1
|
Swiatkowski P, Sewell E, Sweet ES, Dickson S, Swanson RA, McEwan SA, Cuccolo N, McDonnell ME, Patel MV, Varghese N, Morrison B, Reitz AB, Meaney DF, Firestein BL. Cypin: A novel target for traumatic brain injury. Neurobiol Dis 2018; 119:13-25. [PMID: 30031156 DOI: 10.1016/j.nbd.2018.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cytosolic PSD-95 interactor (cypin), the primary guanine deaminase in the brain, plays key roles in shaping neuronal circuits and regulating neuronal survival. Despite this pervasive role in neuronal function, the ability for cypin activity to affect recovery from acute brain injury is unknown. A key barrier in identifying the role of cypin in neurological recovery is the absence of pharmacological tools to manipulate cypin activity in vivo. Here, we use a small molecule screen to identify two activators and one inhibitor of cypin's guanine deaminase activity. The primary screen identified compounds that change the initial rate of guanine deamination using a colorimetric assay, and secondary screens included the ability of the compounds to protect neurons from NMDA-induced injury and NMDA-induced decreases in frequency and amplitude of miniature excitatory postsynaptic currents. Hippocampal neurons pretreated with activators preserved electrophysiological function and survival after NMDA-induced injury in vitro, while pretreatment with the inhibitor did not. The effects of the activators were abolished when cypin was knocked down. Administering either cypin activator directly into the brain one hour after traumatic brain injury significantly reduced fear conditioning deficits 5 days after injury, while delivering the cypin inhibitor did not improve outcome after TBI. Together, these data demonstrate that cypin activation is a novel approach for improving outcome after TBI and may provide a new pathway for reducing the deficits associated with TBI in patients.
Collapse
Affiliation(s)
- Przemyslaw Swiatkowski
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Molecular Biosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Emily Sewell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6391, USA
| | - Eric S Sweet
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Samantha Dickson
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6391, USA
| | - Rachel A Swanson
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Sara A McEwan
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Nicholas Cuccolo
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Mark E McDonnell
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA 18902, USA
| | - Mihir V Patel
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA; Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | - Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA 18902, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6391, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854-8082, USA.
| |
Collapse
|
2
|
Dammer EB, Göttle M, Duong DM, Hanfelt J, Seyfried NT, Jinnah HA. Consequences of impaired purine recycling on the proteome in a cellular model of Lesch-Nyhan disease. Mol Genet Metab 2015; 114:570-579. [PMID: 25769394 PMCID: PMC4390545 DOI: 10.1016/j.ymgme.2015.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The importance of specific pathways of purine metabolism for normal brain function is highlighted by several inherited disorders, such as Lesch-Nyhan disease (LND). In this disorder, deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt), causes severe neurological and behavioral abnormalities. Despite many years of research, the mechanisms linking the defect in purine recycling to the neurobehavioral abnormalities remain unclear. In the current studies, an unbiased approach to the identification of potential mechanisms was undertaken by examining changes in protein expression in a model of HGprt deficiency based on the dopaminergic rat PC6-3 line, before and after differentiation with nerve growth factor (NGF). Protein expression profiles of 5 mutant sublines carrying different mutations affecting HGprt enzyme activity were compared to the HGprt-competent parent line using the method of stable isotopic labeling by amino acids in cell culture (SILAC) followed by denaturing gel electrophoresis with liquid chromatography and tandem mass spectrometry (LC-MS/MS) of tryptic digests, and subsequent identification of affected biochemical pathways using the Database for Annotation, Visualization and Integrated Discovery (DAVID) functional annotation chart analysis. The results demonstrate that HGprt deficiency causes broad changes in protein expression that depend on whether the cells are differentiated or not. Several of the pathways identified reflect predictable consequences of defective purine recycling. Other pathways were not anticipated, disclosing previously unknown connections with purine metabolism and novel insights into the pathogenesis of LND.
