1
|
Yamanaka A, Kobayashi S, Matsuo Y, Matsuo R. FxRIamide regulates the oscillatory activity in the olfactory center of the terrestrial slug Limax. Peptides 2021; 141:170541. [PMID: 33775802 DOI: 10.1016/j.peptides.2021.170541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 11/17/2022]
Abstract
The terrestrial slug Limax acquires odor-aversion memory. The procerebrum is the secondary olfactory center in the brain of Limax, and functions as the locus of the memory formation and storage. The change in the local field potential oscillation in the procerebrum reflects the information processing of the learned odor. However, it is not fully understood what factors, intrinsic or extrinsic in the procerebrum, alter the oscillatory activity and how it is regulated. In the present study, we found that FxRIamide (Phe-x-Arg-Ile-NH2), which was previously identified as a myomodulatory peptide in the gastropod Fusinus ferrugineus, downregulates the oscillatory frequency of the local field potential oscillation in the procerebrum of Limax. FxRIamide peptides were encoded by two distinct transcripts, which exhibit partially overlapping expression patterns in the brain. Immunohistochemical staining revealed a scattered distribution of FxRIamide-expressing neurons in the cell mass layer of the procerebrum, in addition to the ramified innervation of FxRIamidergic neurons in the neuropile layers. Down-regulation of the oscillatory frequency of the local field potential was explained by the inhibitory effects of FxRIamide on the bursting neurons, which are the kernels of the local field potential oscillation in the procerebrum. Our study revealed the previously unidentified role of FxRIamide peptides in the network of interneurons of Limax, and these peptides may play a role in the mnemonic functions of the procerebrum.
Collapse
Affiliation(s)
- Amami Yamanaka
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Yuko Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan
| | - Ryota Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529, Japan.
| |
Collapse
|
2
|
Features of behavioral changes underlying conditioned taste aversion in the pond snail Lymnaea stagnalis. INVERTEBRATE NEUROSCIENCE 2020; 20:8. [DOI: 10.1007/s10158-020-00241-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
|
3
|
Fujisaki Y, Matsuo R. Context-Dependent Passive Avoidance Learning in the Terrestrial Slug Limax. Zoolog Sci 2019; 34:532-537. [PMID: 29219042 DOI: 10.2108/zs170071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The terrestrial slug Limax has been used as a model animal for studying the neural mechanisms underlying associative olfactory learning. The slug also innately exhibits negative phototactic behavior using its eyes. In the present study, we developed an experimental paradigm for quantification of slug's negative phototaxis behavior, and investigated whether the nature of the negative phototaxis can be modified by learning experience. The experimental set-up consists of light and dark compartments, between which the slug can move freely. During conditioning, the slug was placed in the light compartment, and an aversive stimulus (quinidine sulfate solution) was applied when it reached the dark compartment. After a single conditioning session, the time to reach the dark compartment significantly increased when it was tested following 24 hr or one week. Protein synthesis inhibition immediately following the conditioning impaired the memory retention at one week but not at 24 hr. The retrieval of the memory was context-dependent, as the time to reach the dark compartment did not significantly increase if the slug was placed on a floor with a different texture in the memory retention test. If the aversive stimulus was applied when the slug was in the light compartment, the time to reach the dark compartment did not increase after 24 hr. This is the first report demonstrating the capability of the slug to form context-dependent passive avoidance memory that can be established in a single conditioning session.
