1
|
Madeo M, Giusi G, Aló R, Facciolo RM, Carelli A, Canonaco M. Different somatostatin receptor subtypes are operating in the brain of the teleost fish,Coris julis. ACTA ACUST UNITED AC 2005; 303:406-13. [PMID: 15828016 DOI: 10.1002/jez.a.184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Characterization of somatostatinergic (sst) neuronal activity through the application of nonpeptidyl agonists L-779,976 and L-817,818 which are highly specific for the sst receptors (sstr) sstr(2) and sstr(5), respectively, shows for the first time that sstr2, 5-like subtypes are the two major sstr subtypes operating in the brain of the teleost sea wrasse, Coris julis. A somewhat high but heterogeneous distribution pattern (> 30 < 180 fmol/mg wet tissue weight) of neurons expressing sstr2, 5 was reported in the different diencephalic regions plus in mesencephalon and telencephalon while low values were obtained in the cerebellum. Application of the above nonpeptidyl agonists permitted us to identify sstr2-like as the predominant subtype in telencephalic areas such as the entopeduncular nucleus (E) and postcommissural nucleus of the ventral telencephalon (Vp) as well as in hypothalamic and thalamic areas. At the same time high levels of neurons expressing sstr5-like, that greatly overlap those of sstr2-like in the diencephalic areas such as the anteroventral part of the preoptic nucleus (NPOav), the dorsal habenular nucleus (NHd) and the ventrolateral thalamic nucleus (VL), indicate that sstr2-like is very likely not the only sstr subtype acting in this fish brain. The predominance of sstr5-like in other brain areas is confirmed by the high quantities of this subtype in mesencephalic areas such as the torus longitudinalis (TLo). Overall, the discriminately differing densities of neurons expressing both subtypes seem to point to this system as a key molecular basis accounting for the distinct neurophysiological and behavioral sst-dependent activities in Coris julis.
Collapse
Affiliation(s)
- Maria Madeo
- Comparative NeuroAnatomy Laboratory, Ecology Dept., University of Calabria, 87030 Rende (Cosenza), Italy
| | | | | | | | | | | |
Collapse
|
2
|
Zupanc GKH. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. ACTA ACUST UNITED AC 2004; 96:459-72. [PMID: 14692494 DOI: 10.1016/s0928-4257(03)00002-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The brown ghost (Apteronotus leptorhynchus) is a weakly electric gymnotiform fish that produces wave-like electric organ discharges distinguished by their enormous degree of regularity. Transient modulations of these discharges occur both spontaneously and when stimulating the fish with external electric signals that mimic encounters with a neighboring fish. Two prominent forms of modulations are chirps and gradual frequency rises. Chirps are complex frequency and amplitude modulations lasting between 20 ms and more than 200 ms. Based on their biophysical characteristics, they can be divided into four distinct categories. Gradual frequency rises consist of a rise in discharge frequency, followed by a slow return to baseline frequency. Although the modulatory phase may vary considerably between a few 100 ms and almost 100 s, there is no evidence for the existence of distinct categories of this type of modulation signal. Stimulation of the fish with external electric signals results almost exclusively in the generation of type-2 chirps. This effect is independent of the chirp type generated by the respective individual under non-evoked conditions. By contrast, no proper stimulation condition is known to evoke the other three types of chirps or gradual frequency rises in non-breeding fish. In contrast to the type-2 chirps evoked when subjecting the fish to external electric stimulation, the rate of spontaneously produced chirps is quite low. However, their rate appears to be optimized according to the probability of encountering a conspecific. As a result, the rate of non-evoked chirping is increased during the night when the fish exhibit high locomotor activity and in the time period following external electric stimulation. These, as well as other, observations demonstrate that both the type and rate of modulatory behavior are affected by a variety of behavioral conditions. This diversity at the behavioral level correlates with, and is likely to be causally linked to, the diversity of inputs received by the neurons that control chirps and gradual frequency rises, respectively. These neurons form two distinct sub-nuclei within the central posterior/prepacemaker nucleus in the dorsal thalamus. In vitro tract-tracing experiments have elucidated some of the connections of this complex with other brain regions. Direct input is received from the optic tectum. Indirect input arising from telencephalic and hypothalamic regions, as well as from the preoptic area, is relayed to the central posterior/prepacemaker nucleus via the preglomerular nucleus. Feedback loops may be provided by projections of the central posterior/prepacemaker nucleus to the preglomerular nucleus and the nucleus preopticus periventricularis.
