1
|
Tepe T, Satar M, Ozdemir M, Yildizdas HY, Ozlü F, Erdogan S, Toyran T, Akillioglu K, Köse S, Avci C. Long-term effect of indomethacin on a rat model of neonatal hypoxia ischemic encephalopathy through behavioral tests. Int J Dev Neurosci 2024; 84:22-34. [PMID: 37842754 DOI: 10.1002/jdn.10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Many medical experts prescribe indomethacin because of its anti-inflammatory, analgesic, tocolytic, and duct closure effects. This article presents an evaluation of the enduring impact of indomethacin on neonatal rats with hypoxic-ischemic (HI) insults, employing behavioral tests as a method of assessment. METHODS The experiment was conducted on male Wistar-Albino rats weighing 10 to 15 g, aged between seven and 10 days. The rats were divided into three groups using a random allocation method as follows: hypoxic ischemic encephalopathy (HIE) group, HIE treated with indomethacin group (INDO), and Sham group. A left common carotid artery ligation and hypoxia model was applied in both the HIE and INDO groups. The INDO group was treated with 4 mg/kg intraperitoneal indomethacin every 24 h for 3 days, while the Sham and HIE groups were given dimethylsulfoxide (DMSO). After 72 h, five rats from each group were sacrificed and brain tissue samples were stained with 2,3,5-Triphenyltetrazolium chloride (TCC) for infarct-volume measurement. Seven rats from each group were taken to the behavioral laboratory in the sixth postnatal week (PND42) and six from each group were sacrificed for the Evans blue (EB) experiment for blood-brain barrier (BBB) integrity evaluation. The open field (OF) test and Morris water maze (MWM) tests were performed. After behavioral tests, brain tissue were obtained and stained with TCC to assess the infarct volume. RESULTS The significant increase in the time spent in the central area and the frequency of crossing to the center in the INDO group compared with the HIE group indicated that indomethacin decreased anxiety-like behavior (p < 0.001, p < 0.05). However, the MWM test revealed that indomethacin did not positively affect learning and memory performance (p > 0.05). Additionally, indomethacin significantly reduced infarct volume and neuropathological grading in adolescence (p < 0.05), although not statistically significant in the early period. Moreover, the EB experiment demonstrated that indomethacin effectively increased BBB integrity (p < 0.05). CONCLUSIONS In this study, we have shown for the first time that indomethacin treatment can reduce levels of anxiety-like behavior and enhance levels of exploratory behavior in a neonatal rat model with HIE. It is necessary to determine whether nonsteroidal anti-inflammatory agents, such as indomethacin, should be used for adjuvant therapy in newborns with HIE.
Collapse
Affiliation(s)
- Tugay Tepe
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
- Department of Physiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Mehmet Satar
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Mustafa Ozdemir
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Hacer Yapicioglu Yildizdas
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Ferda Ozlü
- Department of Pediatrics, Division of Neonatology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Seyda Erdogan
- Department of Pathology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Tugba Toyran
- Department of Pathology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Kübra Akillioglu
- Department of Physiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Seda Köse
- Department of Physiology, Cukurova University Faculty of Medicine, Adana, Turkey
| | - Cagri Avci
- Department of Virology, Cukurova University Faculty of Veterinary Medicine, Adana, Turkey
| |
Collapse
|
2
|
Si D, Li J, Liu J, Wang X, Wei Z, Tian Q, Wang H, Liu G. Progesterone protects blood-brain barrier function and improves neurological outcome following traumatic brain injury in rats. Exp Ther Med 2014; 8:1010-1014. [PMID: 25120639 PMCID: PMC4113529 DOI: 10.3892/etm.2014.1840] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/16/2014] [Indexed: 01/01/2023] Open
Abstract
Inflammatory responses are associated with blood-brain barrier (BBB) dysfunction and neurological deficits following traumatic brain injury (TBI). The aim of the present study was to investigate the effects of progesterone on the expression of the inflammatory mediators prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), nuclear factor κB (NF-κB) and tumor necrosis factor-α (TNF-α) in the brain, BBB permeability, cerebral edema and neurological outcome, as well as to explore the mechanism of its neuroprotective effect. In this study, male rats were randomly divided into three groups: a sham-operated group (SHAM), a TBI group (TBI) and a progesterone treatment group (TBI-PROG). The TBI model was established using a modified Feeney’s weight-dropping method. Brain samples were extracted 24 h following injury. The expression levels of COX-2 and NF-κB were examined using immunohistochemistry, whilst the expression levels of PGE2 and TNF-α were detected by enzyme-linked immunosorbent assay. BBB permeability was analyzed using Evans blue and cerebral edema was determined using the dry-wet method. The neurological outcome was evaluated using the modified neurological severity score test. The results revealed that progesterone treatment significantly reduced post-injury inflammatory response, brain edema and Evans blue dye extravasation, and improved neurological scores compared with those in the TBI group. In conclusion, the inhibition of inflammation may be an important mechanism by which progesterone protects the BBB and improves neurological outcome.
