1
|
Darban YM, Askari H, Ghasemi-Kasman M, Yavarpour-Bali H, Dehpanah A, Gholizade P, Nosratiyan N. The Role of Induced Pluripotent Stem Cells in the Treatment of Stroke. Curr Neuropharmacol 2024; 22:2368-2383. [PMID: 39403058 PMCID: PMC11451314 DOI: 10.2174/1570159x22666240603084558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 10/19/2024] Open
Abstract
Stroke is a neurological disorder with high disability and mortality rates. Almost 80% of stroke cases are ischemic stroke, and the remaining are hemorrhagic stroke. The only approved treatment for ischemic stroke is thrombolysis and/or thrombectomy. However, these treatments cannot sufficiently relieve the disease outcome, and many patients remain disabled even after effective thrombolysis. Therefore, rehabilitative therapies are necessary to induce remodeling in the brain. Currently, stem cell transplantation, especially via the use of induced pluripotent stem cells (iPSCs), is considered a promising alternative therapy for stimulating neurogenesis and brain remodeling. iPSCs are generated from somatic cells by specific transcription factors. The biological functions of iPSCs are similar to those of embryonic stem cells (ESCs), including immunomodulation, reduced cerebral blood flow, cerebral edema, and autophagy. Although iPSC therapy plays a promising role in both hemorrhagic and ischemic stroke, its application is associated with certain limitations. Tumor formation, immune rejection, stem cell survival, and migration are some concerns associated with stem cell therapy. Therefore, cell-free therapy as an alternative method can overcome these limitations. This study reviews the therapeutic application of iPSCs in stroke models and the underlying mechanisms and constraints of these cells. Moreover, cell-free therapy using exosomes, apoptotic bodies, and microvesicles as alternative treatments is discussed.
Collapse
Affiliation(s)
| | - Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Amirabbas Dehpanah
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Parnia Gholizade
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nasrin Nosratiyan
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Bechinger P, Serrano Sponton L, Grützner V, Musyanovych A, Jussen D, Krenzlin H, Eldahaby D, Riede N, Kempski O, Ringel F, Alessandri B. In-vivo time course of organ uptake and blood-brain-barrier permeation of poly(L-lactide) and poly(perfluorodecyl acrylate) nanoparticles with different surface properties in unharmed and brain-traumatized rats. Front Neurol 2023; 14:994877. [PMID: 36814997 PMCID: PMC9939480 DOI: 10.3389/fneur.2023.994877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Background Traumatic brain injury (TBI) has a dramatic impact on mortality and quality of life and the development of effective treatment strategies is of great socio-economic relevance. A growing interest exists in using polymeric nanoparticles (NPs) as carriers across the blood-brain barrier (BBB) for potentially effective drugs in TBI. However, the effect of NP material and type of surfactant on their distribution within organs, the amount of the administrated dose that reaches the brain parenchyma in areas with intact and opened BBB after trauma, and a possible elicited inflammatory response are still to be clarified. Methods The organ distribution, BBB permeation and eventual inflammatory activation of polysorbate-80 (Tw80) and sodiumdodecylsulfate (SDS) stabilized poly(L-lactide) (PLLA) and poly(perfluorodecyl acrylate) (PFDL) nanoparticles were evaluated in rats after intravenous administration. The NP uptake into the brain was assessed under intact conditions and after controlled cortical impact (CCI). Results A significantly higher NP uptake at 4 and 24 h after injection was observed in the liver and spleen, followed by the brain and kidney, with minimal concentrations in the lungs and heart for all NPs. A significant increase of NP uptake at 4 and 24 h after CCI was observed within the traumatized hemisphere, especially in the perilesional area, but NPs were still found in areas away from the injury site and the contralateral hemisphere. NPs were internalized in brain capillary endothelial cells, neurons, astrocytes, and microglia. Immunohistochemical staining against GFAP, Iba1, TNFα, and IL1β demonstrated no glial activation or neuroinflammatory changes. Conclusions Tw80 and SDS coated biodegradable PLLA and non-biodegradable PFDL NPs reach the brain parenchyma with and without compromised BBB by TBI, even though a high amount of NPs are retained in the liver and spleen. No inflammatory reaction is elicited by these NPs within 24 h after injection. Thus, these NPs could be considered as potentially effective carriers or markers of newly developed drugs with low or even no BBB permeation.
