1
|
Ferrin PC, Burghardt E, Peters BR. Phantom sensation in genital gender-affirming surgery: a narrative review. Curr Opin Urol 2024; 34:344-349. [PMID: 38898789 DOI: 10.1097/mou.0000000000001199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
PURPOSE OF REVIEW To review findings related to phantom genital sensation, emphasizing phantom sensation in the transgender and gender diverse (TGD) population. We discuss prevalence, presentation and potential implications for sensory outcomes in genital gender-affirming surgery. RECENT FINDINGS There is a high prevalence of phantom genital sensations in the TGD population. The prevalence varies by body part, approaching 50% in the most frequently reported transgender phantom - the phantom penis. Unlike genital phantoms that occur after trauma or surgery which are often painful, transgender phantoms are typically neutral and often erogenous in experience. Phantom sensation in the TGD population can be an affirming experience and important part of sexual well being and embodiment. SUMMARY Recent studies have begun to characterize the prevalence and presentations of phantom genital sensations in TGD people, informing our evolving understanding of the sensory experiences of the transgender and gender diverse population. Targeting integration of these centrally-mediated phantom genital sensations with the peripherally generated sensation from genital stimulation may represent one potential avenue to improve sensation and embodiment following genital gender-affirming surgical procedures. Additionally, emerging techniques in modern peripheral nerve surgery targeting phantom pain may offer potential treatment options for painful phantom sensation seen after cases of genital surgery or trauma.
Collapse
Affiliation(s)
- Peter C Ferrin
- Oregon Health Sciences University, Department of Surgery
| | - Elliot Burghardt
- Oregon Health Sciences University, Division of Plastic & Reconstructive Surgery
| | - Blair R Peters
- Oregon Health Sciences University, Division of Plastic & Reconstructive Surgery
- Oregon Health Sciences University, Transgender Health Program, Portland, Oregon, USA
| |
Collapse
|
2
|
Browne JD, Fraiser R, Cai Y, Leung D, Leung A, Vaninetti M. Unveiling the phantom: What neuroimaging has taught us about phantom limb pain. Brain Behav 2022; 12:e2509. [PMID: 35218308 PMCID: PMC8933774 DOI: 10.1002/brb3.2509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022] Open
Abstract
Phantom limb pain (PLP) is a complicated condition with diverse clinical challenges. It consists of pain perception of a previously amputated limb. The exact pain mechanism is disputed and includes mechanisms involving cerebral, peripheral, and spinal origins. Such controversy limits researchers' and clinicians' ability to develop consistent therapeutics or management. Neuroimaging is an essential tool that can address this problem. This review explores diffusion tensor imaging, functional magnetic resonance imaging, electroencephalography, and magnetoencephalography in the context of PLP. These imaging modalities have distinct mechanisms, implications, applications, and limitations. Diffusion tensor imaging can outline structural changes and has surgical applications. Functional magnetic resonance imaging captures functional changes with spatial resolution and has therapeutic applications. Electroencephalography and magnetoencephalography can identify functional changes with a strong temporal resolution. Each imaging technique provides a unique perspective and they can be used in concert to reveal the true nature of PLP. Furthermore, researchers can utilize the respective strengths of each neuroimaging technique to support the development of innovative therapies. PLP exemplifies how neuroimaging and clinical management are intricately connected. This review can assist clinicians and researchers seeking a foundation for applications and understanding the limitations of neuroimaging techniques in the context of PLP.
Collapse
Affiliation(s)
- Jonathan D Browne
- School of Medicine, California University of Science and Medicine, Colton, California, USA
| | - Ryan Fraiser
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Yi Cai
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Dillon Leung
- College of Letters and Science, University of California Berkeley, Berkeley, California, USA
| | - Albert Leung
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| | - Michael Vaninetti
- Center for Pain Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Chronic noncancer pain is not associated with accelerated brain aging as assessed by structural magnetic resonance imaging in patients treated in specialized outpatient clinics. Pain 2021; 161:641-650. [PMID: 31764393 DOI: 10.1097/j.pain.0000000000001756] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic pain is often associated with changes in brain structure and function, and also cognitive deficits. It has been noted that these chronic pain-related alterations may resemble changes found in healthy aging, and thus may represent accelerated or premature aging of the brain. Here, we test the hypothesis that patients with chronic noncancer pain demonstrate accelerated brain aging compared with healthy control subjects. The predicted brain age of 59 patients with chronic pain (mean chronological age ± SD: 53.0 ± 9.0 years; 43 women) and 60 pain-free healthy controls (52.6 ± 9.0 years; 44 women) was determined using the software brainageR. This software segments the individual T1-weighted structural MR images into gray and white matter and compares gray and white matter images with a large (n = 2001) training set of structural images, using machine learning. Finally, brain age delta, which is the predicted brain age minus chronological age, was calculated and compared across groups. This study provided no evidence for the hypothesis that chronic pain is associated with accelerated brain aging (Welch t test, P = 0.74, Cohen's d = 0.061). A Bayesian independent-samples t test indicated moderate evidence in favor of the null hypothesis (BF01 = 4.875, ie, group means were equal). Our results provide indirect support for recent models of pain-related changes of brain structure, brain function, and cognitive functions. These models postulate network-specific maladaptive plasticity, rather than widespread or global neural degeneration.
Collapse
|
4
|
Grangeon L, O'Connor E, Chan CK, Akijian L, Pham Ngoc TM, Matharu MS. New insights in post-traumatic headache with cluster headache phenotype: a cohort study. J Neurol Neurosurg Psychiatry 2020; 91:572-579. [PMID: 32381638 PMCID: PMC7279192 DOI: 10.1136/jnnp-2019-322725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To define the characteristics of post-traumatic headache with cluster headache phenotype (PTH-CH) and to compare these characteristics with primary CH. METHODS A retrospective study was conducted of patients seen between 2007 and 2017 in a headache centre and diagnosed with PTH-CH that developed within 7 days of head trauma. A control cohort included 553 patients with primary CH without any history of trauma who attended the headache clinic during the same period. Data including demographics, attack characteristics and response to treatments were recorded. RESULTS Twenty-six patients with PTH-CH were identified. Multivariate analysis revealed significant associations between PTH-CH and family history of CH (OR 3.32, 95% CI 1.31 to 8.63), chronic form (OR 3.29, 95% CI 1.70 to 6.49), parietal (OR 14.82, 95% CI 6.32 to 37.39) or temporal (OR 2.04, 95% CI 1.10 to 3.84) location of pain, and presence of prominent cranial autonomic features during attacks (miosis OR 11.24, 95% CI 3.21 to 41.34; eyelid oedema OR 5.79, 95% CI 2.57 to 13.82; rhinorrhoea OR 2.65, 95% CI 1.26 to 5.86; facial sweating OR 2.53, 95% CI 1.33 to 4.93). Patients with PTH-CH were at a higher risk of being intractable to acute (OR 12.34, 95% CI 2.51 to 64.73) and preventive (OR 16.98, 95% CI 6.88 to 45.52) treatments and of suffering from associated chronic migraine (OR 10.35, 95% CI 3.96 to 28.82). CONCLUSION This largest series of PTH-CH defines it as a unique entity with specific evolutive profile. Patients with PTH-CH are more likely to suffer from the chronic variant, have marked autonomic features, be intractable to treatment and have associated chronic migraine compared with primary CH.
Collapse
Affiliation(s)
- Lou Grangeon
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurology, University Hospital Centre Rouen, Rouen, Normandie, France
| | - Emer O'Connor
- Department of Molecular Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Chun-Kong Chan
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK
| | - Layan Akijian
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK
| | - Thanh Mai Pham Ngoc
- Mathematics Institute of Orsay, Paris-Sud University, CNRS and Paris-Saclay University, Orsay, Île-de-France, France
| | - Manjit Singh Matharu
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, London, UK .,Headache and Facial Pain Group, The National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
5
|
Keci A, Tani K, Xhema J. Role of Rehabilitation in Neural Plasticity. Open Access Maced J Med Sci 2019; 7:1540-1547. [PMID: 31198470 PMCID: PMC6542405 DOI: 10.3889/oamjms.2019.295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 11/05/2022] Open
Abstract
AIM Verifying if physical therapy, neurostimulation techniques, aerobic fitness and video games can induce neural plasticity making it possible for cortical reorganisation, motor recovery in patients, improvement of cognitive functions and transfer of spatial knowledge in the everyday living environment. METHODS There have been revised scientific articles respectively focused on the role of pain, the role of physical therapy, neurostimulation techniques and video games in cortical reorganisation. Articles related to the role of pain have taken in the study subjects with pain, to observe its role in cortical reorganisation. Studies related to physical therapy and neurostimulation techniques after cerebrovascular accident consisted of the involvement of these subjects which exposed to different neurostimulations. Also, related to cognition and video games subjects exposed to these interventions for cognitive benefits. RESULTS From all articles reviewed there have been effective results of neurostimulation techniques, aerobic fitness and video games in cortical reorganisation inducing neural plasticity (p < 0.05) toward motor recovery, improvement of executive functions and transfer of spatial knowledge. CONCLUSION Rehabilitation through locomotor training and neurostimulation techniques, improves mobility in subjects after a cerebrovascular accident due to cortical reorganisation. Also, through aerobic fitness and video games, there have been improvements in cognitive functions. This way, rehabilitation dedicated to the promotion of well-being and health urges beneficial neuroplastic changes in brain corresponding in functional improvement.
