1
|
Zhang H, Liu D, Duan Y, Liu Y, Liu J, Bai N, Zhou Q, Xu Z, Li L, Liu H. Alpha 2-Macroglobulin Polymorphisms and Susceptibility to Alzheimer's Disease: A Comprehensive Meta-Analysis Based on 62 Studies. J Alzheimers Dis Rep 2023; 7:1351-1370. [PMID: 38143774 PMCID: PMC10741958 DOI: 10.3233/adr-230131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Background The relationship between alpha 2-macroglobulin (A2M) gene and Alzheimer's disease (AD) has been widely studied across populations; however, the results are inconsistent. Objective This study aimed to evaluate the association of A2M gene with AD by the application of meta-analysis. Methods Relevant studies were identified by comprehensive searches. The quality of each study was assessed using the Newcastle-Ottawa Scale. Allele and genotype frequencies were extracted from each of the included studies. Odds ratio (OR) with corresponding 95% confidence intervals (CI) was calculated using a random-effects or fixed-effects model. The Cochran Q statistic and I2 metric was used to evaluate heterogeneity, and Egger's test and Funnel plot were used to assess publication bias. Results A total of 62 studies were identified and included in the current meta-analysis. The G allele of rs226380 reduced AD risk (OR: 0.64, 95% CI: 0.47-0.87, pFDR = 0.012), but carrier with the TT genotype was more likely to develop AD in Asian populations (OR: 1.56, 95% CI: 1.12-2.19, pFDR = 0.0135). The V allele of the A2M-I/V (rs669) increased susceptibility to AD in female population (OR, 95% CI: 2.15, 1.38-3.35, pFDR = 0.0024); however, the II genotype could be a protective factor in these populations (OR, 95% CI: 0.43, 0.26-0.73, pFDR = 0.003). Sensitivity analyses confirmed the reliability of the original results. Conclusions Existing evidence indicate that A2M single nucleotide polymorphisms (SNPs) may be associated with AD risk in sub-populations. Future studies with larger sample sizes will be necessary to confirm the results.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Neurology, the Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Da Liu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Neurology, the Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yuanyuan Duan
- Department of Neurology, the People’s Hospital of Mianyang, Mianyang, Sichuan, China
| | - Yan Liu
- Department of Neurology, the Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jianyu Liu
- Department of Neurology, the Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Na Bai
- Department of Neurology, the Sixth People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Qiang Zhou
- Department of Neurology, the Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Zhiyao Xu
- Department of Neurology, the Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
- Medical College of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linyan Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Neurology, the Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Hua Liu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Neurology, the Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Chen H, Li Z, Liu N, Zhang W, Zhu G. Influence of Alpha-2-Macroglobulin 5 bp I/D and Ile1000Val polymorphisms on the susceptibility of Alzheimer's disease: a systematic review and meta-analysis of 52 studies. Cell Biochem Biophys 2015; 70:511-9. [PMID: 24756728 DOI: 10.1007/s12013-014-9950-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Accumulating studies have evaluated the association of Alpha-2-Macroglobulin gene (A2M) 5 bp insertion/deletion (5 bp I/D, rs3832852) and Ile1000Val (rs669) polymorphisms with Alzheimer's disease (AD) risk, but the results remain inconclusive. To investigate whether these two polymorphisms facilitate the susceptibility to AD, we conducted a comprehensive systematic review and meta-analysis. Databases of PubMed, Embase, Web of Science, Medline, CNKI, and Google Scholar were searched to get the genetic association studies. All statistical analyses were conducted with Review Manager 5.2 and STATA11.0. Fifty-two articles were included in the final meta-analysis. We performed meta-analysis of 39 studies involving 8,267 cases and 7,932 controls for the 5 bp I/D polymorphism and 27 studies involving 6,585 cases and 6,637 controls for the Ile/Val polymorphism. Overall results did not show significant association between these two polymorphisms and AD risk in dominant, recessive, and multiplicative genetic models. On the stratification analyses by ethnicity and APOE ε4 status with genotypes of polymorphism sites, similar negative associations were found. The meta-analysis suggests that there is no enough evidence for associations of A2M gene polymorphisms (5 bp I/D, Ile1000Val) with AD risk at present, even after stratification by ethnicity and APOE ε4 with genotypes of polymorphism sites. However, due to the heterogeneity in the meta-analysis, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Hui Chen