Collapse
Affiliation(s)
- Patrick Bechinger
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Anesthesiology, Helios Dr. Horst Schmidt Clinic, Wiesbaden, Germany
| | - Lucas Serrano Sponton
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,Department of Neurosurgery, Sana Clinic Offenbach, Offenbach, Germany,*Correspondence: Lucas Serrano Sponton ✉
| | - Verena Grützner
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Anna Musyanovych
- Fraunhofer Institute for Microengineering and Microsystems, Mainz, Germany
| | - Daniel Jussen
- Department of Neurosurgery, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Harald Krenzlin
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Daniela Eldahaby
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany,San Paolo Medical School, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicole Riede
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Oliver Kempski
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Beat Alessandri
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
3
|
González-Nieto D, Fernández-García L, Pérez-Rigueiro J, Guinea GV, Panetsos F. Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality. Polymers (Basel) 2018; 10:polym10020184. [PMID: 30966220 PMCID: PMC6415003 DOI: 10.3390/polym10020184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/07/2023] Open
Abstract
The use of advanced biomaterials as a structural and functional support for stem cells-based therapeutic implants has boosted the development of tissue engineering applications in multiple clinical fields. In relation to neurological disorders, we are still far from the clinical reality of restoring normal brain function in neurodegenerative diseases and cerebrovascular disorders. Hydrogel polymers show unique mechanical stiffness properties in the range of living soft tissues such as nervous tissue. Furthermore, the use of these polymers drastically enhances the engraftment of stem cells as well as their capacity to produce and deliver neuroprotective and neuroregenerative factors in the host tissue. Along this article, we review past and current trends in experimental and translational research to understand the opportunities, benefits, and types of tentative hydrogel-based applications for the treatment of cerebral disorders. Although the use of hydrogels for brain disorders has been restricted to the experimental area, the current level of knowledge anticipates an intense development of this field to reach clinics in forthcoming years.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
| | - Laura Fernández-García
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid 28040 Madrid, Spain.
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid 28040 Madrid, Spain.
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos Madrid, IdISSC, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Madhusudanan P, Reade S, Shankarappa SA. Neuroglia as targets for drug delivery systems: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:667-679. [DOI: 10.1016/j.nano.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
5
|
Hänggi D, Etminan N, Macdonald RL, Steiger HJ, Mayer SA, Aldrich F, Diringer MN, Hoh BL, Mocco J, Strange P, Faleck HJ, Miller M. NEWTON: Nimodipine Microparticles to Enhance Recovery While Reducing Toxicity After Subarachnoid Hemorrhage. Neurocrit Care 2016; 23:274-84. [PMID: 25678453 DOI: 10.1007/s12028-015-0112-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is associated with high morbidity and mortality. EG-1962 is a sustained-release microparticle formulation of nimodipine that has shown preclinical efficacy when administered intraventricularly or intracisternally to dogs with SAH, without evidence of toxicity at doses in the anticipated therapeutic range. Thus, we propose to administer EG-1962 to humans in order to assess safety and tolerability and determine a dose to investigate efficacy in subsequent clinical studies. METHODS We describe a Phase 1/2a multicenter, controlled, randomized, open-label, dose escalation study to determine the maximum tolerated dose (MTD) and assess the safety and tolerability of EG-1962 in patients with aSAH. The study will comprise two parts: a dose escalation period (Part 1) to determine the MTD of EG-1962 and a treatment period (Part 2) to assess the safety and tolerability of the selected dose of EG-1962. Patients with a ruptured saccular aneurysm treated by neurosurgical clipping or endovascular coiling will be considered for enrollment. Patients will be randomized to receive either EG-1962 (study drug: nimodipine microparticles) or oral nimodipine in the approved dose regimen (active control) within 60 h of aSAH. RESULTS Primary objectives are to determine the MTD and the safety and tolerability of the selected dose of intraventricular EG-1962 as compared to enteral nimodipine. The secondary objective is to determine release and distribution by measuring plasma and CSF concentrations of nimodipine. Exploratory objectives are to determine the incidence of delayed cerebral infarction on computed tomography, clinical features of delayed cerebral ischemia, angiographic vasospasm, and incidence of rescue therapy and clinical outcome. Clinical outcome will be determined at 90 days after aSAH using the extended Glasgow outcome scale, modified Rankin scale, Montreal cognitive assessment, telephone interview of cognitive status, and Barthel index. CONCLUSION Here, we describe a Phase 1/2a multicenter, controlled, randomized, open-label, dose escalation study to determine the MTD and assess the safety and tolerability of EG-1962 in patients with aSAH.