Collapse
|
6
|
Experimental muscle hyperalgesia modulates sensorimotor cortical excitability, which is partially altered by unaccustomed exercise. Pain 2018; 159:2493-2502. [DOI: 10.1097/j.pain.0000000000001351] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Dietrich C, Nehrdich S, Seifert S, Blume KR, Miltner WHR, Hofmann GO, Weiss T. Leg Prosthesis With Somatosensory Feedback Reduces Phantom Limb Pain and Increases Functionality. Front Neurol 2018; 9:270. [PMID: 29755399 PMCID: PMC5932153 DOI: 10.3389/fneur.2018.00270] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/06/2018] [Indexed: 01/18/2023] Open
Abstract
Phantom limb pain (PLP) develops in most patients with lower limb amputation. Changes in the peripheral and central nervous system (CNS) are hypothesized to contribute to PLP. Based on ideas to modify neural reorganization within the CNS, the aim of the study was to test, whether prostheses with somatosensory feedback might help to reduce PLP, and increase the functionality of movement with a prosthesis. We therefore equipped the prostheses of 14 lower leg amputees with a simple to use feedback system that provides electrocutaneous feedback to patients' thigh whenever the foot and toes of the prosthesis touch the ground. Two weeks of training with such a feedback prosthesis reduced PLP, increased the functional use of the prosthesis, and increased patients' satisfaction with prosthesis use. We found a significant overall reduction of PLP during the course of the training period. Most patients reported lower PLP intensities at the end of the day while before training they have usually experienced maximal PLP intensities. Furthermore, patients also reported larger walking distances and more stable walking and better posture control while walking on and across a bumpy or soft ground. After training, the majority of participants (9/14) preferred such a feedback system over no feedback. This study extends former observations of a similar training procedure with arm amputees who used a similar feedback training to improve the functionality of an arm prosthesis in manipulating and grasping objects.
Collapse
Affiliation(s)
- Caroline Dietrich
- Department of Clinical Psychology, Friedrich Schiller University, Jena, Germany
| | - Sandra Nehrdich
- Department of Clinical Psychology, Friedrich Schiller University, Jena, Germany
| | - Sandra Seifert
- Department of Clinical Psychology, Friedrich Schiller University, Jena, Germany
| | - Kathrin R. Blume
- Department of Clinical Psychology, Friedrich Schiller University, Jena, Germany
| | | | - Gunther O. Hofmann
- Berufsgenossenschaftliche Kliniken Bergmannstrost Halle/Saale, Halle, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Jena, Jena, Germany
| | - Thomas Weiss
- Department of Clinical Psychology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
8
|
Nardone R, Brigo F, Höller Y, Sebastianelli L, Versace V, Saltuari L, Lochner P, Trinka E. Transcranial magnetic stimulation studies in complex regional pain syndrome type I: A review. Acta Neurol Scand 2018; 137:158-164. [PMID: 28971481 DOI: 10.1111/ane.12852] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2017] [Indexed: 01/23/2023]
Abstract
The sensory and motor cortical representation corresponding to the affected limb is altered in patients with complex regional pain syndrome (CRPS). Transcranial magnetic stimulation (TMS) represents a useful non-invasive approach for studying cortical physiology. If delivered repetitively, TMS can also modulate cortical excitability and induce long-lasting neuroplastic changes. In this review, we performed a systematic search of all studies using TMS to explore cortical excitability/plasticity and repetitive TMS (rTMS) for the treatment of CRPS. Literature searches were conducted using PubMed and EMBASE. We identified 8 articles matching the inclusion criteria. One hundred fourteen patients (76 females and 38 males) were included in these studies. Most of them have applied TMS in order to physiologically characterize CRPS type I. Changes in motor cortex excitability and brain mapping have been reported in CRPS-I patients. Sensory and motor hyperexcitability are in the most studies bilateral and likely involve corresponding regions within the central nervous system rather than the entire hemisphere. Conversely, sensorimotor integration and plasticity were found to be normal in CRPS-I. TMS examinations also revealed that the nature of motor dysfunction in CRPS-I patients differs from that observed in patients with functional movement disorders, limb immobilization, or idiopathic dystonia. TMS studies may thus lead to the implementation of correct rehabilitation strategies in CRPS-I patients. Two studies have begun to therapeutically use rTMS. This non-invasive brain stimulation technique could have therapeutic utility in CRPS, but further well-designed studies are needed to corroborate initial findings.
Collapse
Affiliation(s)
- R. Nardone
- Department of Neurology Franz Tappeiner Hospital Merano Italy
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience Paracelsus Medical University Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg Austria
| | - F. Brigo
- Department of Neurology Franz Tappeiner Hospital Merano Italy
- Department of Neuroscience, Biomedicine and Movement Science University of Verona Verona Italy
| | - Y. Höller
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience Paracelsus Medical University Salzburg Austria
| | - L. Sebastianelli
- Department of Neurorehabilitation Hospital of Vipiteno, and Research Department for Neurorehabilitation South Tyrol Bolzano Italy
| | - V. Versace
- Department of Neurorehabilitation Hospital of Vipiteno, and Research Department for Neurorehabilitation South Tyrol Bolzano Italy
| | - L. Saltuari
- Department of Neurorehabilitation Hospital of Vipiteno, and Research Department for Neurorehabilitation South Tyrol Bolzano Italy
- Department of Neurology Hochzirl Hospital Zirl Austria
| | - P. Lochner
- Department of Neurology Saarland University Medical Center Homburg Germany
| | - E. Trinka
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience Paracelsus Medical University Salzburg Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg Austria
- University for Medical Informatics and Health Technology, UMIT Hall in Tirol Austria
| |
Collapse
|
9
|
|
10
|
The effect of local vs remote experimental pain on motor learning and sensorimotor integration using a complex typing task. Pain 2017; 157:1682-1695. [PMID: 27023419 DOI: 10.1097/j.pain.0000000000000570] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent work demonstrated that capsaicin-induced acute pain improved motor learning performance; however, baseline accuracy was very high, making it impossible to discern the impact of acute pain on motor learning and retention. In addition, the effects of the spatial location of capsaicin application were not explored. Two experiments were conducted to determine the interactive effects of acute pain vs control (experiment 1) and local vs remote acute pain (experiment 2) on motor learning and sensorimotor processing. For both experiments, somatosensory evoked potential (SEP) amplitudes and motor learning acquisition and retention (accuracy and response time) data were collected at baseline, after application, and after motor learning. Experiment 1: N11 (P < 0.05), N13 (P < 0.05), and N30 (P < 0.05) SEP peak amplitudes increased after motor learning in both groups, whereas the N20 SEP peak increased in the control group (P < 0.05). At baseline, the intervention group outperformed the control group in accuracy (P < 0.001). Response time improved after motor learning (P < 0.001) and at retention (P < 0.001). Experiment 2: The P25 SEP peak decreased in the local group after application of capsaicin cream (P < 0.01), whereas the N30 SEP peaks increased after motor learning in both groups (P < 0.05). Accuracy improved in the local group at retention (P < 0.005), and response time improved after motor learning (P < 0.005) and at retention (P < 0.001). This study suggests that acute pain may increase focal attention to the body part used in motor learning, contributing to our understanding of how the location of pain impacts somatosensory processing and the associated motor learning.