Collapse
Affiliation(s)
- Günther K H Zupanc
- School of Biological Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
3
|
Corrêa SAL, Zupanc GKH. Connections between the central posterior/prepacemaker nucleus and hypothalamic areas in the weakly electric fish Apteronotus leptorhynchus: evidence for an indirect, but not a direct, link. J Comp Neurol 2002; 442:348-64. [PMID: 11793339 DOI: 10.1002/cne.10103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The central posterior/prepacemaker nucleus (CP/PPn) of the weakly electric fish Apteronotus leptorhynchus consists of a few thousands of neurons in the dorsal thalamus. Subpopulations of this complex play a crucial role in neural control of transient modulations of the otherwise extremely constant electric organ discharges. Because both the propensity to execute these modulations and the type of modulations produced may vary enormously with the behavioral situation, it has been hypothesized that this behavioral plasticity is, partially, mediated by peptidergic neuromodulators originating from hypothalamic areas. To define the structural basis of this proposed modulatory input, we have in the present study examined the connections between the CP/PPn proper and hypothalamic areas by employing an in vitro tract-tracing technique. Neither anterograde nor retrograde tracing experiments could provide evidence for the existence of a direct link between the CP/PPn proper and hypothalamic areas. However, the results of our investigation suggest an indirect connection between the CP/PPn proper and two hypothalamic regions, the hypothalamus ventralis and the hypothalamus lateralis, with the preglomerular nucleus serving as a relay station.
Collapse
Affiliation(s)
- Sônia A L Corrêa
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
4
|
Zupanc GKH, Lamprecht J. Towards a Cellular Understanding of Motivation: Structural Reorganization and Biochemical Switching as Key Mechanisms of Behavioral Plasticity. Ethology 2000. [DOI: 10.1046/j.1439-0310.2000.00546.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Zupanc GK, Siehler S, Jones EM, Seuwen K, Furuta H, Hoyer D, Yano H. Molecular cloning and pharmacological characterization of a somatostatin receptor subtype in the gymnotiform fish Apteronotus albifrons. Gen Comp Endocrinol 1999; 115:333-45. [PMID: 10480984 DOI: 10.1006/gcen.1999.7316] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The actions of the various forms of somatostatin (SRIF), including those of the tetradecapeptide SRIF(14), are mediated by specific receptors. In mammals, five subtypes of SRIF receptors, termed sst(1-5), have been cloned. Using a combination of reverse transcriptase-polymerase chain reaction and genomic library screening in the gymnotiform fish Apteronotus albifrons, a gene encoding the first-known nonmammalian SRIF receptor has been isolated. The deduced amino acid sequence displays 59% identity with the human sst(3) receptor protein; hence, the gene is termed "Apteronotus sst(3)." The predicted protein consists of 494 amino acid residues exhibiting a putative seven-transmembrane domain topology typical of G protein-coupled receptors. A signal corresponding to the Apteronotus sst(3) receptor was detected in brain after amplification of poly(A)(+)-RNA by reverse transcriptase-polymerase chain reaction, but not by Northern blot analysis or in situ hybridization, suggesting a low level of expression. Membranes prepared from CCL39 cells stably expressing the Apteronotus sst(3) receptor gene bound [(125)I][Leu(8),d-Trp(22), (125) I-Tyr(25)]SRIF(28) with high affinity and in a saturable manner (B(max) = 4470 fmol/mg protein; pK(D) = 10.5). SRIF(14) and various synthetic SRIF receptor agonists produced a dose-dependent inhibition of radioligand binding, with the following rank order of potency: SRIF(14) approximately SRIF(28) > BIM 23052 > octreotide > BIM 23056. Under low stringency conditions, an Apteronotus sst(3) probe hybridized to multiple DNA fragments in HindIII or EcoRI digests of A. albifrons DNA, indicating that the Apteronotus sst(3) receptor is a member of a larger family of Apteronotus SRIF receptors.