Collapse
Affiliation(s)
- Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstraße 5, 40225, Düsseldorf, Germany,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Memanishvili T, Kupatadze N, Tugushi D, Katsarava R, Wattananit S, Hara N, Tornero D, Kokaia Z. Generation of cortical neurons from human induced-pluripotent stem cells by biodegradable polymeric microspheres loaded with priming factors. Biomed Mater 2016; 11:025011. [DOI: 10.1088/1748-6041/11/2/025011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Etminan N, Macdonald RL, Davis C, Burton K, Steiger HJ, Hänggi D. Intrathecal application of the nimodipine slow-release microparticle system eg-1962 for prevention of delayed cerebral ischemia and improvement of outcome after aneurysmal subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:281-6. [PMID: 25366637 DOI: 10.1007/978-3-319-04981-6_47] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effective reduction of delayed cerebral ischemia (DCI), a main contributor for poor outcome following aneurysmal subarachnoid hemorrhage (SAH), remains challenging. Previous clinical trials on systemic pharmaceutical treatment of SAH mostly failed to improve outcome, probably because of insensitive pharmaceutical targets and outcome measures, small sample size, insufficient subarachnoid drug concentrations and also detrimental, systemic effects of the experimental treatment per se. Interestingly, in studies that are more recent, intrathecal administration of nicardipine pellets following surgical aneurysm repair was suggested to have a beneficial effect on DCI and neurological outcome. However, this positive effect remained restricted to patients who were treated surgically for a ruptured aneurysm. Because of the favorable results of the preclinical data on DCI and neurological outcome in the absence of neurotoxicity or systemic side effects, we are initiating clinical trials. The PROMISE (Prolonged Release nimOdipine MIcro particles after Subarachnoid hemorrhage) trial is designed as an unblinded, nonrandomized, single-center, single-dose, dose-escalation safety and tolerability phase 1 study in patients surgically treated for aSAH and will investigate the effect of intracisternal EG-1962 administration. The NEWTON (Nimodipine microparticles to Enhance recovery While reducing TOxicity after subarachNoid hemorrhage) trial is a phase 1/2a multicenter, controlled, randomized, open-label, dose-escalation, safety, tolerability, and pharmacokinetic study comparing EG-1962 and nimodipine in patients with aneurysmal SAH.
Collapse
Affiliation(s)
- Nima Etminan
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstr.5, 40225, Düsseldorf, Germany,
| | | | | | | | | | | |
Collapse
|
8
|
Elliott Donaghue I, Tam R, Sefton MV, Shoichet MS. Cell and biomolecule delivery for tissue repair and regeneration in the central nervous system. J Control Release 2014; 190:219-27. [DOI: 10.1016/j.jconrel.2014.05.040] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 11/25/2022]
|
9
|
Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Improvements in biomaterial matrices for neural precursor cell transplantation. MOLECULAR AND CELLULAR THERAPIES 2014; 2:19. [PMID: 26056586 PMCID: PMC4452047 DOI: 10.1186/2052-8426-2-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/05/2014] [Indexed: 12/24/2022]
Abstract
Progress is being made in developing neuroprotective strategies for traumatic brain injuries; however, there will never be a therapy that will fully preserve neurons that are injured from moderate to severe head injuries. Therefore, to restore neurological function, regenerative strategies will be required. Given the limited regenerative capacity of the resident neural precursors of the CNS, many investigators have evaluated the regenerative potential of transplanted precursors. Unfortunately, these precursors do not thrive when engrafted without a biomaterial scaffold. In this article we review the types of natural and synthetic materials that are being used in brain tissue engineering applications for traumatic brain injury and stroke. We also analyze modifications of the scaffolds including immobilizing drugs, growth factors and extracellular matrix molecules to improve CNS regeneration and functional recovery. We conclude with a discussion of some of the challenges that remain to be solved towards repairing and regenerating the brain.
