraisal.
Collapse
Affiliation(s)
- Takeru Kobayashi
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Susumu Hiragaki
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Takeshi Suzuki
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Noriaki Ochiai
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Liza J Canlas
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Muhammad Tufail
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Naotaka Hayashi
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | - Ahmed A M Mohamed
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | | | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Makio Takeda
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
3
|
Takahashi N, Katoh K, Watanabe H, Nakayama Y, Iwasaki M, Mizunami M, Nishino H. Complete identification of four giant interneurons supplying mushroom body calyces in the cockroach Periplaneta americana. J Comp Neurol 2016; 525:204-230. [PMID: 27573362 DOI: 10.1002/cne.24108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Global inhibition is a fundamental physiological mechanism that has been proposed to shape odor representation in higher-order olfactory centers. A pair of mushroom bodies (MBs) in insect brains, an analog of the mammalian olfactory cortex, are implicated in multisensory integration and associative memory formation. With the use of single/multiple intracellular recording and staining in the cockroach Periplaneta americana, we succeeded in unambiguous identification of four tightly bundled GABA-immunoreactive giant interneurons that are presumably involved in global inhibitory control of the MB. These neurons, including three spiking neurons and one nonspiking neuron, possess dendrites in termination fields of MB output neurons and send axon terminals back to MB input sites, calyces, suggesting feedback roles onto the MB. The largest spiking neuron innervates almost exclusively the basal region of calyces, while the two smaller spiking neurons and the second-largest nonspiking neuron innervate more profusely the peripheral (lip) region of the calyces than the basal region. This subdivision corresponds well to the calycal zonation made by axon terminals of two populations of uniglomerular projection neurons with dendrites in distinct glomerular groups in the antennal lobe. The four giant neurons exhibited excitatory responses to every odor tested in a neuron-specific fashion, and two of the neurons also exhibited inhibitory responses in some recording sessions. Our results suggest that two parallel olfactory inputs to the MB undergo different forms of inhibitory control by the giant neurons, which may, in turn, be involved in different aspects of odor discrimination, plasticity, and state-dependent gain control. J. Comp. Neurol. 525:204-230, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naomi Takahashi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Ko Katoh
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Hidehiro Watanabe
- Division of Biology, Department of Earth System Science, Fukuoka University, Fukuoka, Japan
| | - Yuta Nakayama
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Masazumi Iwasaki
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | | - Hiroshi Nishino
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Jiménez-Vázquez EN, Díaz-Velásquez CE, Uribe RM, Arias JM, García U. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii. J Neurosci Res 2015; 94:190-203. [PMID: 26577600 DOI: 10.1002/jnr.23695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 10/06/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022]
Abstract
Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates.
Collapse
Affiliation(s)
- Eric N Jiménez-Vázquez
- Departamento de Fisiología, Biofísica, y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México Distrito Federal, México
| | - Clara E Díaz-Velásquez
- Programa de Neurociencias, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - R M Uribe
- Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Juan M Arias
- Programa de Neurociencias, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Ubaldo García
- Departamento de Fisiología, Biofísica, y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México Distrito Federal, México
| |
Collapse
|
5
|
Fusca D, Schachtner J, Kloppenburg P. Colocalization of allatotropin and tachykinin-related peptides with classical transmitters in physiologically distinct subtypes of olfactory local interneurons in the cockroach (Periplaneta americana). J Comp Neurol 2015; 523:1569-86. [PMID: 25678036 DOI: 10.1002/cne.23757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 11/06/2022]
Abstract
In the insect antennal lobe different types of local interneurons mediate complex excitatory and inhibitory interactions between the glomerular pathways to structure the spatiotemporal representation of odors. Mass spectrometric and immunohistochemical studies have shown that in local interneurons classical neurotransmitters are likely to colocalize with a variety of substances that can potentially act as cotransmitters or neuromodulators. In the antennal lobe of the cockroach Periplaneta americana, gamma-aminobutyric acid (GABA) has been identified as the potential inhibitory transmitter of spiking type I local interneurons, whereas acetylcholine is most likely the excitatory transmitter of nonspiking type IIa1 local interneurons. This study used whole-cell patch clamp recordings combined with single-cell labeling and immunohistochemistry to test if the GABAergic type I local interneurons and the cholinergic type IIa1 local interneurons express allatotropin and tachykinin-related neuropeptides (TKRPs). These are two of the most abundant types of peptides in the insect antennal lobe. GABA-like and choline acetyltransferase (ChAT)-like immunoreactivity were used as markers for GABAergic and cholinergic neurons, respectively. About 50% of the GABA-like immunoreactive (-lir) spiking type I local interneurons were allatotropin-lir, and ∼ 40% of these neurons were TKRP-lir. About 20% of nonspiking ChAT-lir type IIa1 local interneurons were TKRP-lir. Our results suggest that in subpopulations of GABAergic and cholinergic local interneurons, allatotropin and TKRPs might act as cotransmitters or neuromodulators. To unequivocally assign neurotransmitters, cotransmitters, and neuromodulators to identified classes of antennal lobe neurons is an important step to deepen our understanding of information processing in the insect olfactory system.