Collapse
|
11
|
Painful Stimulation and Transient Blocking of Nerve Transduction Due to Local Anesthesia Evoke Perceptual Distortions of the Face in Healthy Volunteers. THE JOURNAL OF PAIN 2015; 16:335-45. [DOI: 10.1016/j.jpain.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 11/23/2022]
|
12
|
Pelletier R, Higgins J, Bourbonnais D. Is neuroplasticity in the central nervous system the missing link to our understanding of chronic musculoskeletal disorders? BMC Musculoskelet Disord 2015; 16:25. [PMID: 25887644 PMCID: PMC4331171 DOI: 10.1186/s12891-015-0480-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Musculoskeletal rehabilitative care and research have traditionally been guided by a structural pathology paradigm and directed their resources towards the structural, functional, and biological abnormalities located locally within the musculoskeletal system to understand and treat Musculoskeletal Disorders (MSD). However the structural pathology model does not adequately explain many of the clinical and experimental findings in subjects with chronic MSD and, more importantly, treatment guided by this paradigm fails to effectively treat many of these conditions. Discussion Increasing evidence reveals structural and functional changes within the Central Nervous System (CNS) of people with chronic MSD that appear to play a prominent role in the pathophysiology of these disorders. These neuroplastic changes are reflective of adaptive neurophysiological processes occurring as the result of altered afferent stimuli including nociceptive and neuropathic transmission to spinal, subcortical and cortical areas with MSD that are initially beneficial but may persist in a chronic state, may be part and parcel in the pathophysiology of the condition and the development and maintenance of chronic signs and symptoms. Neuroplastic changes within different areas of the CNS may help to explain the transition from acute to chronic conditions, sensory-motor findings, perceptual disturbances, why some individuals continue to experience pain when no structural cause can be discerned, and why some fail to respond to conservative interventions in subjects with chronic MSD. We argue that a change in paradigm is necessary that integrates CNS changes associated with chronic MSD and that these findings are highly relevant for the design and implementation of rehabilitative interventions for this population. Summary Recent findings suggest that a change in model and approach is required in the rehabilitation of chronic MSD that integrate the findings of neuroplastic changes across the CNS and are targeted by rehabilitative interventions. Effects of current interventions may be mediated through peripheral and central changes but may not specifically address all underlying neuroplastic changes in the CNS potentially associated with chronic MSD. Novel approaches to address these neuroplastic changes show promise and require further investigation to improve efficacy of currents approaches.
Collapse
Affiliation(s)
- René Pelletier
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, H3C 3 J7, Québec, Canada.
| | - Johanne Higgins
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, H3C 3 J7, Québec, Canada. .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut de réadaptation Gingras-Lindsay-de-Montréal, Montréal, Québec, Canada.
| | - Daniel Bourbonnais
- École de réadaptation, Faculté de médecine, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, H3C 3 J7, Québec, Canada. .,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Institut de réadaptation Gingras-Lindsay-de-Montréal, Montréal, Québec, Canada.
| |
Collapse
|
13
|
Devor M, Vaso A, Adahan HM, Vyshka G. PNS origin of phantom limb sensation and pain: reply to letter to the editor regarding Foell et al., peripheral origin of phantom limb pain: is it all resolved? Pain 2014; 155:2207-2208. [PMID: 25168666 DOI: 10.1016/j.pain.2014.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Marshall Devor
- Department of Cell & Developmental Biology, Institute of Life Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel Pain and Rehabilitation Clinic, National Trauma Center, Trauma University Hospital and Galenus Clinic, Tirana, Albania Pain Rehabilitation Unit, Chaim Sheba Medical Center, Tel Hashomer, Israel Biomedical and Experimental Department, Faculty of Medicine, University of Medicine, Tirana, Albania
| | | | | | | |
Collapse
|
14
|
The relationship among psychological factors, neglect-like symptoms and postoperative pain after total knee arthroplasty. Pain Res Manag 2014; 19:251-6. [PMID: 25101335 PMCID: PMC4197752 DOI: 10.1155/2014/471529] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neglect-like symptoms have been defined as a loss of perception of a limb, with pain and excessive effort necessary to move the limb. This phenomenon has been studied in patients with complex regional pain syndrome, but has not been assessed in patients who have undergone orthopedic procedures such as total knee arthroplasty. The authors of this study assessed neglect-like symptoms in a group of 90 patients three and six weeks after total knee arthroplasty. BACKGROUND: Persistent postoperative pain has a significant relationship with patient health and satisfaction. OBJECTIVES: To investigate the prevalence and association of neglect-like symptoms (NLS) and other psychological factors on postoperative pain in patients following total knee arthroplasty (TKA). NLS are defined as the loss of perception of the limb with pain and excessive effort required to move the limb. The authors hypothesized that NLS were an important contributor to postoperative pain. METHODS: The factors influencing pain were investigated using a longitudinal study with assessments at three and six weeks postsurgery. The relationships among demographic factors (age, body weight, body mass index), psychological factors (State-Trait Anxiety Inventory and Pain Catastrophizing Scale [PCS]) and NLS with postoperative pain were investigated in 90 patients after TKA. The associations among motor functions (muscle strength of knee extension, range of motion), sensory functions (joint position sense and two-point discrimination in the thigh) and NLS were also investigated. RESULTS: At three and six weeks after surgery, 36% and 19% of patients, respectively, experienced NLS. In hierarchical multiple regression analysis, NLS and PCS scores were significantly associated with postoperative pain, while joint position sense and range of motion were significantly associated with NLS. CONCLUSIONS: These results suggest that facilitation of sensory integration is important in rehabilitation after TKA because NLS appears to result from impaired sensory integration. The association of PCS scores with postoperative pain and NLS suggests the need to provide appropriate postoperative education to reduce persistent negative thoughts regarding future pain.
Collapse
|
15
|
Wolrich J, Poots AJ, Kuehler BM, Rice ASC, Rahman A, Bantel C. Is number sense impaired in chronic pain patients? Br J Anaesth 2014; 113:1024-31. [PMID: 25082664 PMCID: PMC4235572 DOI: 10.1093/bja/aeu255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Recent advances in imaging have improved our understanding of the role of the brain in painful conditions. Discoveries of morphological changes have been made in patients with chronic pain, with little known about the functional consequences when they occur in areas associated with ‘number-sense’; thus, it can be hypothesized that chronic pain impairs this sense. Methods First, an audit of the use of numbers in gold-standard pain assessment tools in patients with acute and chronic pain was undertaken. Secondly, experiments were conducted with patients with acute and chronic pain and healthy controls. Participants marked positions of numbers on lines (number marking), before naming numbers on pre-marked lines (number naming). Finally, subjects bisected lines flanked with ‘2’ and ‘9’. Deviations from expected responses were determined for each experiment. Results Four hundred and ninety-four patients were audited; numeric scores in the ‘moderate’ and ‘severe’ pain categories were significantly higher in chronic compared with acute pain patients. In experiments (n=150), more than one-third of chronic pain patients compared with 1/10th of controls showed greater deviations from the expected in number marking and naming indicating impaired number sense. Line bisection experiments suggest prefrontal and parietal cortical dysfunction as cause of this impairment. Conclusions Audit data suggest patients with chronic pain interpret numbers differently from acute pain sufferers. Support is gained by experiments indicating impaired number sense in one-third of chronic pain patients. These results cast doubts on the appropriateness of the use of visual analogue and numeric rating scales in chronic pain in clinics and research.
Collapse
Affiliation(s)
- J Wolrich
- Section of Anaesthetics, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK
| | - A J Poots
- NIHR CLAHRC for NWL, Department of Medicine, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK
| | - B M Kuehler
- Pain Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - A S C Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK Pain Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| | - A Rahman
- Section of Anaesthetics, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK
| | - C Bantel
- Section of Anaesthetics, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK Pain Medicine, Chelsea and Westminster Hospital NHS Foundation Trust, 369 Fulham Road, London SW10 9NH, UK
| |
Collapse
|
16
|
Zhang SS, Wu W, Liu ZP, Huang GZ, Guo SG, Yang JM. Altered regional homogeneity in experimentally induced low back pain: a resting-state fMRI study. J Neuroeng Rehabil 2014; 11:115. [PMID: 25080831 PMCID: PMC4237877 DOI: 10.1186/1743-0003-11-115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 07/21/2014] [Indexed: 11/22/2022] Open
Abstract
Background Functional imaging studies have indicated that patients with low back pain can have significant reductions in cerebral cortex grey matter. However, the mechanisms governing the nociceptive pathways in the human brain are unclear. The aim of this study was to use functional magnetic resonance imaging (fMRI) and regional homogeneity (ReHo) to investigate changes in resting-state brain activity in subjects that experienced experimentally induced low back pain. Methods Healthy subjects (n = 15) underwent fMRI (3.0 T) at baseline and during painful stimulation (intramuscular injection of 3% hypertonic saline). Results Compared to the scans conducted at baseline, scans conducted during experimentally induced low back pain showed increased ReHo on the right side in the medial prefrontal cortex, precuneus, insula, parahippocampal gyrus and cerebellum (posterior lobe), but decreased ReHo in the primary somatosensory cortex, anterior cingulate cortex and parahippocampal gyrus on the left side. The right inferior parietal lobule also showed a decreased ReHo (P < 0.05, cluster threshold ≥10). Conclusions These findings suggest that abnormally spontaneous resting-state activity in some brain regions may be associated with pain processing. These changes in neural activity may contribute to the recognition, execution, memory and emotional processing of acute low back pain.
