1
|
Barygin OI, Nagaeva EI, Tikhonov DB, Belinskaya DA, Vanchakova NP, Shestakova NN. Inhibition of the NMDA and AMPA receptor channels by antidepressants and antipsychotics. Brain Res 2017; 1660:58-66. [PMID: 28167075 DOI: 10.1016/j.brainres.2017.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Abstract
It is known that some antidepressants and antipsychotics directly inhibit NMDA-type ionotropic glutamate receptors. In this study we systematically studied action of seven drugs (Fluoxetine, Citalopram, Desipramine, Amitriptyline, Atomoxetine, Chlorpromazine, and Clozapine) on NMDA receptors and Ca2+-permeable and -impermeable AMPA receptors in rat brain neurons by whole-cell patch-clamp technique. Except for weak effect of fluoxetine, all drugs were virtually inactive against Ca2+-impermeable AMPA receptors. Fluoxetine and desipramine significantly inhibited Ca2+-permeable AMPA receptors (IC50=43±7 and 105±12µM, respectively). Desipramine, atomoxetine and chlorpromazine inhibited NMDA receptors in clinically relevant low micromolar concentrations, while citalopram had only weak effect. All tested medicines have been clustered into two groups by their action on NMDA receptors: desipramine, amitriptyline, chlorpromazine, and atomoxetine display voltage- and magnesium-dependent open channel blocking mechanism. Action of fluoxetine and clozapine was found to be voltage- and magnesium-independent. All voltage-dependent compounds could be trapped in closed NMDA receptor channels. Possible contribution of NMDA receptor inhibition by certain antidepressants and antipsychotics to their analgesic effects in neuropathic pain is discussed.
Collapse
Affiliation(s)
- Oleg I Barygin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia.
| | - Elina I Nagaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Darya A Belinskaya
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Nina P Vanchakova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| | - Natalia N Shestakova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Geng X, Li F, Yip J, Peng C, Elmadhoun O, Shen J, Ji X, Ding Y. Neuroprotection by Chlorpromazine and Promethazine in Severe Transient and Permanent Ischemic Stroke. Mol Neurobiol 2016; 54:8140-8150. [DOI: 10.1007/s12035-016-0280-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022]
|
3
|
A translational pharmacology approach to understanding the predictive value of abuse potential assessments. Behav Pharmacol 2013; 24:410-36. [PMID: 23873088 DOI: 10.1097/fbp.0b013e3283644d2e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within the drug development industry the assessment of abuse potential for novel molecules involves the generation and review of data from multiple sources, ranging from in-vitro binding and functional assays through to in-vivo nonclinical models in mammals, as well as collection of information from studies in humans. This breadth of data aligns with current expectations from regulatory agencies in both the USA and Europe. To date, there have been a limited number of reviews on the predictive value of individual models within this sequence, but there has been no systematic review on how each of these models contributes to our overall understanding of abuse potential risk. To address this, we analyzed data from 100 small molecules to compare the predictive validity for drug scheduling status of a number of models that typically contribute to the abuse potential assessment package. These models range from the assessment of in-vitro binding and functional profiles at receptors or transporters typically associated with abuse through in-vivo models including locomotor activity, drug discrimination, and self-administration in rodents. Data from subjective report assessments in humans following acute dosing of compounds were also included. The predictive value of each model was then evaluated relative to the scheduling status of each drug in the USA. In recognition of the fact that drug scheduling can be influenced by factors other than the pharmacology of the drug, we also evaluated the predictive value of each assay for the outcome of the human subjective effects assessment. This approach provides an objective and statistical assessment of the predictive value of many of the models typically applied within the pharmaceutical industry to evaluate abuse potential risk. In addition, the impact of combining information from multiple models was examined. This analysis adds to our understanding of the predictive value of each model, allows us to critically evaluate the benefits and limitations of each model, and provides a method for identifying opportunities for improving our assessment and prediction of abuse liability risk in the future.