Collapse
Affiliation(s)
- Daowen Si
- School of Basic Medical Sciences, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Juan Li
- School of Basic Medical Sciences, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Jiang Liu
- School of Basic Medical Sciences, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Xiaoyin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical College, Xinxiang, Henan 453000, P.R. China
| | - Zifeng Wei
- School of Basic Medical Sciences, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Qingyou Tian
- School of Basic Medical Sciences, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Haitao Wang
- School of Basic Medical Sciences, Hebei United University, Tangshan, Hebei 063000, P.R. China
| | - Gang Liu
- Department of Neurosurgery, Affiliated Hospital of Hebei United University, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
3
|
Yan Y, Min Y, Min H, Chao C, Ying Q, Zhi H. n-Butanol soluble fraction of the water extract of Chinese toon fruit ameliorated focal brain ischemic insult in rats via inhibition of oxidative stress and inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:176-182. [PMID: 24269248 DOI: 10.1016/j.jep.2013.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 09/25/2013] [Accepted: 10/05/2013] [Indexed: 06/02/2023]
Abstract
AIM OF THE STUDY Toona sinensis Roem. (Meliaceae; Toona sinensis; Chinese toon) is a type of arbor that is widely distributed in Asia. The fruits of Toona sinensis Roem has been traditionally recognized for treatment of cerebrovascular diseases. To evaluate the potential clinical use of the fruits of Toona sinensis Roem, we determined the dose dependence of the neuroprotective efficacy in a focal cerebral ischemic reperfusion model of rats and explored the underlying mechanisms. MATERIALS AND METHODS Rats were subjected to occlusion of the middle cerebral artery (MCAO) by a nylon filament and treated with different doses (20mg/kg and 30 mg/kg) of n-butanol soluble fraction of the water extract of Chinese toon fruit or the vehicle for 1 week before induction of ischemia, s.i.d.. RESULTS n-Butanol soluble fraction of the water extract of Chinese toon fruit reduced in a dose-dependent manner the ischemia-induced cerebral infarct and edema volume and attenuated neurological deficits observed at 6h point after ischemia. n-Butanol soluble fraction of the water extract of Chinese toon fruit reduced the levels of nitrate, nitrite, lipid peroxidation, cyclooxygenase-1, thromboxane in post-ischemic brain. n-Butanol soluble fraction of the water extract of Chinese toon fruit adjusted the elevation of the activity of glutathione peroxidase and superoxide dismutase in ischemic brain. CONCLUSIONS The present study was the first evidence of effectiveness of n-butanol soluble fraction of the water extract of Chinese toon fruit in the rat stroke models, as it reduced infarct volume, inhibited the oxidative stress and inflammation.
Collapse
Affiliation(s)
- You Yan
- Medical School of China, Three Gorges University, Yichang 443002, China
| | - Yu Min
- The First Renmin Hospital of Yichang City, Yichang, China
| | - Hu Min
- Medical School of China, Three Gorges University, Yichang 443002, China
| | - Chen Chao
- Medical School of China, Three Gorges University, Yichang 443002, China
| | - Qian Ying
- Department of Obstetrics and Gynecology, East Hospital, Tongji University, Shanghai, China.
| | - He Zhi
- Medical School of China, Three Gorges University, Yichang 443002, China.
| |
Collapse
|
4
|
Régnier A, Vicaut E, Mraovitch S. Aggravation of seizure-associated microvascular injuries by ibuprofen may involve multiple pathways. Epilepsia 2010; 51:2412-22. [DOI: 10.1111/j.1528-1167.2009.02480.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Abstract
Recent studies have demonstrated a strong link between neurodegeneration and chronic inflammation. The central nervous system (CNS) has very limited regenerative capacity. Neural cell death occurs by apoptosis and necrosis. Necrosis in the CNS usually follows ischemic or traumatic brain injury. Apoptosis is known as programmed cell death and often demonstrates histologic features of acute and chronic neurologic diseases. The innate immune response is protective to the CNS to defend against pathogens. Temporary up-regulation of inflammatory events is natural and does not lead to cell death. If this inflammatory process is up-regulated, neurodegenerative changes may occur. There has been a proven link between the inflammatory response, increased cytokine formation, and neurodegeneration. Both pharmaceutic and nutrition interventions for treating chronic neurodegenerative diseases, such as Alzheimer's disease or multiple sclerosis, will be focused on reducing or terminating the chronic inflammatory response.
