1
|
Mousavi S, Qiu H, Andrews MT, Checco JW. Peptidomic Analysis Reveals Seasonal Neuropeptide and Peptide Hormone Changes in the Hypothalamus and Pituitary of a Hibernating Mammal. ACS Chem Neurosci 2023; 14:2569-2581. [PMID: 37395621 PMCID: PMC10529138 DOI: 10.1021/acschemneuro.3c00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
During the winter, hibernating mammals undergo extreme changes in physiology, which allow them to survive several months without access to food. These animals enter a state of torpor, which is characterized by decreased metabolism, near-freezing body temperatures, and a dramatically reduced heart rate. The neurochemical basis of this regulation is largely unknown. Based on prior evidence suggesting that the peptide-rich hypothalamus plays critical roles in hibernation, we hypothesized that changes in specific cell-cell signaling peptides (neuropeptides and peptide hormones) underlie physiological changes during torpor/arousal cycles. To test this hypothesis, we used a mass spectrometry-based peptidomics approach to examine seasonal changes of endogenous peptides that occur in the hypothalamus and pituitary of a model hibernating mammal, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus). In the pituitary, we observed changes in several distinct peptide hormones as animals prepared for torpor in October, exited torpor in March, and progressed from spring (March) to fall (August). In the hypothalamus, we observed an overall increase in neuropeptides in October (pre-torpor), a decrease as the animal entered torpor, and an increase in a subset of neuropeptides during normothermic interbout arousals. Notable changes were observed for feeding regulatory peptides, opioid peptides, and several peptides without well-established functions. Overall, our study provides critical insight into changes in endogenous peptides in the hypothalamus and pituitary during mammalian hibernation that were not available from transcriptomic measurements. Understanding the molecular basis of the hibernation phenotype may pave the way for future efforts to employ hibernation-like strategies for organ preservation, combating obesity, and treatment of stroke.
Collapse
Affiliation(s)
- Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Matthew T. Andrews
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
2
|
Talbi R, Laran-Chich MP, Magoul R, El Ouezzani S, Simonneaux V. Kisspeptin and RFRP-3 differentially regulate food intake and metabolic neuropeptides in the female desert jerboa. Sci Rep 2016; 6:36057. [PMID: 27805048 PMCID: PMC5090964 DOI: 10.1038/srep36057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/11/2016] [Indexed: 12/28/2022] Open
Abstract
Jerboas are wild rodents exhibiting exceptional adaptation to their desert environment. Under harsh autumn conditions, they shut down reproduction, increase body weight and hibernate, while during spring they become sexually active even under negative energy-balance. We recently reported that these rhythms are associated with synchronized changes in genes expressing reproductive (Kiss1, Rfrp) and metabolic (Npy and Pomc) peptides, raising the hypothesis of coordinated seasonal regulation of both functions. Here we analyzed whether kisspeptin and RFRP-3 regulate food-intake in parallel to their established reproductive functions. Intracerebroventricular administration of kisspeptin inhibited food intake by 1.5-fold in fasted, but not ad-libitum fed, female jerboas captured in spring, an effect associated with an increase in Pomc and decrease in Rfrp mRNA levels. By contrast, intracerebroventricular injection of RFRP-3 induced a 4-fold increase in food-intake in ad-libitum female jerboas, together with a decrease in Pomc and increase in Npy mRNA levels. This orexigenic effect of RFRP-3 was observed in both spring and autumn, whereas kisspeptin's anorexigenic effect was only observed in spring. Altogether, this study reports opposite metabolic effects of kisspeptin and RFRP-3 in the female jerboa and strengthens our hypothesis of a coordinated, season-dependent, regulation of reproductive activity and food intake through interactions of these hypothalamic peptides.