Collapse
Affiliation(s)
- Yuko Fujisaki
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Ryota Matsuo
- International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| |
Collapse
|
4
|
Matsuo Y, Yamanaka A, Matsuo R. RFamidergic neurons in the olfactory centers of the terrestrial slug Limax. ZOOLOGICAL LETTERS 2018; 4:22. [PMID: 30116553 PMCID: PMC6085721 DOI: 10.1186/s40851-018-0108-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The terrestrial slug Limax has long been used as a model for the study of olfactory information processing and odor learning. Olfactory inputs from the olfactory epithelium are processed in the tentacular ganglion and then in the procerebrum. Glutamate and acetylcholine are the major neurotransmitters used in the procerebrum. Phe-Met-Arg-Phe-NH2 (FMRFamide) has been shown to be involved in the regulation of the network activity of the procerebrum. Although there are thought to be various RFamide family peptides other than FMRFamide that are potentially recognized by anti-FMRFamide antibody in the central nervous system of mollusks, identifying the entire repertoire of RFamide peptides in Limax has yet to be achieved. METHODS In the present study, we made a comprehensive search for RFamide peptide-encoding genes from the transcriptome data of Limax, and identified 12 genes. The expression maps of these RFamide genes were constructed by in situ hybridization in the cerebral ganglia including the procerebrum, and in the superior/inferior tentacles. RESULTS Ten of 12 genes were expressed in the procerebrum, and nine of 12 genes were expressed in the tentacular ganglia. Gly-Ser-Leu-Phe-Arg-Phe-NH2 (GSLFRFamide), which is encoded by two different genes, LFRFamide1 (Leu-Phe-Arg-Phe-NH2-1) and LFRFamide2 (Leu-Phe-Arg-Phe-NH2-2), decreased the oscillatory frequency of the local field potential oscillation in the procerebrum when exogenously applied in vitro. We also found by immunohistochemistry that the neurons expressing pedal peptide send efferent projections from the procerebrum back to the tentacular ganglion. CONCLUSION Our findings suggest the involvement of a far wider variety of RFamide family peptides in the olfactory information processing in Limax than previously thought.
Collapse
Affiliation(s)
- Yuko Matsuo
- Laboratory of Neurobiology, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| | - Amami Yamanaka
- Laboratory of Neurobiology, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| | - Ryota Matsuo
- Laboratory of Neurobiology, International College of Arts and Sciences, Fukuoka Women’s University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| |
Collapse
|
5
|
Suenaga Y, Matsuo R. Length of the memory retention period depends on the extent of protein synthesis in the terrestrial slug Limax. Neurosci Lett 2016; 630:222-227. [DOI: 10.1016/j.neulet.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/01/2022]
|
6
|
Koga Y, Matsuo Y, Matsuo R. Olfactory Memory Storage and/or Retrieval Requires the Presence of the Exact Tentacle Used During Memory Acquisition in the Terrestrial SlugLimax. Zoolog Sci 2016; 33:78-82. [DOI: 10.2108/zs150128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Yamagishi M, Watanabe T, Hatakeyama D, Ito E. Effects of serotonin on the heartbeat of pond snails in a hunger state. Biophysics (Nagoya-shi) 2015; 11:1-5. [PMID: 27493507 PMCID: PMC4736785 DOI: 10.2142/biophysics.11.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/05/2014] [Indexed: 12/18/2022] Open
Abstract
Serotonin (5-hydroxytryptamine: 5-HT) is a multimodal transmitter that controls both feeding response and heartbeat in snails. However, the effects of 5-HT on the hunger state are still unknown. We therefore examined the relation among the hunger state, the heartbeat rate and the 5-HT action in food-starved snails. We found that the hunger state was significantly distinguished by the heartbeat rate in snails. The heartbeat rate was high in the food-satiated snails, whereas it was low in the food-starved snails. An increase in 5-HT concentration in the body boosted the heartbeat rate in the food-starved snails, but did not affect the rate in the food-satiated snails. These results suggest that 5-HT application may mimic the change from a starvation to a satiation state normally achieved by direct ingestion of food.