Collapse
Affiliation(s)
- G K Zupanc
- Department of Biochemistry, The University of Chicago, Chicago, Illinois, 60637, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Gymnotiform fish, like all teleosts examined thus far, are distinguished by their enormous potential for the production of new neurons in the adult brain. In Apteronotus leptorhynchus, on average 10(5) cells, corresponding to approximately 0.2 % of the total population of cells in the adult brain, are in S-phase within any period of 2 h. At least a portion of these newly generated cells survive for the rest of the fish's life. This long-term survival, together with the persistent generation of new cells, leads to a continuous growth of the brain during adulthood. Zones of high proliferative activity are typically located at or near the surface of the ventricular, paraventricular and cisternal systems. In the central posterior/ prepacemaker nucleus, for example, new cells are generated, at very high rates, in areas near the wall of the third ventricle. At least some of these cells differentiate into neurons, express immunoreactivity against the neuropeptide somatostatin and migrate into more lateral areas of this complex. Approximately 75 % of all new brain cells are generated in the cerebellum. In the corpus cerebelli and the valvula cerebelli, they are produced in the molecular layers, whereas in the eminentia granularis the newborn cells stem from proliferation zones in the pars medialis. Within the first few days of their life, these cells migrate towards specific target areas, namely the associated granule cell layers. At least some of them develop into granule neurons. The high proliferative activity is counterbalanced by apoptosis, a mechanism that resembles the processes known from embryonic development of the vertebrate brain. Apoptosis also appears to be used as an efficient mechanism for the removal of cells damaged through injury in the brain of adult Apteronotus leptorhynchus. Since apoptosis is not accompanied by the side effects known from necrosis, this ‘clean’ type of cell death may, together with the enormous proliferative activity in the brain, explain, at least partially, the tremendous capability of teleost fish to replace damaged neurons with newly generated ones. One factor that appears to play a major role in the generation of new cells and in their further development is the neuropeptide somatostatin. In the caudal cerebellum of the gymnotiform brain, somatostatin-binding sites are expressed, at extremely high densities, at sites corresponding to the areas of origin, migration and differentiation of the newborn cells. This pattern of expression resembles the expression pattern in the rat cerebellum, where somatostatin immunoreactivity and somatostatin-binding sites are transiently expressed at the time when the granule cells of the cerebellum are generated. Moreover, after mechanical lesions of the corpus cerebelli, the expression of somatostatin-like immunoreactivity is tremendously increased in several cell types (presumably astrocytes, microglia and granule cell neurons) near the path of the lesion; the time course of this expression coincides with the temporal pattern underlying the recruitment of new cells incorporated at the site of the lesion.
Collapse
Affiliation(s)
- G K Zupanc
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
7
|
Zupanc GK. An in vitro technique for tracing neuronal connections in the teleost brain. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 3:37-51. [PMID: 9767097 DOI: 10.1016/s1385-299x(98)00019-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The availability of neuronal tract-tracing techniques has been fundamental to the development of the neurosciences. While most of the previously described methods are performed in vivo, in the present paper, detailed protocols are reported for tracing neuronal connections in an in vitro preparation. This technique, tested in various neural systems of the teleost brain, allows precise application of tracer substance(s) under visual control. After the isolation of the brain, the tissue is kept alive by superfusion with oxygenated artificial cerebrospinal fluid in a slice chamber. Neuronal connections are traced by the application of crystals of biocytin or dextran-tetramethylrhodamine to the region of interest. Following intracellular transport over 8-18 h, the tissue is fixed and processed histochemically for visualization of structures filled with the tracer substance. This method can readily be modified for double labelling. Step-by-step procedures are outlined for (a) the simultaneous detection of two tracer substances in the same tissue sample, (b) the combination of tract tracing with the immunohistochemical identification of various biochemical markers such as 'classical' transmitters and neuropeptides, and (c) the visualization of both traced structures and mitotically active cells labelled with the thymidine analogue 5-bromo-2'-deoxyuridine. By exhibiting a high degree of efficiency, the described in vitro tract-tracing technique represents also a significant contribution towards a reduction of living animals in neurobiological experimentation.
Collapse
Affiliation(s)
- G K Zupanc
- Abteilung Physikalische Biologie, Max-Planck-Institut für Entwicklungsbiologie, D-72011 Tübingen, Germany.