Collapse
Affiliation(s)
- Mark H DeLegge
- Section of Nutrition, Digestive Disease Center, Medical University of South Carolina, 96 Jonathan Lucas St, Ste 210, Charleston, SC 29425, USA.
| | | |
Collapse
|
6
|
Institoris A, Farkas E, Berczi S, Sule Z, Bari F. Effects of cyclooxygenase (COX) inhibition on memory impairment and hippocampal damage in the early period of cerebral hypoperfusion in rats. Eur J Pharmacol 2007; 574:29-38. [PMID: 17719573 DOI: 10.1016/j.ejphar.2007.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 07/02/2007] [Accepted: 07/04/2007] [Indexed: 11/23/2022]
Abstract
Chronic cerebral hypoperfusion is related to neurological disorders and contributes to a cognitive decline. Its experimental model in rats is permanent, bilateral common carotid artery occlusion. The cyclooxygenase (COX) system plays a pivotal role in the evolution of ischemic brain damage. Several COX inhibitors have proved to be neuroprotective in stroke models. We set out to characterize the effects of COX inhibitors in rats with permanent cerebral hypoperfusion. Some of the animals were exposed to two-vessel occlusion (n=72), while the others served as sham-operated controls (n=54). This was followed by a 3-day post-treatment with the nonselective COX inhibitor indomethacin (3 mg/kg) or with the selective COX-2 inhibitor NS-398 (15 mg/kg) or with the solvent. Some groups of the animals were sacrificed after 3 days, while the remainder were tested in the Morris watermaze for 5 days, and were sacrificed after 2 weeks. Neurons in the hippocampus were subjected to immunocytochemical labeling with cresyl violet, the dendrites with microtubule-associated protein-2, astrocytes with glial fibrillary acidic protein and microglia activation with OX-42 antibody. Two-vessel occlusion induced a learning impairment, mild neuronal damage, marked dendritic injury and moderate astrocytic reaction in the hippocampus. NS-398, but not indomethacin improved the survival rate and abolished the learning disability. However, both drugs increased the proportion of animals displaying neuronal damage. Glial markers revealed a time-dependent elevation in both the sham and the two-vessel occluded group, and were unaffected by the treatments. In summary, NS-398 prevented the hypoperfusion-induced memory impairment, but not by protecting the hippocampal neurons.
Collapse
Affiliation(s)
- Adam Institoris
- Department of Physiology, School of Medicine, University of Szeged, H-6720 Szeged, Dóm tér 10, Hungary.
| | | | | | | | | |
Collapse
|
7
|
Das A, Banik NL, Ray SK. Methylprednisolone and indomethacin inhibit oxidative stress mediated apoptosis in rat C6 glioblastoma cells. Neurochem Res 2007; 32:1849-56. [PMID: 17570061 DOI: 10.1007/s11064-007-9371-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Accepted: 05/01/2007] [Indexed: 11/30/2022]
Abstract
Glioblastoma patients receive anti-inflammatory agent for alleviation of vasogenic edema and pain prior to surgery, radiotherapy, and chemotherapy. Oxidative stress is an important mechanism of action of some chemotherapeutic agents in the treatment of glioblastoma. So, we examined the modulatory effects of methylprednisolone (MP, a steroidal anti-inflammatory agent) and indomethacin (IM, a non-steroidal anti-inflammatory agent) on apoptosis in rat C6 glioblastoma cells following oxidative stress with hydrogen peroxide (H(2)O(2)). Exposure of C6 cells to 1 mM H(2)O(2) for 24 h caused significant amounts of morphological and biochemical features of apoptosis. Expressions of Bax and Bcl-2 at mRNA and protein levels were altered resulting in an increase in Bax : Bcl-2 ratio in apoptotic cells, which also exhibited overexpression of 80 kDa calpain and an increase in calpain-cleaved 145 kDa alpha-spectrin breakdown product. Immunofluorescent and propidium iodide labeling detected caspase-3-p20 fragment in apoptotic cells, indicating activation of caspase-3 as well. Treatment of cells with 1 microM MP or 10 microM IM alone did not induce apoptosis. Pretreatment (1 h) with either 1 microM MP or 10 microM IM significantly inhibited H(2)O(2) mediated apoptosis in C6 cells. Thus, pretreatment of glioblastoma with an anti-inflammatory agent, either steroidal or non-steroidal, may compromise the action of a chemotherapeutic agent that mediates therapeutic action via oxidative stress.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurosciences, Medical University of South Carolina (MUSC), 96 Jonathan Lucas Street, Suite 323K, P.O. Box 250606, Charleston, SC 29425, USA
| | | | | |