Collapse
Affiliation(s)
- Debora Fusca
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Peter Kloppenburg
- Biocenter, Institute for Zoology, and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Blankenburg S, Balfanz S, Hayashi Y, Shigenobu S, Miura T, Baumann O, Baumann A, Blenau W. Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution. Neuropharmacology 2014; 88:134-44. [PMID: 25242738 DOI: 10.1016/j.neuropharm.2014.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/10/2014] [Accepted: 08/23/2014] [Indexed: 11/29/2022]
Abstract
γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron.
Collapse
Affiliation(s)
- S Blankenburg
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - S Balfanz
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Research Center Jülich, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Y Hayashi
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - S Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan.
| | - T Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| | - O Baumann
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - A Baumann
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Research Center Jülich, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - W Blenau
- Institut für Bienenkunde, Polytechnische Gesellschaft, Goethe-Universität Frankfurt am Main, FB Biowissenschaften, Karl-von-Frisch-Weg 2, 61440, Oberursel, Germany.
| |
Collapse
|
7
|
Nakamura A, Yoshino M. A novel GABAergic action mediated by functional coupling between GABAB-like receptor and two different high-conductance K+ channels in cricket Kenyon cells. J Neurophysiol 2013; 109:1735-45. [PMID: 23303861 DOI: 10.1152/jn.00915.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The γ-aminobutyric acid type B (GABA(B)) receptor has been shown to attenuate high-voltage-activated Ca(2+) currents and enhance voltage-dependent or inwardly rectifying K(+) currents in a variety of neurons. In this study, we report a novel coupling of GABA(B)-like receptor with two different high-conductance K(+) channels, Na(+)-activated K(+) (K(Na)) channel and Ca(2+)-activated K(+) (K(Ca)) channel, in Kenyon cells isolated from the mushroom body of the cricket brain. Single-channel activities of K(Na) and K(Ca) channels in response to bath applications of GABA and the GABA(B)-specific agonist SKF97541 were recorded with the cell-attached patch configuration. The open probability (P(o)) of both K(Na) and K(Ca) channels was found to be increased by bath application of GABA, and this increase in Po was antagonized by coapplication of the GABAB antagonist CGP54626, suggesting that GABA(B)-like receptors mediate these actions. Similarly, GABA(B)-specific agonist SKF97541 increased the Po of both K(Na) and K(Ca) channels. Perforated-patch recordings using β-escin further revealed that SKF97541 increased the amplitude of the outward currents elicited by step depolarizations. Under current-clamp conditions, SKF97541 decreased the firing frequency of spontaneous action potential (AP) and changed the AP waveform. The amplitude and duration of AP were decreased, whereas the afterhyperpolarization of AP was increased. Resting membrane potential, however, was not significantly altered by SKF97541. Taken together, these results suggest that GABA(B)-like receptor is functionally coupled with both K(Na) and K(Ca) channels and this coupling mechanism may serve to prevent AP formation and limit excitatory synaptic input.