Collapse
Affiliation(s)
- Eric B. Dammer
- Department of Biochemistry, Emory University, Atlanta, GA
| | - Martin Göttle
- Department of Neurology, Emory University, Atlanta, GA
| | - Duc M. Duong
- Department of Biochemistry, Emory University, Atlanta, GA
| | - John Hanfelt
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | | | - H. A. Jinnah
- Department of Neurology, Emory University, Atlanta, GA
- Department of Human Genetics & Pediatrics, Emory University, Atlanta, GA
| |
Collapse
|
3
|
Kang TH, Guibinga GH, Friedmann T. HPRT deficiency coordinately dysregulates canonical Wnt and presenilin-1 signaling: a neuro-developmental regulatory role for a housekeeping gene? PLoS One 2011; 6:e16572. [PMID: 21305049 PMCID: PMC3030599 DOI: 10.1371/journal.pone.0016572] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/27/2010] [Indexed: 11/19/2022] Open
Abstract
We have used microarray-based methods of global gene expression together with quantitative PCR and Western blot analysis to identify dysregulation of genes and aberrant cellular processes in human fibroblasts and in SH-SY5Y neuroblastoma cells made HPRT-deficient by transduction with a retrovirus stably expressing an shRNA targeted against HPRT. Analysis of the microarray expression data by Gene ontology (GO) and Gene Set Enrichment Analysis (GSEA) as well as significant pathway analysis by GeneSpring GX10 and Panther Classification System reveal that HPRT deficiency is accompanied by aberrations in a variety of pathways known to regulate neurogenesis or to be implicated in neurodegenerative disease, including the canonical Wnt/β-catenin and the Alzheimer's disease/presenilin signaling pathways. Dysregulation of the Wnt/β-catenin pathway is confirmed by Western blot demonstration of cytosolic sequestration of β-catenin during in vitro differentiation of the SH-SY5Y cells toward the neuronal phenotype. We also demonstrate that two key transcription factor genes known to be regulated by Wnt signaling and to be vital for the generation and function of dopaminergic neurons; i.e., Lmx1a and Engrailed 1, are down-regulated in the HPRT knockdown SH-SY5Y cells. In addition to the Wnt signaling aberration, we found that expression of presenilin-1 shows severely aberrant expression in HPRT-deficient SH-SY5Y cells, reflected by marked deficiency of the 23 kDa C-terminal fragment of presenilin-1 in knockdown cells. Western blot analysis of primary fibroblast cultures from two LND patients also shows dysregulated presenilin-1 expression, including aberrant proteolytic processing of presenilin-1. These demonstrations of dysregulated Wnt signaling and presenilin-1 expression together with impaired expression of dopaminergic transcription factors reveal broad pleitropic neuro-regulatory defects played by HPRT expression and suggest new directions for investigating mechanisms of aberrant neurogenesis and neuropathology in LND and potential new targets for restoration of effective signaling in this neuro-developmental defect.
Collapse
Affiliation(s)
- Tae Hyuk Kang
- Department of Pediatrics, Center for Neural Circuit and Behavior and San Diego Rady Children's Hospital, University of California San Diego, San Diego School of Medicine, La Jolla, California, United States of America
| | - Ghiabe-Henri Guibinga
- Department of Pediatrics, Center for Neural Circuit and Behavior and San Diego Rady Children's Hospital, University of California San Diego, San Diego School of Medicine, La Jolla, California, United States of America
| | - Theodore Friedmann
- Department of Pediatrics, Center for Neural Circuit and Behavior and San Diego Rady Children's Hospital, University of California San Diego, San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Olfactory bulb proteins linked to olfactory memory in C57BL/6J mice. Amino Acids 2010; 39:871-86. [DOI: 10.1007/s00726-010-0543-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/24/2010] [Indexed: 01/02/2023]
|
5
|