Collapse
Affiliation(s)
| | - Wen Wu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, People's Republic of China.
| | | | | | | | | |
Collapse
|
17
|
Vaso A, Adahan HM, Gjika A, Zahaj S, Zhurda T, Vyshka G, Devor M. Peripheral nervous system origin of phantom limb pain. Pain 2014; 155:1384-1391. [PMID: 24769187 DOI: 10.1016/j.pain.2014.04.018] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/06/2014] [Accepted: 04/14/2014] [Indexed: 02/08/2023]
Abstract
Nearly all amputees continue to feel their missing limb as if it still existed, and many experience chronic phantom limb pain (PLP). What is the origin of these sensations? There is currently a broad consensus among investigators that PLP is a top-down phenomenon, triggered by loss of sensory input and caused by maladaptive cortical plasticity. We tested the alternative hypothesis that PLP is primarily a bottom-up process, due not to the loss of input but rather to exaggerated input, generated ectopically in axotomized primary afferent neurons in the dorsal root ganglia (DRGs) that used to innervate the limb. In 31 amputees, the local anesthetic lidocaine was applied intrathecally and/or to the DRG surface (intraforaminal epidural block). This rapidly and reversibly extinguished PLP and also nonpainful phantom limb sensation (npPLS). Control injections were ineffective. For intraforaminal block, the effect was topographically appropriate. The suppression of PLP and npPLS could also be demonstrated using dilute lidocaine concentrations that are sufficient to suppress DRG ectopia but not to block the propagation of impulses generated further distally in the nerve. PLP is driven primarily by activity generated within the DRG. We recommend the DRG as a target for treatment of PLP and perhaps also other types of regional neuropathic pain.
Collapse
Affiliation(s)
- Apostol Vaso
- Pain and Rehabilitation Clinic, National Trauma Center, Trauma University Hospital and Galenus Clinic, Tirana, Albania Pain Rehabilitation Unit, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel Biomedical and Experimental Department, Faculty of Medicine, University of Medicine, Tirana, Albania Department of Cell and Developmental Biology, Institute of Life Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Boström KJ, de Lussanet MHE, Weiss T, Puta C, Wagner H. A computational model unifies apparently contradictory findings concerning phantom pain. Sci Rep 2014; 4:5298. [PMID: 24931344 PMCID: PMC4058874 DOI: 10.1038/srep05298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022] Open
Abstract
Amputation often leads to painful phantom sensations, whose pathogenesis is still unclear. Supported by experimental findings, an explanatory model has been proposed that identifies maladaptive reorganization of the primary somatosensory cortex (S1) as a cause of phantom pain. However, it was recently found that BOLD activity during voluntary movements of the phantom positively correlates with phantom pain rating, giving rise to a model of persistent representation. In the present study, we develop a physiologically realistic, computational model to resolve the conflicting findings. Simulations yielded that both the amount of reorganization and the level of cortical activity during phantom movements were enhanced in a scenario with strong phantom pain as compared to a scenario with weak phantom pain. These results suggest that phantom pain, maladaptive reorganization, and persistent representation may all be caused by the same underlying mechanism, which is driven by an abnormally enhanced spontaneous activity of deafferented nociceptive channels.
Collapse
Affiliation(s)
- Kim J Boström
- Motion Science, University of Münster, Horstmarer Landweg 62b, 48149 Münster, Germany
| | - Marc H E de Lussanet
- Motion Science, University of Münster, Horstmarer Landweg 62b, 48149 Münster, Germany
| | - Thomas Weiss
- Biological & Clinical Psychology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich Schiller University, Jena, 07743 Jena, Germany
| | - Heiko Wagner
- Motion Science, University of Münster, Horstmarer Landweg 62b, 48149 Münster, Germany
| |
Collapse
|
20
|
The effect of experimental pain on motor training performance and sensorimotor integration. Exp Brain Res 2014; 232:2879-89. [PMID: 24820288 DOI: 10.1007/s00221-014-3966-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
Experimental pain is known to affect neuroplasticity of the motor cortex as well as motor performance, but less is known about neuroplasticity of somatosensory processing in the presence of pain. Early somatosensory evoked potentials (SEPs) provide a mechanism for investigating alterations in sensory processing and sensorimotor integration (SMI). The overall aim of this study was to investigate the interactive effects of acute pain, motor training, and sensorimotor processing. Two groups of twelve participants (N = 24) were randomly assigned to either an intervention (capsaicin cream) or placebo (inert lotion) group. SEP amplitudes were collected by stimulation of the median nerve at baseline, post-application and post-motor training. Participants performed a motor sequence task while reaction time and accuracy data were recorded. The amplitude of the P22-N24 complex was significantly increased following motor training for both groups F(2,23) = 3.533, p < 0.05, while Friedman's test for the P22-N30 complex showed a significant increase in the intervention group [χ(2) (df = 2, p = 0.016) = 8.2], with no significant change in the placebo group. Following motor training, reaction time was significantly decreased for both groups F(1,23) = 59.575, p < 0.01 and overall accuracy differed by group [χ(2) (df = 3, p < 0.001) = 19.86], with post hoc testing indicating that the intervention group improved in accuracy following motor training [χ(2) (df = 1, p = 0.001) = 11.77] while the placebo group had worse accuracy [χ(2) (df = 1, p = 0.006) = 7.67]. The improved performance in the presence of capsaicin provides support for the enhancement of knowledge acquisition with the presence of nontarget stimuli. In addition, the increase in SEP peak amplitudes suggests that early SEP changes are markers of SMI changes accompanying motor training and acute pain.
Collapse
|
21
|
Flor H. Maladaptive plasticity, memory for pain and phantom limb pain: review and suggestions for new therapies. Expert Rev Neurother 2014; 8:809-18. [DOI: 10.1586/14737175.8.5.809] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Daenen L, Nijs J, Cras P, Wouters K, Roussel N. Changes in Pain Modulation Occur Soon After Whiplash Trauma but are not Related to Altered Perception of Distorted Visual Feedback. Pain Pract 2013; 14:588-98. [DOI: 10.1111/papr.12113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/05/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Liesbeth Daenen
- Department of Neurology; Faculty of Medicine; University of Antwerp (UA); Antwerp Belgium
- Department of Neurology; Born-Bunge Institute and Antwerp University Hospital; Antwerp Belgium
- Department of Human Physiology; Faculty of Physical Education and Physiotherapy; Chronic Pain and Chronic Fatigue Research Group (CHROPIVER); Vrije Universiteit Brussel (VUB); Brussel Belgium
| | - Jo Nijs
- Department of Human Physiology; Faculty of Physical Education and Physiotherapy; Chronic Pain and Chronic Fatigue Research Group (CHROPIVER); Vrije Universiteit Brussel (VUB); Brussel Belgium
- Division of Musculoskeletal Physiotherapy; Department of Health Sciences; University College Antwerp (Artesis); Antwerp Belgium
| | - Patrick Cras
- Department of Neurology; Faculty of Medicine; University of Antwerp (UA); Antwerp Belgium
- Department of Neurology; Born-Bunge Institute and Antwerp University Hospital; Antwerp Belgium
| | - Kristien Wouters
- Department of Scientific Coordination and Biostatistics; University Hospital Antwerp (UZA); Antwerp Belgium
| | - Nathalie Roussel
- Department of Human Physiology; Faculty of Physical Education and Physiotherapy; Chronic Pain and Chronic Fatigue Research Group (CHROPIVER); Vrije Universiteit Brussel (VUB); Brussel Belgium
- Division of Musculoskeletal Physiotherapy; Department of Health Sciences; University College Antwerp (Artesis); Antwerp Belgium
- Faculty of Medicine; University of Antwerp (UA); Antwerp Belgium
| |
Collapse
|
23
|
Bolwerk A, Seifert F, Maihöfner C. Altered resting-state functional connectivity in complex regional pain syndrome. THE JOURNAL OF PAIN 2013; 14:1107-1115.e8. [PMID: 23791136 DOI: 10.1016/j.jpain.2013.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/27/2013] [Accepted: 04/16/2013] [Indexed: 02/01/2023]
Abstract
UNLABELLED This study explored the functional connectivity between brain regions implicated in the default mode network, the sensorimotor cortex (S1/M1), and the intraparietal sulcus (IPS/MIP) at rest in patients with complex regional pain syndrome. It also investigated how possible alterations are associated with neuropathic pain. Our group used functional magnetic resonance imaging to investigate functional brain connectivity in 12 complex regional pain syndrome patients in comparison with that in 12 age- and sex-matched healthy controls. Data were analyzed using a seed voxel correlation analysis and an independent component analysis. An analysis of covariance was employed to relate alterations in functional connectivity with clinical symptoms. We found significantly greater reductions in functional default mode network connectivity in patients compared to controls. The functional connectivity maps of S1/M1 and IPS/MIP in patients revealed greater and more diffuse connectivity with other brain regions, mainly with the cingulate cortex, precuneus, thalamus, and prefrontal cortex. In contrast, controls showed greater intraregional connectivity within S1/M1 and IPS/MIP. Furthermore, there was a trend for correlation between alterations in functional connectivity and intensity of neuropathic pain. In our findings, patients with complex regional pain syndrome have substantial spatial alterations in the functional connectivity between brain regions implicated in the resting-state default mode network, S1/M1, and IPS/MIP; these alterations show a trend of correlation with neuropathic pain intensity. PERSPECTIVE This article presents spatial alterations in the functional resting-state connectivity of complex regional pain syndrome patients. Our results add further insight into the disease states of CRPS and into the functional architecture of the resting state brains of pain patients in general.