Collapse
|
4
|
Shin SY, Lee KS, Choi YK, Lim HJ, Lee HG, Lim Y, Lee YH. The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis 2013; 34:2080-9. [PMID: 23689352 DOI: 10.1093/carcin/bgt169] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
2-Chloro-10-[3(-dimethylamino)propyl]phenothiazine mono hydrochloride (chlorpromazine; CPZ) is an antipsychotic agent that was originally developed to control psychotic disorders. The cytotoxic properties of the CPZ are well known, but its mechanism of action is poorly understood. In this study, we investigated the role of apoptosis and autophagy in CPZ-induced cytotoxicity in U-87MG glioma cells. CPZ treatment inhibited cell proliferation and long-term clonogenic survival. Additionally, CPZ triggered autophagy, as indicated by electron microscopy and accumulation of the membrane form of microtubule-associated protein 1 light chain 3 (LC3-II); however, CPZ did not induce apoptosis. Inhibition of autophagy by expression of Beclin 1 small interfering RNA (siRNA) in U-87MG cells attenuated CPZ-induced LC3-II formation. Furthermore, U-87MG cells expressing Beclin 1 siRNA attenuated CPZ-induced cell death. CPZ inhibited phosphatidylinositol 3-kinase (PI3K)/AKT/ mTOR pathway in U-87MG cells. Treatment with LY294002, a PI3K inhibitor, alone increased the accumulation of LC3-II and potentiated the effect of CPZ. In contrast, exogenous expression of AKT partially inhibited CPZ-induced LC3-II formation. When U-87MG cells were implanted into the brain of athymic nude mouse, CPZ triggered autophagy and inhibited xenograft tumor growth. These results provided the first evidence that CPZ-induced cytotoxicity is mediated through autophagic cell death in PTEN (phosphatase and tensin homolog deleted on chromosome 10)-null U-87MG glioma cells by inhibiting PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biological Sciences, College of Biological Science and Biotechnology, Research Center for Transcription Control, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Adolph O, Köster S, Georgieff M, Georgieff EM, Moulig W, Föhr KJ. Promethazine inhibits NMDA-induced currents – New pharmacological aspects of an old drug. Neuropharmacology 2012; 63:280-91. [DOI: 10.1016/j.neuropharm.2012.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 02/27/2012] [Accepted: 03/11/2012] [Indexed: 12/24/2022]
|
6
|
Sudeshna G, Parimal K. Multiple non-psychiatric effects of phenothiazines: A review. Eur J Pharmacol 2010; 648:6-14. [DOI: 10.1016/j.ejphar.2010.08.045] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/20/2010] [Accepted: 08/25/2010] [Indexed: 01/04/2023]
|
7
|
Wilkie IC, Barbaglio A, Maclaren WM, Carnevali MDC. Physiological and immunocytochemical evidence that glutamatergic neurotransmission is involved in the activation of arm autotomy in the featherstar Antedon mediterranea (Echinodermata: Crinoidea). ACTA ACUST UNITED AC 2010; 213:2104-15. [PMID: 20511525 DOI: 10.1242/jeb.039578] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crinoid echinoderm Antedon mediterranea autotomises its arms at specialised skeletal joints known as syzygies that occur at regular intervals along the length of each arm. Detachment is achieved through the nervously mediated destabilisation of ligament fibres at a particular syzygy. The aim of this investigation was to identify neurotransmitters that are involved in the autotomy response. Physiological experiments were conducted on isolated preparations of syzygial joints, which can be induced to undergo autotomy-like fracture by applying stimulatory agents such as elevated [K(+)](o). Initial experiments with elevated [K(+)](o) showed that the autotomy threshold (the minimum amount of stimulation required to provoke autotomy) is lowest in syzygies at the arm base and rises distally. Of a range of neurotransmitter agonists tested, only l-glutamate invoked syzygial destabilisation, as did its analogues l-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate, but not l-(+)-2-amino-4-phosphonobutyrate (l-AP4) or N-methyl-d-aspartate (NMDA). The implication that l-glutamate stimulates syzygial fracture through AMPA/kainate-like receptors was supported by the finding that the action of l-glutamate was inhibited by the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Acetylcholine depressed the response of syzygial preparations to l-glutamate, suggesting a possible mechanism by which the autotomy threshold could be varied constitutively and facultatively. An immunocytochemical method employing a polyclonal antibody against l-glutamate conjugated to glutaraldehyde revealed l-glutamate-like immunoreactivity in all components of the putative neural pathway controlling the autotomy reflex, including the epidermis, brachial nerve, syzygial nerves and cellular elements close to the syzygial ligaments. We conclude that it is highly probable that l-glutamate acts as an excitatory neurotransmitter in the activation of arm autotomy in A. mediterranea.