Cristini S, Navone S, Canzi L, Acerbi F, Ciusani E, Hladnik U, de Gemmis P, Alessandri G, Colombo A, Parati E, Invernici G. Human neural stem cells: a model system for the study of Lesch-Nyhan disease neurological aspects. Hum Mol Genet 2010; 19:1939-50. [PMID: 20159777 DOI: 10.1093/hmg/ddq072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The study of Lesch-Nyhan-diseased (LND) human brain is crucial for understanding how mutant hypoxanthine-phosphoribosyltransferase (HPRT) might lead to neuronal dysfunction. Since LND is a rare, inherited disorder caused by a deficiency of the enzyme HPRT, human neural stem cells (hNSCs) that carry this mutation are a precious source for delineating the consequences of HPRT deficiency and for developing new treatments. In our study we have examined the effect of HPRT deficiency on the differentiation of neurons in hNSCs isolated from human LND fetal brain. We have examined the expression of a number of transcription factors essential for neuronal differentiation and marker genes involved in dopamine (DA) biosynthetic pathway. LND hNSCs demonstrate aberrant expression of several transcription factors and DA markers. HPRT-deficient dopaminergic neurons also demonstrate a striking deficit in neurite outgrowth. These results represent direct experimental evidence for aberrant neurogenesis in LND hNSCs and suggest developmental roles for other housekeeping genes in neurodevelopmental disease. Moreover, exposure of the LND hNSCs to retinoic acid medium elicited the generation of dopaminergic neurons. The lack of precise understanding of the neurological dysfunction in LND has precluded development of useful therapies. These results evidence aberrant neurogenesis in LND hNSCs and suggest a role for HPRT gene in neurodevelopment. These cells combine the peculiarity of a neurodevelopmental model and a human, neural origin to provide an important tool to investigate the pathophysiology of HPRT deficiency and more broadly demonstrate the utility of human neural stem cells for studying the disease and identifying potential therapeutics.
Collapse
Affiliation(s)
- Silvia Cristini
- Laboratory of Cellular Neurobiology, UO Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lewers JC, Ceballos-Picot I, Shirley TL, Mockel L, Egami K, Jinnah HA. Consequences of impaired purine recycling in dopaminergic neurons. Neuroscience 2008; 152:761-72. [PMID: 18313225 DOI: 10.1016/j.neuroscience.2007.10.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/04/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
A unique sensitivity to specific biochemical processes is responsible for selective vulnerability of midbrain dopamine neurons in several diseases. Prior studies have shown these neurons are susceptible to energy failure and mitochondrial dysfunction, oxidative stress, and impaired disposal of misfolded proteins. These neurons also are especially vulnerable to the loss of purine recycling. In the brains of humans or mice with inherited defects of the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT), the most prominent defect is loss of basal ganglia dopamine. To investigate the nature of the relationship between HPRT deficiency and dopamine, the mouse MN9D dopaminergic neuronal cell line was used to prepare 10 sublines lacking HPRT. The mutant sublines grew more slowly than the parent line, but without morphological signs of impaired viability. As a group, the mutant sublines had significantly lower dopamine than the parent line. The loss of dopamine in the mutants did not reflect impaired energy status, as judged by ATP levels or vulnerability to inhibitors of energy production. Indeed, the mutant lines as a group appeared energetically more robust than the parent line. The loss of dopamine also was not accompanied by enhanced susceptibility to oxidative stress or proteasome inhibitors. Instead, the loss of dopamine reflected only one aspect of a broad change in the molecular phenotype of the cells affecting mRNAs encoding tyrosine hydroxylase, the dopamine transporter, the vesicular monoamine transporter, monoamine oxidase B, catechol-O-methyltransferase, and GTP-cyclohydrolase. These changes were selective for the dopamine phenotype, since multiple control mRNAs were normal. These studies suggest purine recycling is an intrinsic metabolic process of particular importance to the molecular phenotype of dopaminergic neurons independent of previously established mechanisms involving energy failure, oxidative stress, or proteasome dysfunction.