Collapse
Affiliation(s)
- Anne Bolwerk
- Department of Neurology, University Hospital Erlangen, Erlangen, Germany; Department of Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
24
|
Pahapill PA, Zhang W. Restoration of altered somatosensory cortical representation with spinal cord stimulation therapy in a patient with complex regional pain syndrome: a magnetoencephalography case study. Neuromodulation 2013; 17:22-6; discussion 26-7. [PMID: 23433264 DOI: 10.1111/ner.12033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/10/2012] [Accepted: 01/03/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Development of effective chronic pain treatment strategies has been hampered by the lack of an objective pain biomarker. Magnetoencephalography (MEG) has demonstrated cortical disorganization corresponding to the affected limb of complex regional pain syndrome (CRPS) patients and spinal cord stimulation (SCS) can acutely treat CRPS in a reversible and adjustable fashion. In order to better define a potential MEG-sensitive biomarker for chronic pain, our goal was to study the effects of therapeutic SCS on cortical disorganization in patients with unilateral limb CRPS. METHODS Two patients treated with either thoracic or cervical SCS with leg or arm CRPS were studied with MEG. Baseline and tactile-evoked responses were recorded with and without effective SCS therapy. RESULTS All MEG recordings were obtained with minimal interference. In the patient with arm CRPS, with the stimulator off, first and fifth digit primary somatosensory (SI) cortical representations (D1/D5) were significantly disorganized and spatially inverted as compared with the opposite unaffected limb. Effective SCS therapy was then able to acutely normalize or restore hand cortical organization in the affected CRPS limb. This restoration of cortical organization was partially maintained with lingering pain relief when the stimulator was subsequently turned off. CONCLUSIONS This is the first report of a MEG study showing D1/D5 cortical disorganization and its apparent reversal or restoration with cervical SCS therapy. Ours also is the first report of an apparent acute reversible interchange in the cortical representations of D1 and D5. Our limited data demonstrate that disorganization of SI cortex might be a neurophysiologic marker of chronic pain as shown with instantaneous normalization of SI disorganization or restoration of SI organization with therapeutic SCS. As a clinically proven tool for functional mapping, MEG might be shown to provide an objective measure of chronic pain. More data are required to further investigate this possibility.
Collapse
Affiliation(s)
- Peter A Pahapill
- Naseff Specialty Center, United Neurosurgery Associates, St. Paul, MN, USA
| | | |
Collapse
|
25
|
Pain and plasticity: is chronic pain always associated with somatosensory cortex activity and reorganization? J Neurosci 2013; 32:14874-84. [PMID: 23100410 DOI: 10.1523/jneurosci.1733-12.2012] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The somatosensory cortex remodels in response to sensory deprivation, with regions deprived of input invaded by neighboring representations. The degree of cortical reorganization is correlated with ongoing pain intensity, which has led to the assumption that chronic pain conditions are invariably associated with somatosensory cortex reorganization. Because the presentation and etiology of chronic pain vary, we determined whether cortical changes in human subjects are similar for differing pain types. Using functional and anatomical magnetic resonance imaging, we found that, while human patients with neuropathic pain displayed cortical reorganization and changes in somatosensory cortex activity, patients with non-neuropathic chronic pain did not. Furthermore, cortical reorganization in neuropathic pain patients was associated with changes in regional anatomy. These data, by showing that pain per se is not associated with cortical plasticity, suggest that treatments aimed at reversing cortical reorganization should only be considered for use in patients with certain types of chronic pain.
Collapse
|
26
|
Avivi-Arber L, Martin R, Lee JC, Sessle BJ. Face sensorimotor cortex and its neuroplasticity related to orofacial sensorimotor functions. Arch Oral Biol 2011; 56:1440-65. [DOI: 10.1016/j.archoralbio.2011.04.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/20/2022]
|
27
|
Edgar D, Zorzi LM, Wand BM, Brockman N, Griggs C, Clifford M, Wood F. Prevention of neural hypersensitivity after acute upper limb burns: Development and pilot of a cortical training protocol. Burns 2011; 37:698-706. [DOI: 10.1016/j.burns.2011.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 01/22/2023]
|
28
|
Houzé B, Perchet C, Magnin M, Garcia-Larrea L. Cortical representation of the human hand assessed by two levels of high-resolution EEG recordings. Hum Brain Mapp 2011; 32:1894-904. [PMID: 21246666 DOI: 10.1002/hbm.21155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 11/09/2022] Open
Abstract
Increasing interest in cortical plasticity has prompted the growing use of somatosensory evoked potentials (SEPs) to estimate changes in the cortical representation of body regions. Here, we tested the effect of different sites of hand stimulation and of the density of spatial sampling in the quality of estimation of somatosensory sources. Sources of two SEP components from the primary somatosensory cortex (N20/P20 and P45) were estimated using two levels of spatial sampling (64- vs. 128-channel) and stimulation of four distal sites in the upper limbs, including single digits (first vs. fifth) and distal nerves with comparable cortical projection (superficial branch of the radial nerve and distal ulnar nerve). The most robust separation of somatosensory sources was achieved by comparing the cortical representations of the first digit and the distal ulnar nerve territories on the N20/P20 component of SEPs. Although both the 64- and the 128-electrode montages correctly discriminated these two areas, only the 128-electrode montage was able to significantly separate sources in the other cases, notably when using first versus fifth digit stimulation. Trustworthy distinction of cortical representations was not obtainable when using the P45 component, probably because of greater activation volume, radial orientation of sources in areas 1-2 and increased variability with attention and vigilance. Assessment of tangential SEP components to stimulation of first digit versus ulnar nerve appears the best option to assess plastic somatosensory changes, especially when using relatively low-electrode sampling.
Collapse
Affiliation(s)
- Bérengère Houzé
- Central Integration of Pain, INSERM U879/University Claude Bernard Lyon 1, France.
| | | | | | | |
Collapse
|
29
|
Taylor HH, Murphy B. Altered central integration of dual somatosensory input after cervical spine manipulation. J Manipulative Physiol Ther 2010; 33:178-88. [PMID: 20350670 DOI: 10.1016/j.jmpt.2010.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 05/09/2009] [Accepted: 05/10/2009] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of the current study was to investigate changes in the intrinsic inhibitory interactions within the somatosensory system subsequent to a session of spinal manipulation of dysfunctional cervical joints. METHOD Dual peripheral nerve stimulation somatosensory evoked potential (SEP) ratio technique was used in 13 subjects with a history of reoccurring neck stiffness and/or neck pain but no acute symptoms at the time of the study. Somatosensory evoked potentials were recorded after median and ulnar nerve stimulation at the wrist (1 millisecond square wave pulse, 2.47 Hz, 1 x motor threshold). The SEP ratios were calculated for the N9, N11, N13, P14-18, N20-P25, and P22-N30 peak complexes from SEP amplitudes obtained from simultaneous median and ulnar (MU) stimulation divided by the arithmetic sum of SEPs obtained from individual stimulation of the median (M) and ulnar (U) nerves. RESULTS There was a significant decrease in the MU/M + U ratio for the cortical P22-N30 SEP component after chiropractic manipulation of the cervical spine. The P22-N30 cortical ratio change appears to be due to an increased ability to suppress the dual input as there was also a significant decrease in the amplitude of the MU recordings for the same cortical SEP peak (P22-N30) after the manipulations. No changes were observed after a control intervention. CONCLUSION This study suggests that cervical spine manipulation may alter cortical integration of dual somatosensory input. These findings may help to elucidate the mechanisms responsible for the effective relief of pain and restoration of functional ability documented after spinal manipulation treatment.