Collapse
|
8
|
Janssen D, Derst C, Rigo JM, Van Kerkhove E. Cys-Loop Ligand-Gated Chloride Channels in Dorsal Unpaired Median Neurons of Locusta migratoria. J Neurophysiol 2010; 103:2587-98. [DOI: 10.1152/jn.00466.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In insects, inhibitory neurotransmission is generally associated with members of the cys-loop ligand-gated anion channels, such as the glutamate-gated chloride channel (GluCl), the GABA-gated chloride channels (GABACl), and the histamine-gated chloride channels (HisCl). These ionotropic receptors are considered established target sites for the development of insecticides, and therefore it is necessary to obtain a better insight in their distribution, structure, and functional properties. Here, by combining electrophysiology and molecular biology techniques, we identified and characterized GluCl, GABACl, and HisCl in dorsal unpaired median (DUM) neurons of Locust migratoria. In whole cell patch-clamp recordings, application of glutamate, GABA, or histamine induced rapidly activating ionic currents. GluCls were sensitive to ibotenic acid and blocked by picrotoxin and fipronil. The pharmacological profile of the L. migratoria GABACl fitted neither the vertebrate GABAA nor GABAC receptor and was similar to the properties of the cloned Drosophila melanogaster GABA receptor subunit (Rdl). The expression of Rdl-like subunit-containing GABA receptors was shown at the molecular level using RT-PCR. Sequencing analysis indicated that the orthologous GABACl of D. melanogaster CG10357-A is expressed in DUM neurons of L. migratoria. Histamine-induced currents exhibited a fast onset and desensitized completely on continuous application of histamine. In conclusion, within the DUM neurons of L. migratoria, we identified three different cys-loop ligand-gated anion channels that use GABA, glutamate, or histamine as their neurotransmitter.
Collapse
Affiliation(s)
- Daniel Janssen
- Centre of Environmental Sciences, Department of Physiology, and
| | - Christian Derst
- Institute for Integrative Neuro-anatomy, AG Prof. Veh, Berlin, Germany
| | - Jean-Michel Rigo
- Biomedical Research Institute, Hasselt University and Transnationale Universiteit Limburg, Agoralaan, Diepenbeek, Belgium; and
| | | |
Collapse
|
9
|
Demmer H, Kloppenburg P. Intrinsic Membrane Properties and Inhibitory Synaptic Input of Kenyon Cells as Mechanisms for Sparse Coding? J Neurophysiol 2009; 102:1538-50. [DOI: 10.1152/jn.00183.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The insect mushroom bodies (MBs) are multimodal signal processing centers and are essential for olfactory learning. Electrophysiological recordings from the MBs' principal component neurons, the Kenyon cells (KCs), showed a sparse representation of olfactory signals. It has been proposed that the intrinsic and synaptic properties of the KC circuitry combine to reduce the firing of action potentials and to generate relatively brief windows for synaptic integration in the KCs, thus causing them to operate as coincidence detectors. To better understand the ionic mechanisms that mediate the KC intrinsic firing properties, we used whole cell patch-clamp recordings from KCs in the adult, intact brain of Periplaneta americana to analyze voltage- and/or Ca2+-dependent inward ( ICa, INa) and outward currents [ IA, IK(V), IK,ST, IO(Ca)]. In general the currents had properties similar to those of currents in other insect neurons. Certain functional parameters of ICaand IO(Ca), however, had unusually high values, allowing them to assist sparse coding. ICahad a low-activation threshold and a very high current density compared with those of ICain other insect neurons. Together these parameters make ICasuitable for boosting and sharpening the excitatory postsynaptic potentials as reported in previous studies. IO(Ca)also had a large current density and a very depolarized activation threshold. In combination, the large ICaand IO(Ca)are likely to mediate the strong spike frequency adaptation. These intrinsic properties of the KCs are likely to be supported by their tonic, inhibitory synaptic input, which was revealed by specific GABA antagonists and which contributes significantly to the hyperpolarized membrane potential at rest.
Collapse
|
10
|
Okada R, Awasaki T, Ito K. Gamma-aminobutyric acid (GABA)-mediated neural connections in the Drosophila antennal lobe. J Comp Neurol 2009; 514:74-91. [PMID: 19260068 DOI: 10.1002/cne.21971] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibitory synaptic connections mediated by gamma-aminobutyric acid (GABA) play important roles in the neural computation of the brain. To obtain a detailed overview of the neural connections mediated by GABA signals, we analyzed the distribution of the cells that produce and receive GABA in the Drosophila adult brain. Relatively small numbers of the cells, which form clusters in several areas of the brain, express the GABA synthesis enzyme Gad1. On the other hand, many cells scattered across the brain express ionotropic GABA(A) receptor subunits (Lcch3 and Rdl) and metabotropic GABA(B) receptor subtypes (GABA-B-R1, -2, and -3). To analyze the expression of these genes in distinct identified cell types, we focused on the antennal lobe, where GABAergic neurons play important roles in odor coding. By combining fluorescent in situ hybridization and immunolabeling against GFP expressed with cell-type-specific GAL4 driver strains, we quantified the percentage of the cells that produce or receive GABA for each cell type. GABA was synthesized in the middle antennocerebral tract (mACT) projection neurons and two types of local neurons. Among them, mACT neurons had few presynaptic sites in the antennal lobe, making the local neurons essentially the sole provider of GABA signals there. On the other hand, not only these local neurons but also all types of projection neurons expressed both ionotropic and metabotropic GABA receptors. Thus, even though inhibitory signals are released from only a few, specific types of local neurons, the signals are read by most of the neurons in the antennal lobe neural circuitry.