Collapse
Affiliation(s)
- I C Wilkie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| | | | | | | |
Collapse
|
8
|
Shin SY, Kim CG, Kim SH, Kim YS, Lim Y, Lee YH. Chlorpromazine activates p21Waf1/Cip1gene transcription via early growth response-1 (Egr-1) in C6 glioma cells. Exp Mol Med 2010; 42:395-405. [DOI: 10.3858/emm.2010.42.5.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Soon Young Shin
- Institute of Biomedical Science and Technology, Konkuk University Hospital, Seoul 143-729, Korea
- Department of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul 143-701, Korea
| | - Chang Gun Kim
- Institute of Biomedical Science and Technology, Konkuk University Hospital, Seoul 143-729, Korea
- Department of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul 143-701, Korea
| | - Se Hyun Kim
- Department of Psychiatry, Clinical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Yong Sik Kim
- Department of Psychiatry, Clinical Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Korea
| | - Young Han Lee
- Institute of Biomedical Science and Technology, Konkuk University Hospital, Seoul 143-729, Korea
- Department of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
9
|
Orellana JA, Palacios-Prado N, Sáez JC. Chlorpromazine reduces the intercellular communication via gap junctions in mammalian cells. Toxicol Appl Pharmacol 2006; 213:187-97. [PMID: 16352326 DOI: 10.1016/j.taap.2005.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 10/14/2005] [Accepted: 10/28/2005] [Indexed: 12/27/2022]
Abstract
In the work presented herein, we evaluated the effect of chlorpromazine (CPZ) on gap junctions expressed by two mammalian cell types; Gn-11 cells (cell line derived from mouse LHRH neurons) and rat cortical astrocytes maintained in culture. We also attempted to elucidate possible mechanisms of action of CPZ effects on gap junctions. CPZ, in concentrations comparable with doses used to treat human diseases, was found to reduce the intercellular communication via gap junctions as evaluated with measurements of dye coupling (Lucifer yellow). In both cell types, maximal inhibition of functional gap junctions was reached within about 1 h of treatment with CPZ, an recovery was almost complete at about 5 h after CPZ wash out. In both cell types, CPZ treatment increased the phosphorylation state of connexin43 (Cx43), a gap junction protein subunit. Moreover, CPZ reduced the reactivity of Cx43 (immunofluorescence) at cell interfaces and concomitantly increased its reactivity in intracellular vesicles, suggesting an increased retrieval from and/or reduced insertion into the plasma membrane. CPZ also caused cellular retraction reducing cell-cell contacts in a reversible manner. The reduction in contact area might destabilize existing gap junctions and abrogate formation of new ones. Moreover, the CPZ-induced reduction in gap junctional communication may depend on the connexins (Cxs) forming the junctions. If Cx43 were the only connexin expressed, MAPK-dependent phosphorylation of this connexin would induce closure of gap junction channels.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | |
Collapse
|
10
|
Bressan RA, Erlandsson K, Stone JM, Mulligan RS, Krystal JH, Ell PJ, Pilowsky LS. Impact of schizophrenia and chronic antipsychotic treatment on [123I]CNS-1261 binding to N-methyl-D-aspartate receptors in vivo. Biol Psychiatry 2005; 58:41-6. [PMID: 15992521 DOI: 10.1016/j.biopsych.2005.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/07/2005] [Accepted: 03/09/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND Antipsychotic drugs modulate N-methyl-D-aspartate (NMDA) receptor function in animals. The novel single photon emission tomography (SPET) radiotracer [123I]CNS-1261 binds to the PCP/MK-801 intrachannel site of the NMDA receptor, allowing the noninvasive estimation of NMDA receptor activity in living humans. We used [123I]CNS-1261 to determine whether binding to the NMDA receptor intrachannel PCP/MK-801 site is affected by schizophrenia or by treatment with typical antipsychotics and clozapine in vivo. METHODS Three groups of schizophrenia patients were recruited-drug free (n = 5), typical antipsychotic treated (n = 7), and clozapine treated (n = 9)-as well as a control group of healthy normal volunteers (n = 13). All underwent [123I]CNS-1261 SPET scanning. Total volume of distribution of [123I]CNS-1261 was determined within predefined user-independent regions of interest after alignment of all images to a common template. RESULTS There was no apparent difference in total volume of distribution of [123I]CNS-1261 in drug-free patients relative to healthy control subjects. A nonsignificant reduction in total volume of distribution was observed in typical antipsychotic treated patients. A significant decline in total volume of distribution of [123I]CNS-1261 was observed in all examined brain regions in the clozapine-treated patient group relative to healthy control subjects (p < .005). CONCLUSIONS Clozapine treatment resulted in a global reduction in [123I]CNS-1261 binding to the NMDA receptor intrachannel PCP/MK-801 site in vivo. This supports an effect of the drug on glutamatergic systems that could be exploited for future antipsychotic drug discovery.