Collapse
Affiliation(s)
- Heidi Haavik Taylor
- Director of Research, New Zealand College of Chiropractic, Auckland, New Zealand.
| | | |
Collapse
|
30
|
Pühse G, Wachsmuth JU, Kemper S, Husstedt IW, Kliesch S, Evers S. Phantom testis syndrome: prevalence, phenomenology and putative mechanisms. ACTA ACUST UNITED AC 2009; 33:e216-20. [PMID: 19765099 DOI: 10.1111/j.1365-2605.2009.00994.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic phantom pain has been found in up to 78% of limb amputees and is a major complication of limb amputation. Less is known about phantom phenomena after the amputation of other, i.e. visceral, parts of the body. In a retrospective design, we identified 539 patients in whom one testis was removed between 1995 and 2005. The operative technique was a unilateral standard radical inguinal orchiectomy. The underlying pathology in all cases was a testicular germ cell tumour. All patients received a detailed questionnaire asking about the occurrence of phantom testis pain (pain felt in the removed testis), phantom testis sensations (non-painful sensations as if the removed testis was still intact) and hallucinations (illusionary perceptions on the removed testis). Furthermore, we asked about the occurrence and clinical presentation of pain before and after surgery and about pre-operative testicular pain. Out of 238 respondents, 125 patients (53%) reported any kind of phantom experience. The prevalence of phantom testis pain was 25% (60/238), non-painful phantom sensations 16% (37/238) and male gonad hallucinations 12% (28/238). Patients with phantom symptoms reported pre-operative pain in the removed testis more often than patients without phantom symptoms. This study presents first data on the clinical characteristics and possible mechanisms of the phantom testis syndrome after surgical removal of one testis.
Collapse
Affiliation(s)
- Gerald Pühse
- Department of Urology, University of Münster, Münster, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Rosenow JM. Physiology and Pathophysiology of Chronic Pain. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Tsao H, Galea MP, Hodges PW. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain 2008; 131:2161-71. [DOI: 10.1093/brain/awn154] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Taylor HH, Murphy B. Altered sensorimotor integration with cervical spine manipulation. J Manipulative Physiol Ther 2008; 31:115-26. [PMID: 18328937 DOI: 10.1016/j.jmpt.2007.12.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 10/29/2007] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study investigates changes in the intrinsic inhibitory and facilitatory interactions within the sensorimotor cortex subsequent to a single session of cervical spine manipulation using single- and paired-pulse transcranial magnetic stimulation protocols. METHOD Twelve subjects with a history of reoccurring neck pain participated in this study. Short interval intracortical inhibition, short interval intracortical facilitation (SICF), motor evoked potentials, and cortical silent periods (CSPs) were recorded from the abductor pollicis brevis and the extensor indices proprios muscles of the dominant limb after single- and paired-pulse transcranial magnetic stimulation of the contralateral motor cortex. The experimental measures were recorded before and after spinal manipulation of dysfunctional cervical joints, and on a different day after passive head movement. To assess spinal excitability, F wave persistence and amplitudes were recorded after median nerve stimulation at the wrist. RESULTS After cervical manipulations, there was an increase in SICF, a decrease in short interval intracortical inhibition, and a shortening of the CSP in abductor pollicis brevis. The opposite effect was observed in extensor indices proprios, with a decrease in SICF and a lengthening of the CSP. No motor evoked potentials or F wave response alterations were observed, and no changes were observed after the control condition. CONCLUSION Spinal manipulation of dysfunctional cervical joints may alter specific central corticomotor facilitatory and inhibitory neural processing and cortical motor control of 2 upper limb muscles in a muscle-specific manner. This suggests that spinal manipulation may alter sensorimotor integration. These findings may help elucidate mechanisms responsible for the effective relief of pain and restoration of functional ability documented after spinal manipulation.
Collapse
|
34
|
Discussion. Plast Reconstr Surg 2008. [DOI: 10.1097/01.prs.0000299389.31063.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Dimcevski G, Sami SAK, Funch-Jensen P, Le Pera D, Valeriani M, Arendt-Nielsen L, Drewes AM. Pain in chronic pancreatitis: the role of reorganization in the central nervous system. Gastroenterology 2007; 132:1546-56. [PMID: 17408654 DOI: 10.1053/j.gastro.2007.01.037] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 01/04/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS In various chronic pain conditions cortical reorganization seems to play a role in the manifestations. The aim of this study was to investigate cortical reorganization in patients with pain caused by chronic pancreatitis. METHODS Twelve healthy subjects and 10 patients with chronic pancreatitis were included. The esophagus, stomach, and duodenum were stimulated electrically at the pain threshold using a nasal endoscope. The electroencephalogram was recorded from 64 surface electrodes and event-related brain potentials (EPs) were obtained. RESULTS As compared with healthy subjects, the patient group showed decreased latencies of the early EP components (N1, P < .001; P1, P = .02), which is thought to reflect the exogenous brain pain processing specifically. Source analysis showed that the dipolar activities corresponding to the early EPs were located consistently in the bilateral insula, in the anterior cingulate gyrus, and in the bilateral secondary somatosensory area. The bilateral insular dipoles were localized more medial in the patient group than in the healthy subjects after stimulation of all 3 gut segments (P < .01). There also were changes in the cingulate cortex where the neuronal source was more posterior in patients than in controls to stimulation of the esophagus (P < .05). CONCLUSIONS The findings indicate that pain in chronic pancreatitis leads to changes in cortical projections of the nociceptive system. Such findings also have been described in somatic pain disorders, among them neuropathic pain. Taken together with the clinical data this suggests a neuropathic component in pancreatic pain, which may influence the approach to treatment.
Collapse
Affiliation(s)
- Georg Dimcevski
- Center for Visceral Biomechanics and Pain, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | | | | | | | | |
Collapse
|
36
|
Haavik-Taylor H, Murphy B. Cervical spine manipulation alters sensorimotor integration: A somatosensory evoked potential study. Clin Neurophysiol 2007; 118:391-402. [PMID: 17137836 DOI: 10.1016/j.clinph.2006.09.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/06/2006] [Accepted: 09/11/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To study the immediate sensorimotor neurophysiological effects of cervical spine manipulation using somatosensory evoked potentials (SEPs). METHODS Twelve subjects with a history of reoccurring neck stiffness and/or neck pain, but no acute symptoms at the time of the study were invited to participate in the study. An additional twelve subjects participated in a passive head movement control experiment. Spinal (N11, N13) brainstem (P14) and cortical (N20, N30) SEPs to median nerve stimulation were recorded before and for 30min after a single session of cervical spine manipulation, or passive head movement. RESULTS There was a significant decrease in the amplitude of parietal N20 and frontal N30 SEP components following the single session of cervical spine manipulation compared to pre-manipulation baseline values. These changes lasted on average 20min following the manipulation intervention. No changes were observed in the passive head movement control condition. CONCLUSIONS Spinal manipulation of dysfunctional cervical joints can lead to transient cortical plastic changes, as demonstrated by attenuation of cortical somatosensory evoked responses. SIGNIFICANCE This study suggests that cervical spine manipulation may alter cortical somatosensory processing and sensorimotor integration. These findings may help to elucidate the mechanisms responsible for the effective relief of pain and restoration of functional ability documented following spinal manipulation treatment.
Collapse
Affiliation(s)
- Heidi Haavik-Taylor
- h.tHuman Neurophysiology and Rehabilitation Laboratory, Department of Sport and Exercise Science, Tamaki Campus, University of Auckland, Private Bag 92019, 261 Morrin Road, Glen Innes, Auckland, New Zealand.
| | | |
Collapse
|
37
|
Flor H, Nikolajsen L, Staehelin Jensen T. Phantom limb pain: a case of maladaptive CNS plasticity? Nat Rev Neurosci 2006; 7:873-81. [PMID: 17053811 DOI: 10.1038/nrn1991] [Citation(s) in RCA: 554] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phantom pain refers to pain in a body part that has been amputated or deafferented. It has often been viewed as a type of mental disorder or has been assumed to stem from pathological alterations in the region of the amputation stump. In the past decade, evidence has accumulated that phantom pain might be a phenomenon of the CNS that is related to plastic changes at several levels of the neuraxis and especially the cortex. Here, we discuss the evidence for putative pathophysiological mechanisms with an emphasis on central, and in particular cortical, changes. We cite both animal and human studies and derive suggestions for innovative interventions aimed at alleviating phantom pain.