Collapse
Affiliation(s)
- Rajae Talbi
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco.,Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Marie-Pierre Laran-Chich
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | - Rabia Magoul
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco
| | - Seloua El Ouezzani
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS, FES, Morocco
| | - Valérie Simonneaux
- Institut des Neurosciences Cellulaires et Intégratives, UPR CNRS 3212, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France
| |
Collapse
|
3
|
Zhu T, Yuan L, Jones G, Hua P, He G, Chen J, Zhang S. OB-RL silencing inhibits the thermoregulatory ability of Great Roundleaf Bats (Hipposideros armiger). Gen Comp Endocrinol 2014; 204:80-7. [PMID: 24815886 DOI: 10.1016/j.ygcen.2014.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 04/22/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
Previous studies have shown that the hormone Leptin has an important role in mammalian heterothermy by regulating metabolism and food intake via lipolysis, as well as adaptive evolution of Leptin in heterothermic bats driven by selected pressure. However, the mechanism of Leptin in heterothermic regulation in mammals is unknown. By combining previous results, we speculated that the Leptin signaling pathway mediated by OB-RL (Leptin receptor long form) in the hypothalamus is important. OB-RL is one of the products of db gene and mainly distributed in the hypothalamus. In this study, we used OB-RL as a molecular marker, combining with the RNA interference technology and physiological/molecular analyses with Hipposideros armiger (a hibernating bat species) as an animal model, to explore the mechanism of Leptin in heterothermic regulation. Our data showed that all of four anti-OB-RL shRNA lentivirus significantly inhibited OB-RL expression (>90%), and the interference efficiency of PSC1742 lentivirus reached the highest value. In situ hybridization proved that PSC1742 lentivirus significantly decreased the OB-RL expression in the hypothalamus, especially in the ventromedial hypothalamic nucleus (VHM, 86.6%). Physiological analysis demonstrated that the thermoregulatory ability of bats (e.g., reducing core body temperature and heart rate) was significantly depressed after OB-RL silencing in the hypothalamus, and animals could not enter torpor state. Our study for the first time proved that the knock-down of OB-RL expression in hypothalamus inhibits heterothermic regulation of bats, and also provided the clues for further analyzing the mechanism of Leptin in the heterothermic regulation of mammals.
Collapse
Affiliation(s)
- Tengteng Zhu
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research in Science and Technology, East China Normal University, Shanghai 200062, China
| | - Lihong Yuan
- Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China.
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Woodland Road, BS8 1UG Bristol, United Kingdom
| | - Panyu Hua
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research in Science and Technology, East China Normal University, Shanghai 200062, China
| | - Guimei He
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research in Science and Technology, East China Normal University, Shanghai 200062, China
| | - Jinping Chen
- Guangdong Entomological Institute/South China Institute of Endangered Animals, Guangzhou 510260, China
| | - Shuyi Zhang
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research in Science and Technology, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
4
|
Doherty AH, Florant GL, Donahue SW. Endocrine regulation of bone and energy metabolism in hibernating mammals. Integr Comp Biol 2014; 54:463-83. [PMID: 24556365 DOI: 10.1093/icb/icu001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases.
Collapse
Affiliation(s)
- Alison H Doherty
- *Department of Biology, Colorado State University, Fort Collins, CO 80523-1620, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1620, USA*Department of Biology, Colorado State University, Fort Collins, CO 80523-1620, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1620, USA
| | - Gregory L Florant
- *Department of Biology, Colorado State University, Fort Collins, CO 80523-1620, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1620, USA
| | - Seth W Donahue
- *Department of Biology, Colorado State University, Fort Collins, CO 80523-1620, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1620, USA
| |
Collapse
|
5
|
Cooper KL. The lesser Egyptian jerboa, Jaculus jaculus: a unique rodent model for evolution and development. Cold Spring Harb Protoc 2011; 2011:1451-1456. [PMID: 22135653 DOI: 10.1101/pdb.emo066704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tetrapods that have evolved the ability to run or bound at great speeds over long distances have repeatedly converged on specific morphological limb adaptations, including the loss of lateral digits, elongation of limb segments, and fusion of individual elements. Many of the more familiar cursorial animals, such as horses and deer, are large and do not lend themselves well to experimental embryonic analyses. However, a group of lesser-known bipedal rodents, the three-toed jerboas, has become an exceptional model for studying the developmental and molecular mechanisms shaping these limb morphologies. The lesser Egyptian jerboa, Jaculus jaculus, represents the most derived subfamily of jerboas and shows loss of the anterior and posterior hindlimb digits, fusion of the three central metatarsals, and dramatic elongation of the hindlimb relative to the forelimb with disproportionate elongation of the metatarsals. In addition, several unique physiological and morphological characteristics make these excellent animals for evolutionary studies. As small docile rodents, they are amenable to rearing in a laboratory setting and, along with several related species with a variety of skeletal morphologies, are plentiful enough in the wild to support field collections. The close evolutionary relationship to Mus musculus and the development of genomic resources for J. jaculus support comparative developmental and molecular analyses.