Collapse
Affiliation(s)
- Miki Yamagishi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Takayuki Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| |
Collapse
|
8
|
Conditioned avoidance responses survive contingency degradation in the garden slug, Lehmannia valentiana. Learn Behav 2014; 42:305-12. [PMID: 24946946 DOI: 10.3758/s13420-014-0147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Joint presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US) strengthen the contingency between them, whereas presentations of one stimulus without the other degrade this contingency. For example, the CS can be presented without the US either before conditioning (CS-no US and then CS-US; latent inhibition) or after conditioning (CS-US and then CS-no US; extinction). In vertebrate subjects and several invertebrate species, a time lapse usually results in a return of the conditioned response, or spontaneous recovery. However, in land mollusks, spontaneous recovery from extinction has only recently been reported, and response recovery after latent inhibition has not been reported. In two experiments, using conditioned aversion to a food odor as a measure of learning and memory retention, we observed contingency degradation via latent inhibition (Experiment 1) and extinction (Experiment 2) in the common garden slug, Lehmannia valentiana. In both situations, the contingency degradation procedure successfully attenuated conditioned responding, and delaying testing by several days resulted in recovery of the conditioned response. This suggests that the CS-US association survived the degradation manipulation and was retained over an interval of several days.
Collapse
|
9
|
Mita K, Okuta A, Okada R, Hatakeyama D, Otsuka E, Yamagishi M, Morikawa M, Naganuma Y, Fujito Y, Dyakonova V, Lukowiak K, Ito E. What are the elements of motivation for acquisition of conditioned taste aversion? Neurobiol Learn Mem 2014; 107:1-12. [DOI: 10.1016/j.nlm.2013.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/28/2022]
|
10
|
Matsuo R, Kobayashi S, Yamagishi M, Ito E. Two pairs of tentacles and a pair of procerebra: optimized functions and redundant structures in the sensory and central organs involved in olfactory learning of terrestrial pulmonates. J Exp Biol 2011; 214:879-86. [DOI: 10.1242/jeb.024562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Terrestrial pulmonates can learn olfactory-aversion tasks and retain them in their long-term memory. To elucidate the cellular mechanisms underlying learning and memory, researchers have focused on both the peripheral and central components of olfaction: two pairs of tentacles (the superior and inferior tentacles) and a pair of procerebra, respectively. Data from tentacle-amputation experiments showed that either pair of tentacles is sufficient for olfactory learning. Results of procerebrum lesion experiments showed that the procerebra are necessary for olfactory learning but that either one of the two procerebra, rather than both, is used for each olfactory learning event. Together, these data suggest that there is a redundancy in the structures of terrestrial pulmonates necessary for olfactory learning. In our commentary we exemplify and discuss functional optimization and structural redundancy in the sensory and central organs involved in olfactory learning and memory in terrestrial pulmonates.
Collapse
Affiliation(s)
- Ryota Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193, Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193, Japan
| | - Miki Yamagishi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193, Japan
| |
Collapse
|
11
|
Matsuo R, Kobayashi S, Tanaka Y, Ito E. Effects of tentacle amputation and regeneration on the morphology and activity of the olfactory center of the terrestrial slug Limax valentianus. J Exp Biol 2010; 213:3144-9. [DOI: 10.1242/jeb.046938] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The tentacles of pulmonates regenerate spontaneously following amputation. The regenerated tentacle is equipped with all the elements necessary for normal olfactory functioning, and the slugs can behave as well as they did before the tentacle amputation. However, it is not known what changes occur to the olfactory center procerebrum in the brain at the morphological and physiological levels. Here, we investigated the innervation of tentacular nerves into the procerebrum by examining the size of the terminal mass (input layer from tentacular nerves) of the procerebrum and also by staining afferent nerves immunohistochemically at 15, 58 and 75 days following unilateral amputation of the superior and inferior tentacles. The size of the terminal mass was significantly decreased, and the Phe-Met-Arg-Phe-NH2ergic (FMRFamidergic) afferent nerves disappeared by 15 days following the tentacle amputation. However, the size of the terminal mass had recovered substantially by 58 days, as the tentacle regenerated. The FMRFamidergic innervation into the cerebral ganglion was also restored by this time. An extended recovery (75 days), however, did not result in any further increase in the size of the terminal mass. We also recorded the local field potential (LFP) oscillation in the procerebrum. We found that the oscillatory frequency of the LFP had decreased at 15 days following the tentacle amputation but had recovered at 58 and 75 days. These results suggest that the amputation and regrowth of the tentacle are accompanied by the respective degeneration and re-innervation of olfactory nerves, and these changes in the innervation status affect the basal state of LFP oscillation.