Collapse
Affiliation(s)
- Ryuichi Okada
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
11
|
An ionotropic GABA receptor in cultured mushroom body Kenyon cells of the honeybee and its modulation by intracellular calcium. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:329-40. [DOI: 10.1007/s00359-007-0308-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
|
12
|
Enell L, Hamasaka Y, Kolodziejczyk A, Nässel DR. γ-Aminobutyric acid (GABA) signaling components inDrosophila: Immunocytochemical localization of GABABreceptors in relation to the GABAAreceptor subunit RDL and a vesicular GABA transporter. J Comp Neurol 2007; 505:18-31. [PMID: 17729251 DOI: 10.1002/cne.21472] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
gamma-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in insects and is widely distributed in the central nervous system (CNS). GABA acts on ion channel receptors (GABA(A)R) for fast inhibitory transmission and on G-protein-coupled ones (GABA(B)R) for slow and modulatory action. We used immunocytochemistry to map GABA(B)R sites in the Drosophila CNS and compared the distribution with that of the GABA(A)R subunit RDL. To identify GABAergic synapses, we raised an antiserum to the vesicular GABA transporter (vGAT). For general GABA distribution, we utilized an antiserum to glutamic acid decarboxylase (GAD1) and a gad1-GAL4 to drive green fluorescent protein. GABA(B)R-immunoreactive (IR) punctates were seen in specific patterns in all major neuropils of the brain. Most abundant labeling was seen in the mushroom body calyces, ellipsoid body, optic lobe neuropils, and antennal lobes. The RDL distribution is very similar to that of GABA(B)R-IR punctates. However, the mushroom body lobes displayed RDL-IR but not GABA(B)R-IR material, and there were subtle differences in other areas. The vGAT antiserum labeled punctates in the same areas as the GABA(B)R and appeared to display presynaptic sites of GABAergic neurons. Various GAL4 drivers were used to analyze the relation between GABA(B)R distribution and identified neurons in adults and larvae. Our findings suggest that slow GABA transmission is very widespread in the Drosophila CNS and that fast RDL-mediated transmission generally occurs at the same sites.
Collapse
Affiliation(s)
- Lina Enell
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB. Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol Pharmacol 2005; 68:942-51. [PMID: 16027231 DOI: 10.1124/mol.105.015313] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ionotropic GABA receptors are abundant in both vertebrate and invertebrate nervous systems, where they mediate rapid, mostly inhibitory synaptic transmission. A GABA-gated chloride channel subunit from Drosophila melanogaster [Resistant to Dieldrin (RDL)] has been cloned, functionally expressed, and found to exhibit many aspects of the pharmacology of native, bicuculline-insensitive insect GABA receptors. RDL is the target of the commercially important insecticide fipronil. A point mutation in the channel-lining region of the RDL molecule is known to underlie most cases of resistance to insecticides acting on GABA receptors. RDL is widely distributed throughout the insect nervous system, but the subunit composition of RDL-containing in native receptors is unknown. It is possible that in some instances, RDL coexpresses with glutamate-gated chloride channel subunits. Other ionotropic receptor subunits (LCCH3 and GRD) form GABA-gated cation channels when heterologously expressed. Interest in RDL as a model ligandgated anion channel has been enhanced by the recent discovery of pre-mRNA A-to-I editing, which, together with alternative splicing, adds to the functional diversity of this GABA receptor subunit.