- Department of Neurology, Military General Hospital of Beijing PLA, No.5 Nanmencang, Dongsi, Beijing, 100700, China
| | | | | | | | | |
Collapse
|
3
|
Bruno E, Quattrocchi G, Nicoletti A, Le Pira F, Maci T, Mostile G, Andreoli V, Quattrone A, Zappia M. Lack of interaction between LRP1 and A2M polymorphisms for the risk of Alzheimer disease. Neurosci Lett 2010; 482:112-6. [DOI: 10.1016/j.neulet.2010.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 07/02/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022]
|
4
|
Panza F, Colacicco AM, D'Introno A, Capurso C, Liaci M, Capurso SA, Capurso A, Solfrizzi V. Candidate genes for late-onset Alzheimer's disease: Focus on chromosome 12. Mech Ageing Dev 2006; 127:36-47. [PMID: 16183100 DOI: 10.1016/j.mad.2005.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 07/29/2005] [Accepted: 08/12/2005] [Indexed: 11/19/2022]
Abstract
In recent years, there was an increasing interest on candidate genes may play an important role in the development of Alzheimer's disease (AD). Several genome wide screens have undertaken so far or expanded recently, and suggested a number of genomic areas that may contain novel susceptibility genes for AD, in particular most compelling have been the findings on chromosome 12. Polymorphisms in different susceptibility genes on chromosome 12 (A2M, LRP1, CP2 and OLR1) are now being suggested as possible genetic markers for increased risk of developing AD. However, many of these studies are controversial and have shown conflicting results. Thus far, the search for the chromosome 12 Alzheimer's gene must continue and there are several other genes in this region that we are looking at. In this article, we focused on the current knowledge of the genetics of familial late-onset and sporadic AD linked to the chromosome 12, and the future search for other candidate genes.
Collapse
Affiliation(s)
- Francesco Panza
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
D'Introno A, Solfrizzi V, Colacicco AM, Capurso C, Amodio M, Todarello O, Capurso A, Kehoe PG, Panza F. Current knowledge of chromosome 12 susceptibility genes for late-onset Alzheimer's disease. Neurobiol Aging 2005; 27:1537-53. [PMID: 16257095 DOI: 10.1016/j.neurobiolaging.2005.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 09/16/2005] [Accepted: 09/20/2005] [Indexed: 12/16/2022]
Abstract
In the last decade, it has become more apparent the important role genes play in the development of late-onset Alzheimer's disease (AD). Great efforts, involving human genome scans and candidate gene studies, have been given towards identifying susceptibility genes for AD. A number of regions on different chromosomes have been reported to demonstrate linkage for AD. Of these, findings on chromosome 12 are some of the most compelling. Worldwide genetic association studies pre-dating and subsequent to recent linkage studies have identified and focused upon a number of genes that map to the areas of reported linkage on chromosome 12, however, analyses of those genes studied to date, on the whole, remain inconclusive and ambiguous. This paper reviews studies that have provided evidence of linkage for AD on chromosome 12 and in turn discusses the work conducted to date on candidate genes that have been identified and map to the chromosome 12 regions of interest.
Collapse
Affiliation(s)
- Alessia D'Introno
- Department of Geriatrics, Center for Aging Brain, Memory Unit, University of Bari, Policlinico, Piazza Giulio Cesare, 11 70124 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Saunders AJ, Tanzi RE. Welcome to the complex disease world. Alpha2-macroglobulin and Alzheimer's disease. Exp Neurol 2004; 184:50-3. [PMID: 14637079 DOI: 10.1016/j.expneurol.2003.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Chen D, Zhang JW, Zhang ZX, Wu YN, Qu QM. Association of α2-macroglobulin polymorphisms and Alzheimer disease in Mainland Han Chinese. J Neurol Sci 2004; 217:13-5. [PMID: 14675603 DOI: 10.1016/j.jns.2003.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study used case-control method to investigate roles of two alpha 2-macroglobulin (A2M) polymorphisms, a 5-bp insertion/deletion (A2M-I/D) and an A-->G substitution (A2M-A/G), in the development of sporadic Alzheimer disease (AD) in Mainland Han Chinese. Our results showed a trend of lower D-carrying genotype frequency in APOE-epsilon 4 carrying AD patients than in corresponding control subjects (chi(2)=3.67, p=0.055). The ID/AA genotype frequency was lower in AD patients comparing with controls (chi(2)=4.04, p=0.044). In AD patients, the G-carrying genotype frequency was significantly higher in APOE-epsilon 4 carrier subgroup than in APOE-epsilon 4 non-carriers (chi(2)=7.38, OR=2.99, 95% CI: 1.33-6.71, p=0.007). These results indicated that A2M-D allele was probably a weak AD protective factor, and there was a possible interaction of APOE-epsilon 4 and A2M-G alleles to increase AD risk in Mainland Han Chinese.
