1
|
Jeffrey-Gauthier R, Josset N, Bretzner F, Leblond H. Facilitation of Locomotor Spinal Networks Activity by Buspirone after a Complete Spinal Cord Lesion in Mice. J Neurotrauma 2018; 35:2208-2221. [DOI: 10.1089/neu.2017.5476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Renaud Jeffrey-Gauthier
- Department of Anatomy, Université du Québec à Trois-Rivières (UQTR), Québec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières (UQTR), Québec, Canada
| | | | - Frédéric Bretzner
- CHU de Québec-Université Laval, Québec, Canada
- Faculty of Medicine, Department of Psychiatry and Neurosciences, Université Laval, Québec, Canada
| | - Hugues Leblond
- Department of Anatomy, Université du Québec à Trois-Rivières (UQTR), Québec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières (UQTR), Québec, Canada
| |
Collapse
|
2
|
Chopek JW, MacDonell CW, Power KE, Gardiner K, Gardiner PF. Removal of supraspinal input reveals a difference in the flexor and extensor monosynaptic reflex response to quipazine independent of motoneuron excitation. J Neurophysiol 2013; 109:2056-63. [DOI: 10.1152/jn.00405.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The purpose of this study was to determine if quipazine, a serotonergic agonist, differentially modulates flexor and extensor motor output. This was achieved by examining the monosynaptic reflex (MSR) of the tibial (extensor) and peroneal (flexor) nerves, by determining the basic and rhythmic properties of extensor and flexor motoneurons, and by recording extracellular Ia field potentials of the tibial and peroneal nerves in the in vivo adult decerebrate rat in both spinal intact and acute spinalized preparations. In the spinal intact preparation, the tibial and peroneal MSR amplitude significantly increased compared with baseline in response to quipazine, with no difference between nerves ( P < 0.05). In the spinalized preparation, the MSR was significantly increased in both the tibial and peroneal nerves with the latter increasing more than the former (5.7 vs. 3.6 times; P < 0.05). Intracellular motoneuron experiments demonstrated that rheobase decreased, while input resistance, afterhyperpolarization amplitude, and the firing rate at a given current injection increased in motoneurons following quipazine administration with no differences between extensor and flexor motoneurons. Both the tibial and peroneal nerve extracellular Ia field potentials increased with the peroneal demonstrating a significantly greater increase (7 vs. 38%; P < 0.05) following quipazine. It is concluded that in the spinal intact preparation quipazine does not have a differential effect on flexor or extensor motor output. However, in the acute spinalized preparation, quipazine preferentially affects the flexor MSR compared with the extensor MSR, likely due to the removal of a descending tonic inhibition on flexor Ia afferents.
Collapse
Affiliation(s)
- Jeremy W. Chopek
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher W. MacDonell
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin E. Power
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kalan Gardiner
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Phillip F. Gardiner
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Scullion K, Boychuk JA, Yamakawa GR, Rodych JTG, Nakanishi ST, Seto A, Smith VM, McCarthy RW, Whelan PJ, Antle MC, Pittman QJ, Teskey GC. Serotonin 1A receptors alter expression of movement representations. J Neurosci 2013; 33:4988-99. [PMID: 23486969 PMCID: PMC6619014 DOI: 10.1523/jneurosci.4241-12.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/14/2012] [Accepted: 02/01/2013] [Indexed: 11/21/2022] Open
Abstract
Serotonin has a myriad of central functions involving mood, appetite, sleep, and memory and while its release within the spinal cord is particularly important for generating movement, the corresponding role on cortical movement representations (motor maps) is unknown. Using adult rats we determined that pharmacological depletion of serotonin (5-HT) via intracerebroventricular administration of 5,7 dihydroxytryptamine resulted in altered movements of the forelimb in a skilled reaching task as well as higher movement thresholds and smaller maps derived using high-resolution intracortical microstimulation (ICMS). We ruled out the possibility that reduced spinal cord excitability could account for the serotonin depletion-induced changes as we observed an enhanced Hoffman reflex (H-reflex), indicating a hyperexcitable spinal cord. Motor maps derived in 5-HT1A receptor knock-out mice also showed higher movement thresholds and smaller maps compared with wild-type controls. Direct cortical application of the 5-HT1A/7 agonist 8-OH-DPAT lowered movement thresholds in vivo and increased map size in 5-HT-depleted rats. In rats, electrical stimulation of the dorsal raphe lowered movement thresholds and this effect could be blocked by direct cortical application of the 5-HT1A antagonist WAY-100135, indicating that serotonin is primarily acting through the 5-HT1A receptor. Next we developed a novel in vitro ICMS preparation that allowed us to track layer V pyramidal cell excitability. Bath application of WAY-100135 raised the ICMS current intensity to induce action potential firing whereas the agonist 8-OH-DPAT had the opposite effect. Together our results demonstrate that serotonin, acting through 5-HT1A receptors, plays an excitatory role in forelimb motor map expression.
