1
|
Wang T, Ye X, Bian W, Chen Z, Du J, Li M, Zhou P, Cui H, Ding YQ, Qi S, Liao M, Sun C. Allopregnanolone Modulates GABAAR-Dependent CaMKIIδ3 and BDNF to Protect SH-SY5Y Cells Against 6-OHDA-Induced Damage. Front Cell Neurosci 2020; 13:569. [PMID: 31998078 PMCID: PMC6970471 DOI: 10.3389/fncel.2019.00569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Allopregnanolone (APα), as a functional neurosteroid, exhibits the neuroprotective effect on neurodegenerative diseases such as Parkinson’s disease (PD) through γ-aminobutyric acid A receptor (GABAAR), but it has not been completely understood about its molecular mechanisms. In order to investigate the neuroprotective effect of APα, as well as to clarify its possible molecular mechanisms, SH-SY5Y neuronal cell lines were incubated with 6-hydroxydopamine (6-OHDA), which has been widely used as an in vitro model for PD, along with APα alone or in combination with GABAAR antagonist (bicuculline, Bic), intracellular Ca2+ chelator (EGTA) and voltage-gated L-type Ca2+ channel blocker (Nifedipine). The viability, proliferation, and differentiation of SH-SY5Y cells, the expression levels of calmodulin (CaM), Ca2+/calmodulin-dependent protein kinase II δ3 (CaMKIIδ3), cyclin-dependent kinase-1 (CDK1) and brain-derived neurotrophic factor (BDNF), as well as the interaction between CaMKIIδ3 and CDK1 or BDNF, were detected by morphological and molecular biological methodology. Our results found that the cell viability and the number of tyrosine hydroxylase (TH), bromodeoxyuridine (BrdU) and TH/BrdU-positive cells in 6-OHDA-treated SH-SY5Y cells were significantly decreased with the concomitant reduction in the expression levels of aforementioned proteins, which were ameliorated following APα administration. In addition, Bic could further increase the number of TH or BrdU-positive cells as well as the expression levels of aforementioned proteins except for TH/BrdU-double positive cells, while EGTA and Nifedipine could attenuate the expression levels of CaM, CaMKIIδ3 and BDNF. Moreover, there existed a direct interaction between CaMKIIδ3 and CDK1 or BDNF. As a result, APα-induced an increase in the number of TH-positive SH-SY5Y cells might be mediated through GABAAR via Ca2+/CaM/CaMKIIδ3/BDNF (CDK1) signaling pathway, which would ultimately facilitate to elucidate PD pathogenesis and hold a promise as an alternative therapeutic target for PD.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Ye
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Bian
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhichi Chen
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juanjuan Du
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huairui Cui
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qiang Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuangshuang Qi
- Department of Pharmacy, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyou Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Jourdain P, Boss D, Rappaz B, Moratal C, Hernandez MC, Depeursinge C, Magistretti PJ, Marquet P. Simultaneous optical recording in multiple cells by digital holographic microscopy of chloride current associated to activation of the ligand-gated chloride channel GABA(A) receptor. PLoS One 2012; 7:e51041. [PMID: 23236427 PMCID: PMC3517575 DOI: 10.1371/journal.pone.0051041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022] Open
Abstract
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Collapse
Affiliation(s)
- Pascal Jourdain
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel Boss
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benjamin Rappaz
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Corinne Moratal
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Christian Depeursinge
- Institute of Applied Optics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pierre Julius Magistretti
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience Department, Lausanne University Hospital, Prilly, Switzerland
| | - Pierre Marquet
- Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Psychiatric Neuroscience Department, Lausanne University Hospital, Prilly, Switzerland
| |
Collapse
|