Collapse
Affiliation(s)
- J C Lewers
- Department of Neurology, Meyer Room 6-181, 600 North Wolfe Street, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
7
|
Shirley TL, Lewers JC, Egami K, Majumdar A, Kelly M, Ceballos-Picot I, Seidman MM, Jinnah HA. A human neuronal tissue culture model for Lesch-Nyhan disease. J Neurochem 2007; 101:841-53. [PMID: 17448149 DOI: 10.1111/j.1471-4159.2007.04472.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the gene encoding the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause Lesch-Nyhan disease, a neurodevelopmental disorder characterized by cognitive, neurological, and behavioral abnormalities. Despite detailed knowledge of the enzyme's function, the key pathophysiological changes that accompany loss of purine recycling are unclear. To facilitate delineating the consequences of HPRT deficiency, four independent HPRT-deficient sublines of the human dopaminergic neuroblastoma, SK-N-BE(2) M17, were isolated by targeted mutagenesis with triple helix-forming oligonucleotides. As a group, these HPRT-deficient cells showed several significant abnormalities: (i) impaired purine recycling with accumulation of hypoxanthine, guanine, and xanthine, (ii) reduced guanylate energy charge and GTP:GDP ratio, but normal adenylate energy charge and no changes in any adenine nucleotide ratios, (iii) increased levels of UTP and NADP+, (iv) reduced DOPA decarboxylase, but normal monoamines, and (v) reduction in cell soma size. These cells combine the analytical power of multiple lines and a human, neuronal origin to provide an important tool to investigate the pathophysiology of HPRT deficiency.
Collapse
Affiliation(s)
- Thomas L Shirley
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA, and Department of Biology, Necker-Enfants Malades Hospital, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Del Bigio MR, Halliday WC. Multifocal atrophy of cerebellar internal granular neurons in lesch-nyhan disease: case reports and review. J Neuropathol Exp Neurol 2007; 66:346-53. [PMID: 17483691 DOI: 10.1097/nen.0b013e3180515319] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The neuropathologic findings in 31 cases (aged 6 months to 33 years) of Lesch-Nyhan disease (hypoxanthine-guanine phosphoribosyltransferase deficiency) have been previously reported. Herein 2 additional cases, a 10-year-old boy and a 21-year-old man, are described. Both cases had unusual cerebellar abnormalities comprising multifocal internal granular layer atrophy with sparing of the Purkinje layer, one had a slightly small brain, and neither had striatal abnormalities. Careful review of the literature indicates that the most prevalent neuropathologic abnormalities are small cerebrum (13 of 33 cases) and multifocal cerebellar lesions (9 of 33 cases), although these could be underreported. Other authors have disregarded these abnormalities, focusing on the apparently normal basal nuclei, and they have suggested that the clinical neurologic abnormalities are based solely on changes in neurotransmitters. We discuss potential mechanisms of cerebellar damage, suggest that the cerebellar abnormality could in part explain the clinical syndrome, and recommend that cerebellar structure and function should be more carefully studied in Lesch-Nyhan disease.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Canada.
| | | |
Collapse
|
9
|
Mikolaenko I, Rao LM, Roberts RC, Kolb B, Jinnah HA. A Golgi study of neuronal architecture in a genetic mouse model for Lesch–Nyhan disease. Neurobiol Dis 2005; 20:479-90. [PMID: 15908225 DOI: 10.1016/j.nbd.2005.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/15/2005] [Accepted: 04/08/2005] [Indexed: 11/18/2022] Open
Abstract
Lesch-Nyhan disease (LND) is an inherited disorder associated with deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT), an enzyme essential for purine recycling. The clinical manifestations of the disorder and several neurochemical studies have pointed towards a defect in the striatum, but histological studies of autopsied brain specimens have not revealed any consistent abnormalities. An HPRT-deficient (HPRT-) mouse that has been produced as a model for the disease also exhibits neurochemical abnormalities of the striatum without obvious histological correlates. In the current studies, Golgi-Cox histochemistry was used to evaluate the fine structure of medium spiny I neurons from the striatum in the HPRT- mice. To determine if any abnormalities might be restricted to striatal neurons, the pyramidal projection neurons of layer 5 of the cerebral cortex were also evaluated. Neurons from both regions demonstrated a normal distribution, orientation, and gross morphology. There was no evidence for an abnormal developmental process or degeneration. However, both regions demonstrated a paucity of neurons with very long dendrites and a reduction in dendritic spines that depended upon the distance from the cell body. These findings demonstrate that HPRT deficiency is associated with changes in neuronal architecture in the HPRT- mice. Similar abnormalities in the LND brain could underlie some of the clinical manifestations.