Collapse
Affiliation(s)
- Kathleen Scullion
- Hotchkiss Brain Institute, Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Endogenously released 5-HT inhibits A and C fiber-evoked synaptic transmission in the rat spinal cord by the facilitation of GABA/glycine and 5-HT release via 5-HT(2A) and 5-HT(3) receptors. Eur J Pharmacol 2013; 702:149-57. [PMID: 23399761 DOI: 10.1016/j.ejphar.2013.01.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/08/2013] [Accepted: 01/16/2013] [Indexed: 01/06/2023]
Abstract
Serotonin (5-HT) released from descending fibers plays important roles in spinal functions such as locomotion and nociception. 5-HT2A and 5-HT3 receptors are suggested to contribute to spinal antinociception, although their activation also contributes to neuronal excitation. In the neonatal spinal cord, DL-p-chloroamphetamine (pCA), a 5-HT releaser, inhibited both A fiber-evoked monosynaptic reflex potential (MSR) and C fiber-evoked slow ventral root potential (sVRP). The pCA-mediated inhibition was reversed by ketanserin (a 5-HT2A receptor antagonist) and tropisetron (a 5-HT3 receptor antagonist). Bath-applied 5-HT also inhibited MSR and sVRP; in this case, the actions of 5-HT were antagonized by ketanserin, but not by tropisetron. The pCA-evoked inhibition of sVRP was reduced by bicuculline (a GABAA receptor antagonist) and strychnine (a glycine receptor antagonist). Furthermore, ketanserin inhibited the pCA-evoked release of gamma-aminobutyric acid (GABA) and glycine, while tropisetron inhibited the pCA-evoked release of 5-HT. These results suggest that 5-HT released by pCA activates 5-HT2A receptors, which in turn stimulates the release of GABA/glycine and thereby blocks the spinal nociceptive pathway. 5-HT3 receptors may be involved in the facilitation of 5-HT release via a positive feedback process.
Collapse
|
5
|
Lindström E, Ravnefjord A, Brusberg M, Hjorth S, Larsson H, Martinez V. The Selective 5-Hydroxytryptamine 1A Antagonist, AZD7371 [3(R)-(N,N-Dicyclobutylamino)-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide (R,R)-tartrate Monohydrate] (Robalzotan Tartrate Monohydrate), Inhibits Visceral Pain-Related Visceromotor, but Not Autonomic Cardiovascular, Responses to Colorectal Distension in Rats. J Pharmacol Exp Ther 2009; 329:1048-55. [DOI: 10.1124/jpet.109.152330] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
6
|
Roza C, Lopez-Garcia JA. Retigabine, the specific KCNQ channel opener, blocks ectopic discharges in axotomized sensory fibres. Pain 2008; 138:537-545. [PMID: 18331780 DOI: 10.1016/j.pain.2008.01.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/25/2008] [Accepted: 01/28/2008] [Indexed: 01/11/2023]
Abstract
The M-current has been proposed as a potential target for analgesia under neuropathic pain conditions. M-currents and/or their molecular correlates, KCNQ proteins, have been demonstrated in key elements of the nociceptive system including spinal and dorsal root ganglion neurons. Here we demonstrate that retigabine, a selective KCNQ channel opener, applied at neuromatose endings modulates the excitability of axotomized fibres inhibiting ectopic discharges. Responses to mechanical and chemical stimulation were obtained from intact and previously axotomized Adelta- and C-fibres using in vitro preparations and extracellular electrophysiological recording techniques. Application of retigabine (10 microM) produced an estimated approximately 80% reduction in the number of discharges produced by mechanical and chemical stimulation of most axotomized fibres tested (24/27). The electrical threshold of stimuli applied to the neuroma was found to increase in the presence of retigabine (+17.5+/-2.3%) and to decrease in the presence of a high potassium medium (-16.5+/-3.7%). This indicates that retigabine produces a hyperpolarization and a subsequent reduction of the excitability in aberrant sensory endings. Application of XE-991 (10 microM), a KCNQ channel blocker, had no effect on responses to stimulation of the neuroma but blocked the effects of retigabine indicating a specific involvement of KCNQ channels. In contrast to the strong effects on ectopic discharges, retigabine did not change responses to stimulation recorded from intact receptors. Results indicate that KCNQ channel opening at axotomized endings may constitute a novel and selective mechanism for modulation of some neuropathic pain symptoms.