Collapse
Affiliation(s)
- Steven David Buckingham
- Medical Research Council Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, UK
| | | | | | | | | |
Collapse
|
14
|
Umesh A, Gill SS. Immunocytochemical localization of a Manduca sexta gamma-aminobutyric acid transporter. J Comp Neurol 2002; 448:388-98. [PMID: 12115701 DOI: 10.1002/cne.10271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in insect central and peripheral nervous systems. Although much work has focused on the downstream targets of GABA, signal termination at insect GABAergic synapses has received very little attention. One of the major mechanisms of terminating synaptic transmission involves transport of the neurotransmitter molecules into presynaptic neurons or surrounding glia. Here we report the immunolocalization of a GABA transporter in the tobacco hornworm, Manduca sexta (MasGAT), using an affinity-purified antibody developed to the C-terminus. This is the first demonstration of an insect neurotransmitter transporter immunolocalization study. Results showed strong staining in the neuropil regions of embryonic, larval, and pharate adult central nervous system. Expression pattern in the pharate adult brain mostly mimicked that observed for GABA, with staining in parts of the optic and antennal lobes, mushroom body, lateral protocerebrum, and central complex. Certain longitudinal and lateral connectives of ganglia were observed to have immunostained fibers representing axons. These data support the view that GABA is involved in visual and olfactory processing in the insect brain.
Collapse
Affiliation(s)
- Anita Umesh
- Environmental Toxicology Graduate Program, Department of Cell Biology and Neuroscience, University of California-Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
15
|
Alix P, Grolleau F, Hue B. Ca2+/calmodulin-dependent protein kinase regulates GABA-activated Cl- current in cockroach dorsal unpaired median neurons. J Neurophysiol 2002; 87:2972-82. [PMID: 12037200 DOI: 10.1152/jn.2002.87.6.2972] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied gamma-aminobutyric acid (GABA)-mediated currents in short-term cultured dorsal unpaired median (DUM) neurons of cockroach Periplaneta americana using the whole cell patch-clamp technique in symmetrical chloride solutions. All DUM neurons voltage-clamped at -50 mV displayed inward currents (I(GABA)) when 10(-4) M of GABA was applied by pneumatic pressure-ejection pulses. The semi-logarithmic curve of I(GABA) amplitude versus the ejection time yielded a Hill coefficient of 4.0. I(GABA) was chloride (Cl-) because the reversal potential given by the current-voltage (I-V) curve varied according to the value predicted by the Nernst equation for Cl- dependence. In addition, I(GABA) was almost completely blocked by bath application of the chloride channel blockers picrotoxin (PTX) or 3,3-bis(trifluoromethyl)bicyclo-[2,2,1]heptane-2,2-diacarbonitrile (BIDN). The I-V curve for I(GABA) displayed a unexpected biphasic aspect and was best fitted by two linear regressions giving two slope conductances of 35.6 +/- 2.1 and 80.9 +/- 4.1 nS for potentials ranging from 0 to -30 and -30 to -70 mV, respectively. At -50 mV, the current amplitude was decreased by cadmium chloride (CdCl2, 10(-3) M) and calcium-free solution. The semi-logarithmic curve for CdCl2-resistant I(GABA) gave a Hill coefficient of 2.4. Hyperpolarizing voltage step from -50 to -80 mV was known to increase calcium influx through calcium-resting channels. According to this protocol, a significant increase of I(GABA) amplitude was observed. However, this effect was never obtained when the same protocol was applied on cell body pretreated with CdCl2. When the calmodulin blocker N-(6-aminohexyl)-5-chloro-1-naphtalene-sulfonamide or the calcium-calmodulin-dependent protein kinase blocker 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) was added in the pipette solution, I(GABA) amplitude was decreased. Pressure ejection application of the cis-4-aminocrotonic acid (CACA) on DUM neuron cell body held at -50 mV, evoked a Cl- inward current which was insensitive to CdCl2. The Hill plot yielded a Hill coefficient of 2.3, and the I-V curve was always linear in the negative potential range with a slope conductance of 32.4 +/- 1.1 nS. These results, similar to those obtained with GABA in the presence of CdCl2 and KN-62, indicated that CACA activated one subtype of GABA receptor. Our study demonstrated that at least two distinct subtypes of Cl--dependent GABA receptors were expressed in DUM neurons, one of which is regulated by an intracellular Ca2+-dependent mechanism via a calcium-dependent protein kinase. The consequences of the modulatory action of Ca2+ in GABA receptors function and their sensitivity to insecticide are discussed.
Collapse
Affiliation(s)
- Philippe Alix
- Laboratoire de Neurophysiologie Unité Propre de Recherche de l'Enseignement Supérieur Equipe d'Accueil 2647, Université d'Angers, F-49045 Angers Cedex, France
| | | | | |
Collapse
|