Collapse
Affiliation(s)
- Herta Flor
- Department of Clinical and Cognitive Neuroscience, University of Heidelberg, Central Institute of Mental Health, D-68159 Mannheim, Germany.
| | | | | |
Collapse
|
38
|
Schmidt-Wilcke T, Leinisch E, Gänssbauer S, Draganski B, Bogdahn U, Altmeppen J, May A. Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 2006; 125:89-97. [PMID: 16750298 DOI: 10.1016/j.pain.2006.05.004] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 04/24/2006] [Accepted: 05/02/2006] [Indexed: 11/29/2022]
Abstract
Although chronic back pain is one of the most frequent reasons for permanent impairment in people under 65, the neurobiological mechanisms of chronification remain vague. Evidence suggests that cortical reorganisation, so-called functional plasticity, may play a role in chronic back pain patients. In the search for the structural counterpart of such functional changes in the CNS, we examined 18 patients suffering from chronic back pain with voxel-based morphometry and compared them to 18 sex and age matched healthy controls. We found a significant decrease of gray matter in the brainstem and the somatosensory cortex. Correlation analysis of pain unpleasantness and the intensity of pain on the day of scanning revealed a strong negative correlation (i.e. a decrease in gray matter with increasing unpleasantness/increasing intensity of pain) in these areas. Additionally, we found a significant increase in gray matter bilaterally in the basal ganglia and the left thalamus. These data support the hypothesis that ongoing nociception is associated with cortical and subcortical reorganisation on a structural level, which may play an important role in the process of the chronification of pain.
Collapse
|
39
|
Krause P, Förderreuther S, Straube A. Motorkortikale Repräsentation beim komplex regionalen Schmerzsyndrom Typ I. Schmerz 2006; 20:181-4, 186-8. [PMID: 16047170 DOI: 10.1007/s00482-005-0417-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In a group of patients with short- and long-term (chronic) duration of complex regional pain syndrome type I (CRPS I) motor cortical representation was determined, using a transcranial magnetic stimulation (TMS) mapping method. This was done, starting with suprathreshold intensities at the location of the largest MEP amplitude, mapping systematically in all directions. Patients were compared to a group of healthy subjects. In both patient groups we found significantly larger motor cortical representation for the unaffected hand muscles compared to the affected side. This asymmetry was absent in healthy subjects. Such motor cortical representation asymmetry can be considered an effect of altered sensomotor cortical representation. On the other hand, one must also consider the increased use of the unaffected hand and the presence of pain as cortical influencing variables. The real cause must remain speculative at this time.
Collapse
Affiliation(s)
- P Krause
- Neurologische Klinik und Poliklinik, Klinikum Grosshadern der Ludwig-Maximilians-Universität München.
| | | | | |
Collapse
|
40
|
Sami SAK, Rössel P, Dimcevski G, Nielsen KD, Funch-Jensen P, Valeriani M, Arendt-Nielsen L, Drewes AM. Cortical changes to experimental sensitization of the human esophagus. Neuroscience 2006; 140:269-79. [PMID: 16631315 DOI: 10.1016/j.neuroscience.2006.02.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 01/17/2006] [Accepted: 02/05/2006] [Indexed: 12/24/2022]
Abstract
Topographical organization in the neocortex shows experience-dependent plasticity. We hypothesized that experimental sensitization of the esophagus results in changes of the topographical distribution of the evoked potentials and the corresponding dipole source activities to painful stimulation. An endoscopic method was used to deliver 35 electrical stimuli at the pain threshold to a fixed area of the mucosa in 10 healthy volunteer men and women. The stimulations were repeated after 30 min (reproducibility experiment), and after 60 min following perfusion of 200 ml 0.1 N hydrochloric acid (sensitization experiment). During stimulation the electroencephalogram was recorded from 64 surface electrodes. The sensitization resulted in a decrease in the pain threshold (F=6.2; P=0.004). The topographic distribution of the evoked potentials showed reproducible negative (N1, N2) and positive (P1, P2) components. After acid perfusion a reduced latency and a change in localization was seen for the P1 subdivided into frontal and occipital components (F=29.5, P<0.001; F=53.7, P<0.001). Furthermore the sensitization resulted in a reduction of the latency for P2 (F=6.2, P=0.009). The source analysis showed consistent dipolar activity in the bilateral opercular-insular cortex before and after acid perfusion. For the anterior cingulate dipole there was a reduction in latency (P=0.03) and a posterior shift (P=0.0002) following acid perfusion. The findings indicate that short-term sensitization of the esophagus results in central neuroplastic changes involving the cingulate gyrus, which also showed pathological activation in functional diseases of the gut, thus reflecting the importance of this region in visceral pain and hyperalgesia.
Collapse
Affiliation(s)
- S A K Sami
- Center for Sensory-Motor Interactions, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Valeriani M, Tonali P, Le Pera D, Restuccia D, De Armas L, Del Vesco C, Miliucci R, Fiaschi A, Vigevano F, Arendt-Nielsen L, Tinazzi M. Modulation of laser-evoked potentials by experimental cutaneous tonic pain. Neuroscience 2006; 140:1301-10. [PMID: 16626874 DOI: 10.1016/j.neuroscience.2006.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Revised: 02/14/2006] [Accepted: 03/05/2006] [Indexed: 02/08/2023]
Abstract
The present study aimed to investigate whether tonic cutaneous pain exerts any effect on the cortical processing of nociceptive input and if this effect may involve only body parts in pain. Tonic cutaneous pain was obtained in nine healthy human subjects by infusion of a hypertonic saline (5%) in the s.c. tissue over the hypothenar muscles (10 ml/h for 20 min). Nociceptive cutaneous CO2 laser-evoked potentials were recorded after stimulation of the right hand dorsum, which was adjacent to the painful area, and the right perioral region, corresponding to the adjacent cortical sensory area. Laser-evoked potentials were obtained before saline injection, at the peak pain and 20 min after pain disappeared. During saline infusion, the laser-evoked pain to right hand stimulation was reduced and the vertex laser-evoked potentials (N2a-P2, mean latency 181 ms and 319 ms for the N2a and the P2 potentials, respectively), which are generated in the anterior cingulate cortex, were significantly decreased in amplitude compared with the baseline. Moreover, the topography of these potentials was modified by cutaneous pain, shifting from the central toward the parietal region. Dipolar modeling showed that the dipolar source in the anterior cingulate cortex moved backward during saline infusion. This result suggests that cutaneous pain may modify the relative activities of the anterior and posterior anterior cingulate cortex parts, which are thought to be devoted to encode different aspects of pain sensation. No laser-evoked potential change was observed after stimulation of the right perioral region, suggesting that functional changes in the nociceptive system are selective for the painful regions and not for areas with cortical proximity.
Collapse
Affiliation(s)
- M Valeriani
- Divisione di Neurologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant'Onofrio 4, 00165 Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Ozcan M, Baumgärtner U, Vucurevic G, Stoeter P, Treede RD. Spatial resolution of fMRI in the human parasylvian cortex: Comparison of somatosensory and auditory activation. Neuroimage 2005; 25:877-87. [PMID: 15808988 DOI: 10.1016/j.neuroimage.2004.11.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 10/13/2004] [Accepted: 11/24/2004] [Indexed: 11/21/2022] Open
Abstract
In spite of its outstanding spatial resolution, the biological resolution of functional MRI may be worse because it depends on the vascular architecture of the brain. Here, we compared the activation patterns of the secondary somatosensory and parietal ventral cortex (SII/PV) with that of the primary auditory cortex and adjacent areas (AI/AII). These two brain regions are located immediately adjacent to each other on opposite banks of the Sylvian fissure, and are anatomically and functionally distinct. In 12 healthy subjects, SII/PV was activated by pneumatic tactile stimuli applied to the index finger (0.5 cm2 contact area, 4 bar pressure), and AI/AII by amplitude-modulated tones (800 Hz carrier frequency, modulated at 24-36 Hz). Functional images were obtained with a 1.5-T scanner and were evaluated using SPM99. Sensitivity of fMRI activation in this unselected sample was 71% for tactile and 83% for auditory stimulation. Group analysis showed activation of SII/PV by tactile and activation of three locations in AI/AII by auditory stimuli. Distributions extended to the opposite side of the fissure (19-58% after tactile and 13-14% after auditory stimulation, depending on the side of stimulation/hemisphere). Morphometry of individual sulcal anatomy revealed that the course of the Sylvian fissure varied by 5.3 mm (SD) in vertical direction. Taking this into account, SII/PV was located 5.8 +/- 2.7 mm above the Sylvian fissure, whereas AI/AII was located 6.3 +/- 1.7 mm below the Sylvian fissure. Even in individual analysis, the most significant voxel after tactile stimuli in one subject was found on the "wrong" side of the fissure; this error could be ascribed to the spatial normalization procedure. These data show that fMRI signals may overlap substantially, even if the activated regions are separated by 12 mm across a major sulcus. Spatial normalization to an atlas template can introduce additional variance. Individual sulcal anatomy should be preferred over mean atlas locations.