| |
Collapse
|
8
|
Zupanc GK, Horschke I. A distinct population of neurons in the central posterior/prepacemaker nucleus project to the nucleus preopticus periventricularis in the weakly electric gymnotiform fish, Apteronotus leptorhynchus. Brain Res 1997; 776:117-25. [PMID: 9439803 DOI: 10.1016/s0006-8993(97)01006-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The central posterior/prepacemaker nucleus of weakly electric gymnotiform fish is a cell cluster in the dorsal thalamus involved in neural control of electric behaviors. By employing anterograde and retrograde tract-tracing techniques, we examined the neural connection between this complex and the preoptic area in Apteronotus leptorhynchus. Unilateral application of biocytin restricted to the region defined by the somata of the central posterior/prepacemaker nucleus revealed a network of fibers and terminals bilaterally in the anterior and posterior subdivisions of the nucleus preopticus periventricularis. Application of biocytin to the nucleus preopticus periventricularis demonstrated that these fibers arise from a small population of cell bodies located predominantly in the central and medial portions of the central posterior/prepacemaker nucleus. These somata were distinguished from the remaining cells in this complex not only by their pattern of connectivity, but also by their position within the cluster and by the relatively large size. The projection from the central posterior/prepacemaker nucleus to the nucleus preopticus periventricularis may provide a feedback loop complementing a recently described connection projecting from the preoptic area to the central posterior/prepacemaker nucleus with one synaptic link in the preglomerular nucleus.
Collapse
Affiliation(s)
- G K Zupanc
- Abteilung Physikalische Biologie, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany.
| | | |
Collapse
|
9
|
Zupanc GK, Horschke I. Neurons of the posterior subdivision of the nucleus preopticus periventricularis project to the preglomerular nucleus in the weakly electric fish, Apteronotus leptorhynchus. Brain Res 1997; 774:106-15. [PMID: 9452198 DOI: 10.1016/s0006-8993(97)81693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
By using an in vitro tract-tracing technique, the neural connections between two diencephalic cell groups, the posterior subdivision of the nucleus preopticus periventricularis (PPp) and the preglomerular nucleus (PG), was examined in the weakly electric gymnotiform fish Apteronotus leptorhynchus. Neurons of the PPp project to one area within PG, the ventromedial cell group of the medial subdivision of the preglomerular nucleus (PGm-vmc). Axons of these cells reach the ipsilateral PGm-vmc via the basic hypothalamic tract, while collaterals decussate via the postoptic commissure to innervate the contralateral PGm-vmc. We hypothesize that those neurons within PPp that project to the PGm-vmc are homologous to neurons of the medial preoptic area of mammals. As part of an elaborate circuit, PPp and PG may participate, as in mammals, in the control of complex social behavior patterns.
Collapse
Affiliation(s)
- G K Zupanc
- Abteilung Physikalische Biologie, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Germany
| | | |
Collapse
|
10
|
Zupanc GK, Horschke I. Reciprocal connections between the preglomerular nucleus and the central posterior/prepacemaker nucleus in the diencephalon of weakly electric fish, Apteronotus leptorhynchus. Neuroscience 1997; 80:653-67. [PMID: 9284365 DOI: 10.1016/s0306-4522(97)00149-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The central posterior/prepacemaker nucleus of gymnotiform fish is a bilateral cell group located in the dorsal thalamus. This complex consists of approximately 10,000 neurons which can be divided into several subpopulations. One subpopulation comprised of a few hundreds of neurons projects to the pacemaker nucleus in the medulla oblongata, thus constituting the prepacemaker nucleus portion of this complex. By employing in vitro tract-tracing techniques, we have, in the present investigation, examined the pattern of connectivity formed by the central posterior/prepacemaker nucleus with a diencephalic cell group, the preglomerular nucleus. As demonstrated by anterograde and retrograde tracing, a subpopulation of several hundreds of neurons located in the central posterior/prepacemaker nucleus project to the ipsi- and contralateral preglomerular nucleus. Double-labelling experiments revealed that at least a fraction of these neurons also innervate the pacemaker nucleus. In the preglomerular nucleus, a large number of neurons give rise to projections that terminate in the ipsilateral central posterior/prepacemaker nucleus. The reciprocal connection between the central posterior/prepacemaker nucleus and the preglomerular nucleus may be used to relay sensory information directly conveyed to one of the two nuclei indirectly to the other nucleus. The existence of at least some central posterior/prepacemaker nucleus neurons projecting to both the preglomerular nucleus and the pacemaker nucleus may provide the morphological basis for the transmission of an efference copy of electromotor information produced by neurons in the central posterior/prepacemaker nucleus to the preglomerular nucleus.
Collapse
Affiliation(s)
- G K Zupanc
- Abteilung Physikalische Biologie, Max-Planck-Institut für Entwicklungsbiologie, Tübingen, Federal Republic of Germany
| | | |
Collapse
|