Collapse
Affiliation(s)
- Ryota Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Yoko Tanaka
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
12
|
Matsuo R, Kobayashi S, Murakami J, Ito E. Spontaneous recovery of the injured higher olfactory center in the terrestrial slug limax. PLoS One 2010; 5:e9054. [PMID: 20161701 PMCID: PMC2816995 DOI: 10.1371/journal.pone.0009054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 01/18/2010] [Indexed: 11/25/2022] Open
Abstract
Background Of all organs and tissues in adult mammals, the brain shows the most limited regeneration and recovery after injury. This is one reason why treating neurological damage such as ischemic injury after stroke presents such a challenge. Here we report a novel mode of regeneration which the slug's cognitive center, the procerebrum, shows after surgical lesioning in the adult. It is well known that the land slug Limax possesses the capacity to demonstrate conditioned food aversion. This learning ability critically depends on the procerebrum, which is the higher olfactory center in the brain of the terrestrial mollusk. Principal Findings In the present study, after a 1-month recovery period post-surgical lesioning of the procerebrum we investigated whether the brain of the slug shows recovery from damage. We found that learning ability, local field potential oscillation, and the number of cells in the procerebrum (PC) all recovered spontaneously within 1 month of bilateral lesioning of the PC. Moreover, neurogenesis was enhanced in the lesioned PC. However, memory acquired before the surgery could not be retrieved 1 month after surgery although the procerebrum had recovered from injury by this time, consistent with the notion that the procerebrum is the storage site of odor-aversion memory, or deeply involved in the memory recall process. Significance Our findings are the first to demonstrate that a brain region responsible for the associative memory of an adult organism can spontaneously reconstitute itself, and can recover its function following injury.
Collapse
Affiliation(s)
- Ryota Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan.
| | | | | | | |
Collapse
|
13
|
Yamagishi M, Ito E, Matsuo R. Redundancy of olfactory sensory pathways for odor-aversion memory in the terrestrial slug Limax valentianus. ACTA ACUST UNITED AC 2008; 211:1841-9. [PMID: 18515713 DOI: 10.1242/jeb.018028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Terrestrial slugs have the ability to learn and remember a food odor paired with an aversive stimulus. Olfaction in slugs involves the tips of two pairs of tentacles, the superior and the inferior tentacles. Sensory nerves in both pairs of the tentacles transmit olfactory information to the structure in the CNS, the procerebrum where learning and memory formation occur. We investigated the role of each pair of tentacles in odor-aversion learning, and examined the ability of slugs to recall memory after selective surgical amputation. Our results show that memory formation was not altered by the amputation of either one of the pairs before or after odor-aversion learning, while the odor sensibility of the slugs was maintained. These data suggest that either pair of tentacles is sufficient for the acquisition and retrieval of aversive olfactory memory.
Collapse
Affiliation(s)
- Miki Yamagishi
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki, Kagawa 769-2193, Japan
| | | | | |
Collapse
|
14
|
Watanabe S, Kirino Y, Gelperin A. Neural and molecular mechanisms of microcognition in Limax. Learn Mem 2008; 15:633-42. [DOI: 10.1101/lm920908] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Sugai R, Azami S, Shiga H, Watanabe T, Sadamoto H, Kobayashi S, Hatakeyama D, Fujito Y, Lukowiak K, Ito E. One-trial conditioned taste aversion in Lymnaea: good and poor performers in long-term memory acquisition. ACTA ACUST UNITED AC 2007; 210:1225-37. [PMID: 17371921 DOI: 10.1242/jeb.02735] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the majority of studies designed to elucidate the causal mechanisms of memory formation, certain members of the experimental cohort, even though subjected to exactly the same conditioning procedures, remember significantly better than others, whereas others show little or no long-term memory (LTM) formation. To begin to address the question of why this phenomenon occurs and thereby help clarify the causal mechanism of LTM formation, we used a conditioned taste aversion (CTA) procedure on individuals of the pond snail Lymnaea stagnalis and analyzed their subsequent behavior. Using sucrose as an appetitive stimulus and KCl as an aversive stimulus, we obtained a constant ratio of ;poor' to ;good' performers for CTA-LTM. We found that approximately 40% of trained snails possessed LTM following a one-trial conditioning procedure. When we examined the time-window necessary for the memory consolidation, we found that if we cooled snails to 4 degrees C for 30 min within 10 min after the one-trial conditioning, LTM was blocked. However, with delayed cooling (i.e. longer than 10 min), LTM was present. We could further interfere with LTM formation by inducing inhibitory learning (i.e. backward conditioning) after the one-trial conditioning. Finally, we examined whether we could motivate snails to acquire LTM by depriving them of food for 5 days before the one-trial conditioning. Food-deprived snails, however, failed to exhibit LTM following the one-trial conditioning. These results will help us begin to clarify why some individuals are better at learning and forming memory for specific tasks at the neuronal level.