Collapse
Affiliation(s)
- Mustafa Ozcan
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University, Saarstr. 21, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
44
|
Tinazzi M, Valeriani M, Moretto G, Rosso T, Nicolato A, Fiaschi A, Aglioti SM. Plastic interactions between hand and face cortical representations in patients with trigeminal neuralgia: a somatosensory-evoked potentials study. Neuroscience 2004; 127:769-76. [PMID: 15283973 DOI: 10.1016/j.neuroscience.2004.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
Neurophysiological and neuroimaging studies suggest that pain may play a major role in determining cortical somatosensory rearrangements even in the adult brain. The re-organizational power of pain, however, has been tested in models in which massive deafferentation co-existed with pain (e.g. in phantom pain). Moreover, information on whether spinal and brainstem changes contribute to pain-related plasticity in humans is meagre. We used the non-invasive somatosensory evoked potentials technique in patients with right primary trigeminal neuralgia and no clinical signs of large-diameter fibers of trigeminal deafferentation to assess whether pain may induce plastic changes at multiple levels in the somatosensory system. Subcortical and cortical potentials evoked by stimulation of the right median and posterior tibial nerves ipsilateral to the facial pain were compared with those obtained following stimulation of the left median and tibial nerves and with those obtained in a control group tested in comparable conditions. Amplitudes of parietal N20 and P27 and frontal N30 potentials observed following stimulation of the right median nerve ipsilateral to the facial pain were greater than those of the left median nerve and showed a positive correlation with magnitude of pain. This right-left asymmetry was absent following stimulation of the patients' tibial nerves and in control subjects. No changes were found in spinal N13 and brainstem P14. That facial pain is associated with neuroplastic changes within the somatic cortical representation of the hand suggests a pain-related topographic cortical reorganisation.
Collapse
Affiliation(s)
- M Tinazzi
- Unità Operativa Neurologia Ospedale Civile Borgo Trento, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Although much has been accomplished in the past several decades, treatment of chronic pain remains imperfect. This article presents the anatomy and physiology of the pain system along with the neurobiologic changes that occur in the establishment and maintenance of chronic pain states.
Collapse
Affiliation(s)
- Joshua M Rosenow
- Section of Functional and Stereotactic Neurosurgery, S31, Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
46
|
Valeriani M, Arendt-Nielsen L, Le Pera D, Restuccia D, Rosso T, De Armas L, Maiese T, Fiaschi A, Tonali P, Tinazzi M. Short-term plastic changes of the human nociceptive system following acute pain induced by capsaicin. Clin Neurophysiol 2003; 114:1879-90. [PMID: 14499749 DOI: 10.1016/s1388-2457(03)00180-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate possible neuroplastic changes induced by pain in cerebral areas devoted to nociceptive input processing. METHODS CO(2) laser-evoked potentials (LEPs) were recorded from 10 healthy subjects after stimulation of the right and left hand dorsum. Acute pain was obtained by topical application of capsaicin on the skin of right hand dorsum. LEPs were recorded after right and left hand stimulation before capsaicin, at the peak pain and 10-20 min after capsaicin removal. Right hand LEPs were evoked by laser stimuli delivered over the zone of secondary hyperalgesia during capsaicin and on both the zones of primary and secondary hyperalgesia after capsaicin removal. RESULTS After right hand stimulation, the vertex LEPs, which are generated in the cingulate cortex, were significantly decreased in amplitude during capsaicin application and after capsaicin removal. Moreover, the topography of these potentials was modified after capsaicin removal, shifting from the central toward the parietal region. Dipolar modelling showed that the dipolar source in the anterior cingulate cortex moved backward after capsaicin removal. All these changes were not observed after stimulation of the left hand, contralateral to the application of capsaicin, thus suggesting that functional changes are selective for the painful skin and the adjacent territories. CONCLUSIONS Our results suggest that acute cutaneous pain may inhibit the neural activity in regions of central nervous system processing nociceptive inputs and cortical representation of these inputs can be rapidly modified in presence of acute pain.
Collapse
Affiliation(s)
- Massimiliano Valeriani
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, L.go A. Gemelli 8, 00168, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Borsook D, Becerra L. Pain imaging: future applications to integrative clinical and basic neurobiology. Adv Drug Deliv Rev 2003; 55:967-86. [PMID: 12935940 DOI: 10.1016/s0169-409x(03)00099-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have entered a new era in understanding CNS circuitry involved in acute and chronic pain. The ability to objectively measure a pain or analgesic state of the brain using non-invasive methods that define neural activation provides the possibility for top-down approaches to drug discovery. These brain maps represent the specific brain state. In the future, correlations with such states and behavioral, genetic, epigenetic or other chemical markers may help define specific diagnostic tools and novel approaches to drug discovery.
Collapse
Affiliation(s)
- David Borsook
- Descartes Therapeutics, Inc, 790 Memorial Drive, Suite 104, Cambridge, MA, USA.
| | | |
Collapse
|
48
|
Imai T, Kamping S, Breitenstein C, Pantev C, Lütkenhöner B, Knecht S. Learning of tactile frequency discrimination in humans. Hum Brain Mapp 2003; 18:260-71. [PMID: 12632464 PMCID: PMC6871959 DOI: 10.1002/hbm.10083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Learning is based on the remodeling of neural connections in the brain. The purpose of the present study was to examine the extent to which training-induced improvements in tactile frequency discrimination in humans are correlated with an increase of cortical representations in the primary somatosensory cortex. Healthy male subjects (n = 16) were trained in a tactile frequency discrimination task of the left ring finger. During the first 15 days of training, there was a steep improvement in frequency discrimination, which generalized from the trained finger to its homologue on the opposite hand, and to a lesser extent, to the other fingers on both hands. During the following 15 days of training, there was only a minor improvement in tactile frequency discrimination. Retention of improved performance in frequency discrimination 30 days after training was demonstrated for all digits. Cortical finger representation in the primary somatosensory cortex, as measured by magnetic source imaging, did not change during training. Because of the generalized training effect and the lack of detectable increase in the cortical field evoked from the trained finger, we assume that skill improvement was mediated predominantly by regions outside the primary somatosensory cortex.
Collapse
Affiliation(s)
- Tanya Imai
- Department of Neurology, University of Muenster, Muenster, Germany
| | - Sandra Kamping
- Department of Neurology, University of Muenster, Muenster, Germany
| | | | - Christo Pantev
- Institute of Experimental Audiology, University of Muenster, Muenster, Germany
| | - Bernd Lütkenhöner
- Institute of Experimental Audiology, University of Muenster, Muenster, Germany
| | - Stefan Knecht
- Institute of Experimental Audiology, University of Muenster, Muenster, Germany
| |
Collapse
|
49
|
|
50
|
Wall JT, Xu J, Wang X. Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:181-215. [PMID: 12423766 DOI: 10.1016/s0165-0173(02)00192-3] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Injuries of peripheral inputs from the body cause sensory dysfunctions that are thought to be attributable to functional changes in cerebral cortical maps of the body. Prevalent theories propose that these cortical changes are explained by mechanisms that preeminently operate within cortex. This paper reviews findings from humans and other primates that point to a very different explanation, i.e. that injury triggers an immediately initiated, and subsequently continuing, progression of mechanisms that alter substrates at multiple subcortical as well as cortical locations. As part of this progression, peripheral injuries cause surprisingly rapid neurochemical/molecular, functional, and structural changes in peripheral, spinal, and brainstem substrates. Moreover, recent comparisons of extents of subcortical and cortical map changes indicate that initial subcortical changes can be more extensive than cortical changes, and that over time cortical and subcortical extents of change reach new balances. Mechanisms for these changes are ubiquitous in subcortical and cortical substrates and include neurochemical/molecular changes that cause functional alterations of normal excitation and inhibition, atrophy and degeneration of normal substrates, and sprouting of new connections. The result is that injuries that begin in the body become rapidly further embodied in reorganizational make-overs of the entire core of the somatosensory brain, from peripheral sensory neurons to cortex. We suggest that sensory dysfunctions after nerve, root, dorsal column (spinal), and amputation injuries can be viewed as diseases of reorganization in this core.
Collapse
Affiliation(s)
- J T Wall
- Cellular and Molecular Neurobiology Program, Medical College of Ohio, Toledo 43614-5804, USA.
| | | | | |
Collapse
|