Collapse
Affiliation(s)
- Deng Chen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, The Chinese Academy of Medical Sciences and The Peking Union Medical College, Beijing 100005, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Rocchi A, Pellegrini S, Siciliano G, Murri L. Causative and susceptibility genes for Alzheimer's disease: a review. Brain Res Bull 2003; 61:1-24. [PMID: 12788204 DOI: 10.1016/s0361-9230(03)00067-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly population. Three genes have been identified as responsible for the rare early-onset familial form of the disease: the amyloid precursor protein (APP) gene, the presenilin 1 (PSEN1) gene and the presenilin 2 (PSEN2) gene. Mutations in these genes, however, account for less than 5% of the total number of AD cases. The remaining 95% of AD patients are mostly sporadic late-onset cases, with a complex aetiology due to interactions between environmental conditions and genetic features of the individual. In this paper, we review the most important genes supposed to be involved in the pathogenesis of AD, known as susceptibility genes, in an attempt to provide a comprehensive picture of what is known about the genetic mechanisms underlying the onset and progression of AD. Hypotheses about the role of each gene in the pathogenic pathway are discussed, taking into account the functions and molecular features, if known, of the coded protein. A major susceptibility gene, the apolipoprotein E (APOE) gene, found to be associated with sporadic late-onset AD cases and the only one, whose role in AD has been confirmed in numerous studies, will be included in a specific chapter. As the results reported by association studies are conflicting, we conclude that a better understanding of the complex aetiology that underlies AD may be achieved likely through a multidisciplinary approach that combines clinical and neurophysiological characterization of AD subtypes and in vivo functional brain imaging studies with molecular investigations of genetic components.
Collapse
Affiliation(s)
- A Rocchi
- Department of Neurosciences, Neurological Clinics, University of Pisa Medical School, Via Roma 67, 56126 Pisa, Italy
| | | | | | | |
Collapse
|
9
|
Bertram L, Tanzi RE. Dancing in the dark? The status of late-onset Alzheimer's disease genetics. J Mol Neurosci 2001; 17:127-36. [PMID: 11816786 DOI: 10.1385/jmn:17:2:127] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. Recent estimates suggest that possibly over 70% of the genetic variance for the disease remains unaccounted for by apolipoprotein E (APOE) and the three known early-onset AD genes (APP, PSEN1, PSEN2). Specifically, one recent segregation analysis predicted the existence of up to four additional susceptibility genes having a similar or greater effect than APOE. However, most of the nearly three dozen putative AD loci proposed to date have only been inconsistently replicated in follow up analyses and more studies are necessary to distinguish false-positive findings from genuine signals. Novel AD genes will not only provide valuable clues for the development of novel therapeutic approaches, but will also allow the development of new genetic risk-profiling strategies that are an essential prerequisite for early prediction/prevention of this devastating disease. In this review, we will present a brief overview of analytic tools in complex disease genetics, as well as a summary of recent linkage and association findings indicating the existence of novel late-onset AD genes on chromosomes 12, 10, and 9.
Collapse
Affiliation(s)
- L Bertram
- Department of Neurology and Center for Aging, Genetics and Neurodegeneration, Massachusetts General Hospital Harvard Medical School, Charlestown 02129, USA
| | | |
Collapse
|
10
|
Bertram L, Tanzi RE. Of replications and refutations: the status of Alzheimer's disease genetic research. Curr Neurol Neurosci Rep 2001; 1:442-50. [PMID: 11898555 DOI: 10.1007/s11910-001-0104-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder. To date, mutations in three genes (APP, PSEN1, PSEN2) have been described to cause familial early-onset AD. In addition, a common polymorphism in the gene encoding apolipoprotein E (APOE) has been associated with the more common late-onset form of the disease. However, many studies have shown that genetic factors other than APOE play an important role in late-onset AD. Along these lines, a recent report predicted the existence of at least four additional late-onset AD genes, one of which was estimated to have a much greater contribution to age of onset variation than the APOE epsilon 4-allele. However, most of the nearly three dozen loci that have been proposed as putative AD genes to date have been followed by both replications and refutations, making consensus impossible. In this overview, we discuss the current status of genetic research in AD, including a brief summary of applicable analytic tools, and a summary of recent findings suggesting the existence of novel AD genes on chromosomes 10, 11, and 12.
Collapse
Affiliation(s)
- L Bertram
- Genetics and Aging Unit, Department of Neurology, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|