Collapse
|
11
|
Teisseyre A, Michalak K. The voltage- and time-dependent blocking effect of trifluoperazine on T lymphocyte Kv1.3 channels. Biochem Pharmacol 2003; 65:551-61. [PMID: 12566082 DOI: 10.1016/s0006-2952(02)01561-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phenothiazines are well-known calmodulin inhibitors that interact with many receptors and channels including a variety of potassium channels. In this study, we report a blocking effect of trifluoperazine (TFP) on voltage-gated Kv1.3 channels expressed in human T lymphocytes. Application of TFP in the concentration range from 1 to 20 microM reduced the current amplitude to about a half of the control value. The currents were blocked to less than 0.05 of the control value at 50 microM TFP concentration. The blocking effect was accompanied by a substantial increase in the current inactivation rate, whereas the activation rate and the steady-state activation and inactivation were not changed significantly. The blocking effect of TFP was voltage dependent being most potent at +60mV and least potent at -20mV. The blocking effect of TFP on the currents and the recovery from block was time dependent. Other calmodulin antagonists: tamoxifen (TMX) and thioridazine also inhibited the channels at micromolar concentrations. The effects exerted by TMX and thioridazine resembled the inhibitory effect of TFP. The blocking effect of thioridazine was time dependent and appeared to be more potent that the inhibition by TFP and TMX. TFP, TMX and thioridazine inhibited the activity of Kv1.3 channels only when applied extracellularly. The inhibitory effect of all the compounds was reversible. The possible physiological significance of the current inhibition is discussed.
Collapse
Affiliation(s)
- Andrzej Teisseyre
- Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 10, 50-368 Wrocław, Poland.
| | | |
Collapse
|
12
|
Karmakar P, Natarajan AT, Poddar RK, Dasgupta UB. Induction of apoptosis by Phenothiazine derivatives in V79 cells. Toxicol Lett 2001; 125:19-28. [PMID: 11701219 DOI: 10.1016/s0378-4274(01)00411-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phenothiazine derivatives chlorpromazine (cpz) and trifluoperazine (tfp) were found to induce apoptosis, abnormal cell cycle and expression of p53 in Chinese hamster lung fibroblast V79 cells. Both the drugs can induce apoptosis when cells are treated with drug at a concentration of 10 microg/ml within 4 h, as detected by propidium iodide staining and DNA fragmentation analysis. Flow cytometric analysis revealed that the apoptotic response is mediated by a loss of G(1) population of cells. In Western blot analysis, p21 is induced and p53 is accompanied by additional bands. Also indirect immunolabeling of single cells revealed that p21 is accumulated from cytoplasm into nucleus after the drug treatment and the intensities of p53 increased. Our findings demonstrate for the first time that phenothiazine derivatives, in addition to their cytotoxic effects, could induce apoptosis, an observation that has important clinical implications.
Collapse
Affiliation(s)
- P Karmakar
- Department of Biophysics, Molecular Biology & Genetics, 92, A.P.C. Road, 700 009, Calcutta, India.
| | | | | | | |
Collapse
|
13
|
Zarnowska ED, Mozrzymas JW. Chlorpromazine prolongs the deactivation of N-methyl-D-aspartate-induced currents in cultured rat hippocampal neurons. Neurosci Lett 2001; 315:1-4. [PMID: 11711200 DOI: 10.1016/s0304-3940(01)02245-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of chlorpromazine (CPZ) on deactivation of N-methyl-D-aspartate (NMDA)-induced currents was studied in the whole-cell configuration of the patch-clamp technique in cultured rat hippocampal neurons. We report that CPZ (at 30-1000 microM) strongly slowed down the deactivation process in a dose-dependent manner. At high CPZ concentration (1 mM), the NMDA-elicited currents were insensitive to NMDA removal as long as CPZ was present and deactivated only when both NMDA and CPZ were washed out. CPZ by itself did not activate any current. These data indicate that one of CPZ actions is to stabilise the open conformation of NMDA receptors probably by fixing it in the bound state. This CPZ effect may be important as the synaptic currents represent mainly the deactivation process.
Collapse
Affiliation(s)
- E D Zarnowska
- Department of Biophysics, Wrocław Medical University, Chałubinskiego 10, 50-368, Wrocław, Poland.
| | | |
Collapse
|