Collapse
Affiliation(s)
- Carolina Roza
- Dpto. Fisiologia, Edificio de Medicina, Campus Universitario, Universidad de Alcala, Alcala de Henares, Madrid 28871, Spain
| | | |
Collapse
|
7
|
Shay BL, Sawchuk M, Machacek DW, Hochman S. Serotonin 5-HT2 receptors induce a long-lasting facilitation of spinal reflexes independent of ionotropic receptor activity. J Neurophysiol 2005; 94:2867-77. [PMID: 16033939 PMCID: PMC2745843 DOI: 10.1152/jn.00465.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dorsal root-evoked stimulation of sensory afferents in the hemisected in vitro rat spinal cord produces reflex output, recorded on the ventral roots. Transient spinal 5-HT(2C) receptor activation induces a long-lasting facilitation of these reflexes (LLFR) by largely unknown mechanisms. Two Sprague-Dawley substrains were used to characterize network properties involved in this serotonin (5-HT) receptor-mediated reflex plasticity. Serotonin more easily produced LLFR in one substrain and a long-lasting depression of reflexes (LLDR) in the other. Interestingly, LLFR and LLDR were bidirectionally interconvertible using 5-HT(2A/2C) and 5-HT(1A) receptor agonists, respectively, regardless of substrain. LLFR was predominantly Abeta afferent fiber mediated, consistent with prominent 5-HT(2C) receptor expression in the Abeta fiber projection territories (deeper spinal laminae). Reflex facilitation involved an unmasking of polysynaptic pathways and an increased receptive field size. LLFR emerged even when reflexes were evoked three to five times/h, indicating an activity independent induction. Both the NMDA and AMPA/kainate receptor-mediated components of the reflex could be facilitated, and facilitation was dependent on 5-HT receptor activation alone, not on coincident reflex activation in the presence of 5-HT. Selective blockade of GABA(A) and/or glycine receptors also did not prevent reflex amplification and so are not required for LLFR. Indeed, a more robust response was seen after blockade of spinal inhibition, indicating that inhibitory processes serve to limit reflex amplification. Overall we demonstrate that the serotonergic system has the capacity to induce long-lasting bidirectional changes in reflex strength in a manner that is nonassociative and independent of evoked activity or activation of ionotropic excitatory and inhibitory receptors.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Amphetamines/pharmacology
- Analysis of Variance
- Animals
- Animals, Newborn
- Clozapine/pharmacology
- Dose-Response Relationship, Radiation
- Drug Interactions
- Electric Stimulation/methods
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiology
- Ganglia, Spinal/radiation effects
- Immunohistochemistry/methods
- In Vitro Techniques
- Male
- Pyrazines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Reaction Time/radiation effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Receptors, Serotonin, 5-HT2/physiology
- Reflex/drug effects
- Reflex/physiology
- Serotonin/pharmacology
- Serotonin Antagonists/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Spinal Cord/drug effects
- Spinal Cord/physiology
- Spinal Cord/radiation effects
- Time Factors
Collapse
Affiliation(s)
- Barbara L Shay
- Department of Physical Therapy, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
8
|
You HJ, Colpaert FC, Arendt-Nielsen L. The novel analgesic and high-efficacy 5-HT1A receptor agonist F 13640 inhibits nociceptive responses, wind-up, and after-discharges in spinal neurons and withdrawal reflexes. Exp Neurol 2005; 191:174-83. [PMID: 15589524 DOI: 10.1016/j.expneurol.2004.08.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 07/26/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
Evidence shows that serotonin (5-HT) is involved in the transmission of nociception in the central nervous system. Using a new electrophysiological method of simultaneous recordings in rats we examined the actions of the novel analgesic and high-efficacy 5-HT1A receptor agonist F 13640 as well as those of the opioid receptor agonist fentanyl on simultaneously evoked responses of spinal dorsal horn (DH) wide-dynamic range (WDR) neurons and spinal withdrawal reflexes. Spinal withdrawal reflexes were studied by assessing the activity of single motor units (SMUs) electromyographically (EMG). Like that of 0.02 mg/kg fentanyl, intraperitoneal injection of 0.31 mg/kg of F 13640 markedly inhibited nociceptive pinch-evoked responses as well as C-fiber-mediated late responses including wind-up of both DH WDR neurons and SMUs to suprathreshold (1.5 x T) repeated (3 Hz) electrical stimulation. Specifically, in contrast to no significant depressive effects by fentanyl on 20 Hz electrically evoked after-discharge of DH WDR neurons, the after-discharges of DH WDR neurons and SMUs were significantly inhibited by F 13640 (P < 0.05 and P < 0.001, respectively). The inhibitory effects of F 13640 and fentanyl on responses of DH WDR neurons and SMUs were reversed by the specific antagonists WAY 100635 and naloxone, respectively, further indicating that this 5-HT1A receptor-modulated anti-nociception is mu-opioid receptor independent. For the first time, 5-HT1A receptors are clearly proved to be involved in the progressive wind-up to 3-Hz frequency of electrical stimulation as well as after-discharges of sensory input of DH WDR neurons, and simultaneously recorded motor output of spinal reflexes to 20-Hz frequency of electrical stimulation; this suggests that serotonin, through 5-HT1A receptors, exerts an inhibitory role in the control of obstinate pathological pain.
Collapse
Affiliation(s)
- Hao-Jun You
- Center for Sensory-Motor Interaction, Laboratory for Experimental Pain Research Aalborg University, Aalborg 9220, Denmark
| | | | | |
Collapse
|