Collapse
Affiliation(s)
- Nolan B Skop
- Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA ; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Frances Calderon
- Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA
| | - Cheul H Cho
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Chirag D Gandhi
- Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA ; Department of Neurological Surgery, Rutgers University-New Jersey Medical School, New Jersey Medical School, Newark, NJ 07103 USA
| | - Steven W Levison
- Department of Neurology & Neurosciences, Rutgers University-New Jersey Medical School, NJMS-Cancer Center, H-1226, 205 South Orange Ave., Newark, NJ 07103 USA
| |
Collapse
|
10
|
Combination of Chondroitinase ABC, Glial Cell Line–Derived Neurotrophic Factor and Nogo A Antibody Delayed-Release Microspheres Promotes the Functional Recovery of Spinal Cord Injury. J Craniofac Surg 2013; 24:2153-7. [DOI: 10.1097/01.scs.0000436700.65891.3b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. J Tissue Eng Regen Med 2013; 10:E419-E432. [DOI: 10.1002/term.1832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/12/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Nolan B. Skop
- Department of Neurology and Neurosciences; Rutgers-New Jersey Medical School; Newark NJ USA
- Department of Neurological Surgery; Rutgers-New Jersey Medical School; Newark NJ USA
| | - Frances Calderon
- Department of Neurology and Neurosciences; Rutgers-New Jersey Medical School; Newark NJ USA
| | - Cheul H. Cho
- Department of Biomedical Engineering; New Jersey Institute of Technology; Newark NJ USA
| | - Chirag D. Gandhi
- Department of Neurological Surgery; Rutgers-New Jersey Medical School; Newark NJ USA
| | - Steven W. Levison
- Department of Neurology and Neurosciences; Rutgers-New Jersey Medical School; Newark NJ USA
| |
Collapse
|
12
|
Dai H, Navath RS, Balakrishnan B, Guru BR, Mishra MK, Romero R, Kannan RM, Kannan S. Intrinsic targeting of inflammatory cells in the brain by polyamidoamine dendrimers upon subarachnoid administration. Nanomedicine (Lond) 2011; 5:1317-29. [PMID: 21128716 DOI: 10.2217/nnm.10.89] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Understanding the interactions between nanomaterials and disease processes is crucial for designing effective therapeutic approaches. This article explores the unusual neuroinflammation targeting of dendrimers (with no targeting ligands) in the brain, with significant consequences for nanoscale materials in medicine. METHOD The in vivo biodistribution of fluorescent-labeled neutral generation-4- polyamidoamine dendrimers (∼4 nm) in a rabbit model of cerebral palsy was explored following subarachnoid administration. RESULTS These dendrimers, with no targeting ligands, were localizing in activated microglia and astrocytes (cells responsible for neuroinflammation), even in regions far moved from the site of injection, in newborn rabbits with maternal inflammation-induced cerebral palsy. CONCLUSION This intrinsic ability of dendrimers to localize inactivated microglia and astrocytes can enable targeted delivery of therapeutics in disorders such as cerebral palsy, Alzheimer's and multiple sclerosis.
Collapse
Affiliation(s)
- Hui Dai
- Department of Pediatrics (Critical Care Medicine), Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The delivery of drugs to the CNS is hampered by the existence of the blood–brain barrier (BBB). Nowadays, medicinal chemists follow defined rules for the development of drugs able to cross the BBB. At the same time, the parameters needed in order to gain valuable estimates of brain drug delivery are well defined. Despite the limits in molecular weight that allow drugs to cross the BBB, it was shown that nanotech products, in particular properly functionalized nanoparticles, spherical particles of approximately 200 nm in diameter, are able to cross the BBB after intravenous administration and act as drug carriers for CNS. Moreover, peptides as ligands for receptors present on the brain endothelium, or able to cross the BBB and to act as carriers for CNS drug delivery in the form of conjugates with drugs, have been discovered and started to be studied as targeting moieties for nanoparticulate systems. This article will discuss the results obtained so far in the field of nanoparticle drug carriers for CNS and highlight the parameters needed in order to fully characterize these hitherto largely unknown delivery systems. Even if promising results have been obtained, more studies are needed in order to fully evaluate the clinical potential of this drug-delivery system.