Collapse
|
8
|
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. ACTA ACUST UNITED AC 2006; 52:201-43. [PMID: 16647138 DOI: 10.1016/j.brainresrev.2006.02.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
Three enzyme systems, cyclooxygenases that generate prostaglandins, lipoxygenases that form hydroxy derivatives and leukotrienes, and epoxygenases that give rise to epoxyeicosatrienoic products, metabolize arachidonic acid after its release from neural membrane phospholipids by the action of phospholipase A(2). Lysophospholipids, the other products of phospholipase A(2) reactions, are either reacylated or metabolized to platelet-activating factor. Under normal conditions, these metabolites play important roles in synaptic function, cerebral blood flow regulation, apoptosis, angiogenesis, and gene expression. Increased activities of cyclooxygenases, lipoxygenases, and epoxygenases under pathological situations such as ischemia, epilepsy, Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease produce neuroinflammation involving vasodilation and vasoconstriction, platelet aggregation, leukocyte chemotaxis and release of cytokines, and oxidative stress. These are closely associated with the neural cell injury which occurs in these neurological conditions. The metabolic products of docosahexaenoic acid, through these enzymes, generate a new class of lipid mediators, namely docosatrienes and resolvins. These metabolites antagonize the effect of metabolites derived from arachidonic acid. Recent studies provide insight into how these arachidonic acid metabolites interact with each other and other bioactive mediators such as platelet-activating factor, endocannabinoids, and docosatrienes under normal and pathological conditions. Here, we review present knowledge of the functions of cyclooxygenases, lipoxygenases, and epoxygenases in brain and their association with neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
9
|
Abstract
Several epidemiological studies have indicated that the long-term use of NSAIDs, most of which are cyclo-oxygenase (COX) inhibitors, may reduce the risk of Alzheimer's disease. For this reason, anti-inflammatory COX-inhibiting NSAIDs have received increased attention in experimental and therapeutic trials for Alzheimer's disease. However, several recent efforts attempting to demonstrate a therapeutic effect of NSAIDs in Alzheimer's disease have largely failed. Clinicians and scientists currently believe that this lack of success may be attributable to two key problems: (i) clinical trials of NSAIDs have been conducted in patients with late-stage Alzheimer's disease, wherein advanced neurodegeneration may be refractory to anti-inflammatory drug treatment; and (ii) it is not known which of the large family of NSAIDs (i.e. COX-1, COX-2 or mixed inhibitors) is most efficacious in preventing Alzheimer's disease. The wide list of putative functions for COX in the brain, and the significant functional heterogeneity of NSAIDs, which appear to influence the beta-amyloid (Abeta) neuropathology associated with Alzheimer's disease via both COX-dependent and COX-independent pathways, complicate the interpretation of the mechanisms through which COX-inhibiting NSAIDs may beneficially influence Alzheimer's disease. As discussed in this review, for patients at high risk of developing Alzheimer's disease (e.g. those with mild cognitive impairment), preventative treatment with COX-inhibiting NSAIDs may ultimately represent a viable strategy in the management of clinical Alzheimer's disease. However, the recent evidence showing an increased risk of major cardiovascular events among patients treated with certain COX-1 and COX-2 inhibitors leaves many questions unanswered. We suggest that further investigation into the physiological role(s) of COXs in normal health and in disease conditions, and the identification of safer and better tolerated COX inhibitors, will provide renewed impetus to the application of anti-inflammatory strategies for the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Lap Ho
- Department of Psychiatry, The Mount Sinai School of Medicine, Neuroinflammation Research Laboratories, New York, New York 10029, USA
| | | | | | | |
Collapse
|
10
|