Collapse
Affiliation(s)
- Ivan Mikolaenko
- Department of Neurology, Meyer Room 6-181, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
10
|
Deutsch SI, Long KD, Rosse RB, Mastropaolo J, Eller J. Hypothesized deficiency of guanine-based purines may contribute to abnormalities of neurodevelopment, neuromodulation, and neurotransmission in Lesch-Nyhan syndrome. Clin Neuropharmacol 2005; 28:28-37. [PMID: 15711436 DOI: 10.1097/01.wnf.0000152043.36198.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Lesch-Nyhan syndrome is a devastating sex-linked recessive disorder resulting from almost complete deficiency of the activity of hypoxanthine phosphoribosyltransferase (HPRT). The enzyme deficiency results in an inability to synthesize the nucleotides guanosine monophosphate and inosine monophosphate from the purine bases guanine and hypoxanthine, respectively, via the "salvage" pathway and an accelerated biosynthesis of these purines via the de novo pathway. The syndrome is characterized by neurologic manifestations, including the very dramatic symptom of compulsive self-mutilation. The neurologic manifestations may result, at least in part, from a mixture of neurodevelopmental (eg, a failure to "arborize" dopaminergic synaptic terminals) and neurotransmitter (eg, disruption of GABA and glutamate receptor-mediated neurotransmission) consequences. HPRT deficiency results in elevated extracellular levels of hypoxanthine, which can bind to the benzodiazepine agonist recognition site on the GABA(A) receptor complex, and the possibility of diminished levels of guanine-based purines in discrete "pools" involved in synaptic transmission. In addition to their critical roles in metabolism, gene replication and expression, and signal transduction, guanine-based purines may be important regulators of the synaptic availability of L-glutamate. Guanine-based purines may also have important trophic functions in the CNS. The investigation of the Lesch-Nyhan syndrome may serve to clarify these and other important neurotransmitter, neuromodulatory, and neurotrophic roles that guanine-based purines play in the central nervous system, especially the developing brain. A widespread and general deficiency of guanine-based purines would lead to impaired transduction of a variety of signals that depend on GTP-protein-coupled second messenger systems. This is less likely in view of a prominent localized pathologic effect of HPRT deficiency on presynaptic dopaminergic projections to the striatum. A possible more circumscribed effect of a deficiency of guanine-based purines could be interference with modulation of glutamatergic neurotransmission. Guanosine has been shown to be an important modulator of glutamatergic neurotransmission, promoting glial reuptake of L-glutamate. A deficiency of guanosine could lead to dysregulated glutamatergic neurotransmission, including possible excitotoxic damage. Unfortunately, although the biochemical lesion has been known for quite some time (ie, HPRT deficiency), therapeutically beneficial interventions for these affected children and adults have not yet emerged based on this elucidation. Conceivably, guanosine or its analogues and excitatory amino acid receptor antagonists could participate in the pharmacotherapy of this devastating disorder.
Collapse
Affiliation(s)
- Stephen I Deutsch
- Mental Health Service Line, VISN5, Department of Veterans Affairs Medical Center, NW, Washington, DC 20422, USA.