Collapse
|
14
|
Colloidal systems for CNS drug delivery. NANONEUROSCIENCE AND NANONEUROPHARMACOLOGY 2009; 180:35-69. [DOI: 10.1016/s0079-6123(08)80003-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
de Guzman RC, VandeVord PJ. Variations in astrocyte and fibroblast response due to biomaterial particulates in vitro. J Biomed Mater Res A 2008; 85:14-24. [PMID: 17668862 DOI: 10.1002/jbm.a.31516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The possible involvement of orthopedic biomaterial particles such as cobalt-chrome alloy (Co-Cr), ultrahigh molecular weight polyethylene (UHMWPE), titanium alloy (Ti-6Al-4V), and polymethyl methacrylate (PMMA) in the formation of glial and meningeal scars was investigated using an in vitro system. Cell lines were used as models for astrocytes and meningeal fibroblasts. They were incubated with varying concentrations of particle suspensions, after which proliferative and cytotoxic responses were quantified using MTT assay and Live/Dead microscopy. It was determined that relative particulate toxicity (arranged in decreasing order) to astrocytes is Co-Cr > Ti-6Al-4V > PMMA > UHMWPE, and toxicity to fibroblasts is PMMA > Co-Cr > Ti-6Al-4V > UHMWPE. Cell death caused by PMMA was mainly due to necrosis, while the rest of the particles induced apoptosis. Low quantities of Co-Cr and Ti-6Al-4V stimulate increased astrocyte proliferation rate. However, only the cells treated with titanium alloy caused upregulated transcription of reactive astrocyte markers such as glial fibrillary acidic protein, vimentin, nestin, and type IV collagen, suggesting the potential of titanium alloy alone to trigger glial scarring. None of the biomaterials tested promoted proliferation in fibroblasts implying that biomaterial particles are not directly involved in meningeal scar development.
Collapse
Affiliation(s)
- Roche C de Guzman
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48202, USA.
| | | |
Collapse
|
16
|
Tan EYM, Law JWS, Wang CH, Lee AYW. Development of a cell transducible RhoA inhibitor TAT-C3 transferase and its encapsulation in biocompatible microspheres to promote survival and enhance regeneration of severed neurons. Pharm Res 2007; 24:2297-308. [PMID: 17899323 DOI: 10.1007/s11095-007-9454-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 09/05/2007] [Indexed: 11/28/2022]
Abstract
PURPOSE Neurons in post-traumatized mammalian central nervous system show only limited degree of regeneration, which can be attributed to the presence of neurite outgrowth inhibitors in damaged myelin and glial scar, and to the apoptosis of severed central neurons and glial cells during secondary Wallerian degeneration. RhoA GTPase has been implicated as the common denominator in these counter-regeneration events, which shows significant and persistent up-regulation for weeks in injured spinal cord and cerebral infarct after stroke. While the exoenzyme C3 transferase is a potent RhoA inhibitor, its extremely low efficiency of cell entry and degradation in vivo has restricted the therapeutic value. This study aims to circumvent these problems by developing a membrane-permeating form of C3 transferase and a biopolymer-based microsphere depot system for sustainable controlled release of the protein. MATERIALS AND METHODS A membrane-permeating form of C3 transferase was developed by fusing a Tat (trans-activating transcription factor) transduction domain of human immunodeficiency virus to its amino terminal using standard molecular cloning techniques. After confirming efficient cell entry into epithelial and neuroblastoma cells, the resulting recombinant protein TAT-C3 was encapsulated in biocompatible polymer poly(D,L -lactide-co-glycolide) in the form of microspheres by a water-in-oil-in-water (W/O/W) emulsion method. By blending capped and uncapped form of the polymer at different ratios, TAT-C3 protein release profile was modified to suit the expression pattern of endogenous RhoA during CNS injuries. Bioactivity of TAT-C3 released from microspheres was assessed by RhoA ribosylation assay. RESULTS In contrast to wild-type