Collapse
Affiliation(s)
- Kimberly L Cooper
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, USA.
| |
Collapse
|
6
|
El Ouezzani S, Janati IA, Magoul R, Pévet P, Saboureau M. Overwinter body temperature patterns in captive jerboas (Jaculus orientalis): influence of sex and group. J Comp Physiol B 2010; 181:299-309. [PMID: 20981552 DOI: 10.1007/s00360-010-0519-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 09/19/2010] [Accepted: 09/24/2010] [Indexed: 10/18/2022]
Abstract
The jerboa (Jaculus orientalis) has been described in the past as a hibernator, but no reliable data exist on the daily and seasonal rhythmicity of body temperature (T (b)). In this study, T (b) patterns were determined in different groups of jerboas (isolated males and females, castrated males and grouped animals) maintained in captivity during autumn and winter, and submitted to natural variations of light and ambient temperature (T (a)). T (b) and T (a) variations were recorded with surgically implanted iButton temperature loggers at 30-min intervals for two consecutive years. About half (6/13) of isolated female jerboas hibernated with a T (b) < 33°C, with hibernation bouts interspersed with short periods of normothermy from November to February. Hibernation bout durations were longer (4-5 days) than those of normothermia phases (1-4 days). During hibernation, the minimum T (b) was low (T (b)min ~10.7°C). In contrast, one of the 12 isolated males showed short hibernation bouts of ca. 2 days late in the hibernation season, February-March. The males had T (b)min values of 15.1°C. In contrast to predictions, no castrated males hibernated. When jerboas were grouped, females and males exhibited concomitant torpor bouts. In males, the longest bouts were observed during the late hibernation season. These data suggest complex regulation of hibernation in jerboas.
Collapse
Affiliation(s)
- S El Ouezzani
- Laboratory of Neuroendocrinology and Nutritional and Climatic Environment, Faculty of Sciences, BP 1796, ATLAS, Fes, Morocco.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Hibernation is one of the most dramatic examples of phenotypic plasticity in mammals. During periods of food shortage and/or reduced ambient temperatures hibernating mammals become heterothermic, allowing their body temperature to decrease while entering an energy-conserving torpid state. In order to survive the multi-month hibernation season many species engage in hyperphagy, dramatically increasing adipose stores prior to the onset of hibernation. Nuclear receptors are a superfamily of transcription factors many of which bind lipophilic molecules as ligands. They regulate a variety of processes including energy homeostasis, carbohydrate and lipid metabolism, inflammation and circadian rhythm. Given that lipids are integral in the hibernation phenotype they may play important regulatory roles through their interactions with nuclear receptors. Here we review current knowledge and suggest possible roles in mammalian hibernation for peroxisome proliferator-activated receptors (PPARs), farnesoid X receptors (FXRs), liver X receptors (LXRs), retinoid-related orphan receptors (RORs) and Rev-ERBs.
Collapse
Affiliation(s)
- Clark J Nelson
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA
| | | | | |
Collapse
|
8
|
Carey HV, Andrews MT, Martin SL. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 2003; 83:1153-81. [PMID: 14506303 DOI: 10.1152/physrev.00008.2003] [Citation(s) in RCA: 792] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammalian hibernators undergo a remarkable phenotypic switch that involves profound changes in physiology, morphology, and behavior in response to periods of unfavorable environmental conditions. The ability to hibernate is found throughout the class Mammalia and appears to involve differential expression of genes common to all mammals, rather than the induction of novel gene products unique to the hibernating state. The hibernation season is characterized by extended bouts of torpor, during which minimal body temperature (Tb) can fall as low as -2.9 degrees C and metabolism can be reduced to 1% of euthermic rates. Many global biochemical and physiological processes exploit low temperatures to lower reaction rates but retain the ability to resume full activity upon rewarming. Other critical functions must continue at physiologically relevant levels during torpor and be precisely regulated even at Tb values near 0 degrees C. Research using new tools of molecular and cellular biology is beginning to reveal how hibernators survive repeated cycles of torpor and arousal during the hibernation season. Comprehensive approaches that exploit advances in genomic and proteomic technologies are needed to further define the differentially expressed genes that distinguish the summer euthermic from winter hibernating states. Detailed understanding of hibernation from the molecular to organismal levels should enable the translation of this information to the development of a variety of hypothermic and hypometabolic strategies to improve outcomes for human and animal health.
Collapse
Affiliation(s)
- Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|