Collapse
Affiliation(s)
- Rio Sugai
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kasai Y, Watanabe S, Kirino Y, Matsuo R. The procerebrum is necessary for odor-aversion learning in the terrestrial slug Limax valentianus. Learn Mem 2006; 13:482-8. [PMID: 16847307 PMCID: PMC1538926 DOI: 10.1101/lm.257606] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The terrestrial slug Limax has a highly developed ability to associate the odor of some foods (e.g., carrot juice) with aversive stimuli such as the bitter taste of quinidine solution. The procerebrum (PC) is a part of the slug's brain thought to be involved in odor-aversion learning, but direct evidence is still lacking. Here we present evidence showing that the PC is essential for odor-aversion learning. Unlike sham-operated slugs, PC ablation 7 d prior to conditioning showed that most slugs did not avoid carrot juice in the memory retention test conducted 24 h after the conditioning. Slugs with the PC ablated 3 h, 1 d, 3 d, or 7 d after conditioning and examined by the memory retention test at 3 d after the PC ablation were also less likely to avoid carrot juice than sham-operated slugs. The PC ablation did not damage the ability of the slugs to sense attractive odor (everyday food) or innately aversive odor (onion or garlic). These results demonstrate that the PC is a necessary component in the retention and/or retrieval of odor-aversion memory.
Collapse
Affiliation(s)
- Yoko Kasai
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
17
|
Shirahata T, Tsunoda M, Santa T, Kirino Y, Watanabe S. Depletion of serotonin selectively impairs short-term memory without affecting long-term memory in odor learning in the terrestrial slug Limax valentianus. Learn Mem 2006; 13:267-70. [PMID: 16705132 PMCID: PMC10807867 DOI: 10.1101/lm.133906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 02/14/2006] [Indexed: 11/24/2022]
Abstract
The terrestrial slug Limax is able to acquire short-term and long-term memories during aversive odor-taste associative learning. We investigated the effect of the selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) on memory. Behavioral studies indicated that 5,7-DHT impaired short-term memory but not long-term memory. HPLC (high-performance liquid chromatography) analysis revealed that 5,7-DHT significantly reduced serotonin content in the central nervous system. The present study suggests that acquisition, retention, and/or retrieval of short-term memory involves serotonin, and neither acquisition nor retrieval of long-term memory requires serotonin at a level as high as that required for short-term memory.