C3 transferase, the modified TAT-C3 protein was found to efficiently enter NIH3T3 and N1E-115 neuroblastoma cells as early as 6 hours of incubation. The fusion of TAT sequence to C3 transferase imposed no appreciable effects on its biological activity in promoting neurite outgrowth through RhoA inhibition. Characterization of TAT-C3 encapsulation in various blends of capped/uncapped PLGA polymer revealed the 30:70 formulation to be optimal in attaining a mild initial burst release of 25%, followed by a subsequent average daily release of 2.3% of encapsulated protein over one month, matching the change in RhoA level in severed brain and spinal cord. Importantly, TAT-C3 released from the microspheres remained active up to the first three weeks of incubation. CONCLUSION Enhanced cell entry of TAT-C3 circumvents the need to administer high dose of the protein to site of injury. The encapsulation of TAT-C3 in different blends of capped/uncapped PLGA microspheres allows adjustment of protein release profile to suit the pattern of RhoA expression in injured CNS.
Collapse
Affiliation(s)
- Elaine Y M Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD9, 2 Medical Drive, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
17
|
Wang H, Hu Y, Sun W, Xie C. Polylactic acid nanoparticles targeted to brain microvascular endothelial cells. ACTA ACUST UNITED AC 2006; 25:642-4. [PMID: 16696313 DOI: 10.1007/bf02896158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, blank polylactic acid (PLA) nanoparticles with unstained surface were prepared by the nano-deposition method. On the basis of the preparation, the effect of surface modification on brain microvascular endothelial cells (BMECs) targeting was examined by in vivo experiments and fluorescence microscopy. The results showed that PLA nanoparticles are less toxic than PACA nanoparticles but their BMECs targeting is similar to PACA nanoparticles. The experiments suggest that drugs can be loaded onto the particles and become more stable through adsorption on the surface of PLA nanoparticles with high surface activity. The surface of PLA nanoparticles was obviously modified and the hydrophilicity was increased as well in the presence of non-ionic surfactants on PLA nanoparticles. As a targeting moiety, polysobate 80 (T-80) can facilitate BMECs targeting of PLA nanoparticles.
Collapse
Affiliation(s)
- Huafang Wang
- Institute of Hematology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | |
Collapse
|
18
|
Popovic N, Brundin P. Therapeutic potential of controlled drug delivery systems in neurodegenerative diseases. Int J Pharm 2006; 314:120-6. [PMID: 16529886 DOI: 10.1016/j.ijpharm.2005.09.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/09/2005] [Indexed: 12/28/2022]
Abstract
Several compounds that exhibit a therapeutic effect in experimental models of neurodegenerative diseases have been identified over recent years. Safe and effective drug delivery to the central nervous system is still one of the main obstacles in translating these experimental strategies into clinical therapies. Different approaches have been developed to enable drug delivery in close proximity to the desired site of action. In this review, we describe biodegradable polymeric systems as drug carriers in models of neurodegenerative diseases. Biomaterials described for intracerebral drug delivery are well tolerated by the host tissue and do not exhibit cytotoxic, immunologic, carcinogenic or teratogenic effects even after chronic exposure. Behavioral improvement and normalization of brain morphology have been observed following treatment using such biomaterials in animal models of Parkinson's, Alzheimer's and Huntington's diseases. Application of these devices for neuroactive drugs is still restricted due to the relatively small volume of tissue exposed to active compound. Further development of polymeric drug delivery systems will require that larger volumes of brain tissue are targeted, with a controlled and sustained drug release that is carefully controlled so it does not cause damage to the surrounding tissue.