| | | | | | | | | |
Collapse
|
11
|
Messina E, Micheli V, Giacomello A. Guanine nucleotide depletion induces differentiation and aberrant neurite outgrowth in human dopaminergic neuroblastoma lines: a model for basal ganglia dysfunction in Lesch-Nyhan disease. Neurosci Lett 2004; 375:97-100. [PMID: 15670649 DOI: 10.1016/j.neulet.2004.10.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 10/15/2004] [Accepted: 10/26/2004] [Indexed: 10/26/2022]
Abstract
Lesch-Nyhan disease (LND), caused by complete deficiency of hypoxanthine guanine phosphoribosyltransferase (HPRT), is characterized by a neurological deficit, the etiology of which is unknown. Evidence has accumulated indicating that it might be related to dysfunction of the basal ganglia with a prominent loss of striatal dopamine fibers. Guanine nucleotide depletion has been shown to occur in cells from Lesch-Nyhan patients. In this study we demonstrate that chronic guanine nucleotide depletion induced by inhibition of inosine monophosphate dehydrogenase with low levels (50 nM) of mycophenolic acid (MPA) lead human neuroblastoma cell lines to differentiate toward the neuronal phenotype. The MPA-induced morphological changes were more evident in the dopaminergic line LAN5, than in the cholinergic line IMR32. MPA-induced differentiation, unlike that induced by retinoic acid, caused a less extensive neurite outgrowth and branching (similar to that observed in cultured HPRT-deficient dopaminergic neurons) and involved up-regulation of p53, p21 and bax, and bcl-2 down-regulation without p27 protein accumulation. These results suggest that guanine nucleotide depletion following HPRT deficiency, might lead to earlier and abnormal brain development mainly affecting the basal ganglia, displaying the highest HPRT activity, and could be responsible for the specific neurobehavioral features of LND.
Collapse
Affiliation(s)
- Elisa Messina
- Department of Experimental Medicine and Pathology, University of Rome La Sapienza, viale Regina Elena 324, 00161 Rome, Italy
| | | | | |
Collapse
|
12
|
Ophir G, Meilin S, Efrati M, Chapman J, Karussis D, Roses A, Michaelson DM. Human apoE3 but not apoE4 rescues impaired astrocyte activation in apoE null mice. Neurobiol Dis 2003; 12:56-64. [PMID: 12609489 DOI: 10.1016/s0969-9961(02)00005-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The allele E4 of apolipoprotein E (apoE) is an important risk factor for Alzheimer's disease (AD) and the chronic brain inflammation which is associated with AD is more pronounced in subjects who carry this allele. In the present study, we employed mice transgenic for the human apoE isoforms apoE3 or apoE4 on a null mouse apoE background and intracerebroventricular injection of LPS to investigate the possibility that the regulation of brain inflammation is affected by the apoE genotype. LPS treatment of control mice resulted in activation of brain astrocytes and microglia whose extent decreased with age. LPS treatment of 6-month-old apoE transgenic and control mice resulted in marked activation of brain astrocytes in the control and apoE3 transgenic mice but had no effect on astrogliosis of age-matched apoE-deficient and apoE4 transgenic mice. In contrast, there were no significant differences between the levels of activated microglia of the apoE3 and apoE4 transgenic mice following LPS treatment. Immunoblot assays revealed that the apoE4 and apoE3 transgenic mice had the same levels of brain apoE, which were similarly increased following LPS treatment. These results show that LPS-induced astrogliosis in apoE transgenic mice is regulated isoform-specifically by apoE3 and not by apoE4 and suggest that similar mechanisms may mediate the phenotypic expression of the apoE4 genotype in AD and in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Gal Ophir
- Department of Neurobiochemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
13
|
Fairbanks LD, Jacomelli G, Micheli V, Slade T, Simmonds HA. Severe pyridine nucleotide depletion in fibroblasts from Lesch-Nyhan patients. Biochem J 2002; 366:265-72. [PMID: 11996669 PMCID: PMC1222752 DOI: 10.1042/bj20020148] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2002] [Revised: 04/23/2002] [Accepted: 05/08/2002] [Indexed: 11/17/2022]
Abstract
The relationship between a complete deficiency of the purine enzyme hypoxanthine-guanine phosphoribosyltransferase and the neurobehavioural abnormalities in Lesch-Nyhan disease remains an enigma. In vitro studies using lymphoblasts or fibroblasts have evaluated purine and pyrimidine metabolism with conflicting results. This study focused on pyridine nucleotide metabolism in control and Lesch-Nyhan fibroblasts using radiolabelled salvage precursors to couple the extent of uptake with endocellular nucleotide concentrations. The novel finding, highlighted by specific culture conditions, was a marked NAD depletion in Lesch-Nyhan fibroblasts. ATP and GTP were also 50% of the control, as reported in lymphoblasts. A 6-fold greater incorporation of [(14)C]nicotinic acid into nicotinic acid- adenine dinucleotide by Lesch-Nyhan fibroblasts, with no unmetabolized substrate (20% in controls), supported disturbed pyridine metabolism, NAD depletion being related to utilization by poly(ADP-ribose) polymerase in DNA repair. Although pyrimidine nucleotide concentrations were similar to controls, Lesch-Nyhan cells showed reduced [(14)C]cytidine/uridine salvage into UDP sugars. Incorporation of [(14)C]uridine into CTP by both was minimal, with more than 50% [(14)C]cytidine metabolized to UTP, indicating that fibroblasts, unlike lymphoblasts, lack active CTP synthetase, but possess cytidine deaminase. Restricted culture conditions may be neccesary to mimic the situation in human brain cells at an early developmental stage. Cell type may be equally important. NAD plus ATP depletion in developing brain could restrict DNA repair, leading to neuronal damage/loss by apoptosis, and, with GTP depletion, affect neurotransmitter synthesis and basal ganglia dopaminergic neuronal systems. Thus aberrant pyridine nucleotide metabolism could play a vital role in the pathophysiology of Lesch-Nyhan disease.