Collapse
MESH Headings
- 5,7-Dihydroxytryptamine/pharmacology
- Animals
- Association Learning/drug effects
- Association Learning/physiology
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Ganglia, Invertebrate/cytology
- Ganglia, Invertebrate/drug effects
- Ganglia, Invertebrate/physiology
- Gastropoda/drug effects
- Gastropoda/physiology
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Neurons/drug effects
- Neurons/physiology
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Serotonin/physiology
- Serotonin Agents/pharmacology
- Smell/drug effects
- Smell/physiology
Collapse
Affiliation(s)
| | - Makoto Tsunoda
- Laboratory of Bioanalytical Chemistry, Graduate School of
Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomofumi Santa
- Laboratory of Bioanalytical Chemistry, Graduate School of
Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
18
|
Fukunaga S, Matsuo R, Hoshino S, Kirino Y. Novel kruppel-like factor is induced by neuronal activity and by sensory input in the central nervous system of the terrestrial slugLimax valentianus. ACTA ACUST UNITED AC 2005; 66:169-81. [PMID: 16288475 DOI: 10.1002/neu.20210] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the Limax central nervous system, the procerebrum is thought to be the locus of odor information processing and odor memory retention, but little is known about the input pathway of the noxious stimuli used in this learning protocol. To gain insight into the sensory information processing of the noxious stimuli involved in memory formation, we screened genes induced by artificial neuronal activity, and identified one kruppel-like factor (KLF) family transcription factor gene (Limax KLF; limKLF), which is up-regulated 30 min after depolarization. The limKLF protein fused to GFP was localized to the nucleus in COS-7 cells. We also cloned an immediate early gene, CCAAT enhancer binding protein (C/EBP), of Limax by reverse transcription-polymerase chain reaction (RT-PCR). Both genes were up-regulated by dissection of the central nervous system (CNS) out of the slug in a protein synthesis-independent manner, and also by various noxious stimuli to the slug's body. These genes may be useful as neuronal activity markers in Limax to visualize activated sensory nervous systems.
Collapse
Affiliation(s)
- Satoshi Fukunaga
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, The University of Tokyo, 7 Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
19
|
Yasui K, Matsuo R, Kirino Y. Onset of Amnesia Is Delayed with a Decrease in Inhibition of Protein Synthesis during Odor-taste Associative Learning in the Terrestrial Slug Limax valentianus. Zoolog Sci 2004; 21:1163-6. [PMID: 15613796 DOI: 10.2108/zsj.21.1163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Slugs can retain odor-taste associative memory for several weeks, and this requires protein synthesis. We examined the dose-dependency of the onset time of amnesia caused by the protein synthesis inhibitor anisomycin, and showed that with reduced dose, the onset is shifted from 2 days to 3 days after conditioning; we could not shift the onset delay later than 3 days. Our results suggest that the mechanism underling memory retention is different in the period up to 3 days, versus the period later than 3 days. Our results also suggest that sustained inhibition of protein synthesis in the period from zero to 3 hr after conditioning is necessary to cause amnesia.
Collapse
Affiliation(s)
- Kikuo Yasui
- Laboratory of Neurobiophysics, School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Japan
| | | | | |
Collapse
|
20
|
Kim H, Chang DJ, Lee JA, Lee YS, Kaang BK. Identification of nuclear/nucleolar localization signal in Aplysia learning associated protein of slug with a molecular mass of 18 kDa homologous protein. Neurosci Lett 2003; 343:134-8. [PMID: 12759182 DOI: 10.1016/s0304-3940(03)00269-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We isolated a learning associated protein of slug with a molecular mass of 18 kDa (LAPS18) homologue from the expressed sequence tag database of Aplysia kurodai and named it Aplysia LAPS18-like protein (ApLLP). ApLLP encodes 120 amino acids and has 57% identity with LAPS18. To examine the subcellular expression pattern of ApLLP we constructed an EGFP-tagged ApLLP fusion protein and overexpressed it in both Aplysia neurons and COS-7 cells. In contrast to the previous findings, which showed that LAPS18 is secreted by COS-7 cells, ApLLP-EGFP was localized to the nucleus, and most of it to nucleoli. Analysis of deletion mutants of ApLLP-EGFP showed that the N-terminal and the C-terminal nucleolar and nucleus localization signal sequences are important for localization to the nucleus and the nucleoli.
Collapse
Affiliation(s)
- Hyoung Kim
- National Research Laboratory, Institute of Molecular Biology and Genetics, School of Biological Sciences, College of Natural Sciences, Seoul National University, San 56-1 Silim-dong Kwanak-gu, Seoul 151-742, South Korea
| | | | | | | | | |
Collapse
|