Collapse
Affiliation(s)
- N Popovic
- Neuronal Survival Unit, Department of Experimental Medical Science, BMC A10, 22 184 Lund, Sweden.
| | | |
Collapse
|
19
|
Menei P, Montero-Menei C, Venier MC, Benoit JP. Drug delivery into the brain using poly(lactide-co-glycolide) microspheres. Expert Opin Drug Deliv 2005; 2:363-76. [PMID: 16296760 DOI: 10.1517/17425247.2.2.363] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Among the strategies developed for drug delivery into the CNS, locally controlled drug release by the way of an implantable polymeric device has been developed in recent years. The first polymeric devices developed were macroscopic implants needing open surgery for implantation. Over the last few years, poly(lactide-co-glycolide) microspheres have been shown to be safe and promising for drug delivery into the brain. Poly(lactide-co-glycolide) is biodegradable and biocompatible with brain tissue. Due to their size, these microspheres can be easily implanted by stereotaxy in discrete, precise and functional areas of the brain without causing damage to the surrounding -tissue. Brain tumour treatments have been developed using this approach and clinical trials have been performed. Potential applications in neurodegenerative diseases have also been explored, particularly neurotrophic factor delivery and cell therapy.
Collapse
Affiliation(s)
- Philippe Menei
- Centre Hospitalo-Universitaire, Departement de Neurochirurgie, Angers, France.
| | | | | | | |
Collapse
|
20
|
Sun W, Xie C, Wang H, Hu Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 2004; 25:3065-71. [PMID: 14967540 DOI: 10.1016/j.biomaterials.2003.09.087] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 09/22/2003] [Indexed: 10/26/2022]
Abstract
It was reported that nanoparticles with polysorbate 80 (Tween 80, T-80) coating represented tools used for delivering drugs to brain. Nevertheless, disputations were once aroused for some complications. Aimed to have a better understanding of the specific role of T-80 coating on nanoparticles and simplify the problem, the direct observation of brain targeting combined with in vivo experiments was carried out in this work using the model nanoparticles (MNPs). The presence of a complex composed by the model loading, T-80 and nanoparticles was found in the preparation of MNPs. The result was further supported by some surface properties of MNPs. Being bound to nanoparticles that were overcoated by T-80 later, was necessary for the loading to be delivered to brain. Partial coverage was enough for T-80 coating to play a specific role in brain targeting. It seemed that brain targeting of nanoparticles was concerned with the interaction between T-80 coating and brain micro-vessel endothelial cells. Therefore, the specific role of T-80 coating on nanoparticles in brain targeting was confirmed.
Collapse
Affiliation(s)
- Wangqiang Sun
- Nano Pharmaceutical Research Center and Department of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan , Hubei 430022, China
| | | | | | | |
Collapse
|
21
|
Fournier E, Passirani C, Montero-Menei CN, Benoit JP. Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility. Biomaterials 2003; 24:3311-31. [PMID: 12763459 DOI: 10.1016/s0142-9612(03)00161-3] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous polymeric biomaterials are implanted each year in human bodies. Among them, drug delivery devices are potent novel powerful therapeutics for diseases which lack efficient treatments. Controlled release systems are in direct and sustained contact with the tissues, and some of them degrade in situ. Thus, both the material itself and its degradation products must be devoid of toxicity. The knowledge and understanding of the criteria and mechanisms determining the biocompatibility of biomaterials are therefore of great importance. The classical tissue response to a foreign material leads to the encapsulation of the implant, which may impair the drug diffusion in the surrounding tissue and/or cause implant failure. This tissue response depends on different factors, especially on the implantation site. Indeed, several organs possess a particular immunological status, which may reduce the inflammatory and immune reactions. Among them, the central nervous system is of particular interest, since many pathologies still need curative treatments. This review describes the classical foreign body reaction and exposes the particularities of the central nervous system response. The recent in vivo biocompatibility studies of implanted synthetic polymeric drug carriers are summarized in order to illustrate the behavior of different classes of polymers and the methodologies used to evaluate their tolerance.
Collapse
Affiliation(s)
- E Fournier
- Inserm ERIT-M 0104, Ingénierie de la Vectorisation Particulaire, 10, rue André Bocquel, 49100 Angers, France
| | | | | | | |
Collapse
|
22
|
Literature Alerts. J Microencapsul 2003. [DOI: 10.3109/02652040309178054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|