Collapse
Affiliation(s)
- Lynette D Fairbanks
- Purine Research Unit, Department of Chemical Pathology, GKT, Guy's Hospital, London SE1 9RT, U.K.
| | | | | | | | | |
Collapse
|
14
|
Elsea SH, Lucas RE. The mousetrap: what we can learn when the mouse model does not mimic the human disease. ILAR J 2002; 43:66-79. [PMID: 11917158 DOI: 10.1093/ilar.43.2.66] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In recent years, mouse models for human metabolic diseases have become commonplace because the information gained from in vivo study of biochemical pathways is invaluable, and many metabolic diseases are relatively easy to recreate in mice through gene knockout technology in embryonic stem cells. In certain cases, however, the knockout mice may reproduce only some of the human disease phenotype, may be more severely affected than human cases, or may have no clinical phenotype at all. Under these circumstances, the disease pathology can become more complex, causing the researcher to evaluate basic differences in mouse and human biology as well as questions of genetic background, alternate pathways, and possible gene interactions. This review is a brief analysis of gene knockout models for Lesch-Nyhan syndrome, Lowe syndrome, X-linked adrenoleukodystrophy, Fabry disease, galactosemia, glycogen storage disease type II, metachromatic leukodystrophy, and Tay-Sachs disease, which produce a biochemical model of disease but often do not reproduce clinical symptoms. These mice may be useful for studying the biochemical and physiological pathways in which certain metabolites function toward embryonic and fetal development, as well as specific functions in various organs, and they may provide an inexpensive and useful model system for development of new therapeutic techniques.
Collapse
Affiliation(s)
- Sarah H Elsea
- Department of Zoology, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
15
|
Connolly GP, Duley JA, Stacey NC. Abnormal development of hypoxanthine-guanine phosphoribosyltransferase-deficient CNS neuroblastoma. Brain Res 2001; 918:20-7. [PMID: 11684038 DOI: 10.1016/s0006-8993(01)02909-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lesch-Nyhan syndrome encompasses a host of neurological symptoms, caused by a deficiency of the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGPRT). How the absence of this enzymes activity affects development of the nervous system is unknown. In this study, we examined the ability of N2aTG, a HGPRT-deficient neuroblastoma and its HGPRT-positive counterpart to proliferate and differentiate at various densities. In summary, N2aTG cells proliferated less and differentiated more than N2a cells, with the former cells exhibiting enhanced sensitivity to the effects of low-density culture. Given the homogeneity of this neuroblastoma cell line and its use in studies of neuronal development, the present study indicates that N2aTG cells may prove a suitable in vitro model for the study of non-dopaminergic neuronal development in Lesch-Nyhan syndrome.
Collapse
Affiliation(s)
- G P Connolly
- Purine NeuroScience Laboratory, Chemical Pathology Department, Guy's, King's and St. Thomas' Medical School, Guy's Hospital, London SE1 9RT, UK.
| | | | | |
Collapse
|