Phillips J, Pearce B. Serum deprivation and re-addition: effects on cyclooxygenase inhibitor sensitivity in cultured glia. Inflammopharmacology 2005; 13:431-9. [PMID: 16280096 DOI: 10.1163/156856005774649368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A number of drugs were assessed for their ability to inhibit stimulus-evoked prostanoid synthesis in cultured glia. These drugs included non-selective cyclooxygenase (COX) inhibitors and those considered to be selective for the inducible isoform of this enzyme (COX-2). Experiments were carried out on normal cultures and those which had been maintained in serum-free growth medium for four days then re-exposed to serum for a further seven days. All of the drugs tested elicited concentration-dependent inhibitions of arachidonic acid (AA)-stimulated thromboxane B(2) (TXB(2)) accumulation in normal cultures with the following rank order of potency: indomethacin > piroxicam > nimesulide = NS398 > ibuprofen >> aspirin > paracetamol. In cultures which had been deprived of serum for four days, basal and AA-stimulated TXB(2) production was considerably reduced, as was the amount of COX immunoreactivity determined by Western blotting. Basal and AA-stimulated TXB(2) production together with COX immunoreactivity were restored to control levels by the re-addition of serum to serum-deprived cultures for 7 days. In these cultures, the rank order of potency was: indomethacin > piroxicam >> ibuprofen > nimesulide = NS398 >> aspirin > paracetamol; however, there were marked charges in the apparent IC(50) values for particular drugs. Indomethacin, piroxicam and aspirin were very similar to control, but the potencies of ibuprofen (3-fold), NS398 (30-fold) and nimesulide (40-fold) were found to be decreased when compared to control. Paracetamol, on the other hand, was found to be almost 3-fold more potent under these conditions. Glia appear to express a COX with a novel sensitivity to particular inhibitors following serum deprivation and re-addition.
Collapse
Affiliation(s)
- James Phillips
- Department of Pharmacology, The School of Pharmacy, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | |
Collapse
|
11
|
Moochhala SM, Lu J, Xing MCK, Anuar F, Ng KC, Yang KLS, Whiteman M, Atan S. Mercaptoethylguanidine Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Expressions Induced in Rats After Fluid-Percussion Brain Injury. ACTA ACUST UNITED AC 2005; 59:450-7. [PMID: 16294091 DOI: 10.1097/01.ta.0000174858.79847.6d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study examined the temporal expression of nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 in rat brains after traumatic brain injury (TBI). We studied the effects of mercaptoethylguanidine (MEG), a dual inhibitor of the inducible iNOS and COX with scavenging effect on peroxynitrite, on physiologic variables, brain pathogenesis, and neurologic performance in rats after a lateral fluid percussive-induced TBI. Mean arterial blood pressure and percentage cerebral tissue perfusion in MEG-treated TBI rats showed significant improvement when compared with TBI rats. Immunohistochemical analysis showed a marked number of iNOS and COX-2 immunopositive cells in the cerebral cortex ipsilateral to the injury in TBI rats when compared with MEG-treated TBI rats. MEG also significantly decreased the number of hyperchromatic and shrunken cortical neurons when compared with TBI rats' brain nitrate/nitrite, and prostaglandin E2 levels were attenuated in MEG-treated TBI rats when compared with TBI rats. It is therefore suggested that treatment of MEG via inhibition of iNOS and COX-2 might contribute to improved physiologic variables, neuronal cell survival, and neurologic outcome after TBI.
Collapse
|
12
|
Hsieh YC, Liang WY, Tsai SK, Wong CS. Intrathecal ketorolac pretreatment reduced spinal cord ischemic injury in rats. Anesth Analg 2005; 100:1134-1139. [PMID: 15781534 DOI: 10.1213/01.ane.0000146962.91038.15] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Paraplegia caused by spinal cord ischemic injury remains a potential complication of surgical repair of thoracoabdominal aortic aneurysms. Studies suggest that cyclooxygenase (COX) contributes to ischemic neuronal damage and that COX inhibitors may reduce injury. In this study, we examined whether intrathecal pretreatment with ketorolac, a nonselective COX inhibitor, had a protective effect against ischemic spinal cord injury in rats. Rats were randomized to receive either intrathecal normal saline, ketorolac 30 microg, or ketorolac 60 microg (n = 6 rats per group) 1 h before spinal cord ischemia (intraaortic balloon occlusion combined with proximal arterial hypotension for 11 min). Another 6 rats served as the sham-operated controls. Ischemic injury was assessed by hindlimb motor function and by histopathological changes in the lumbar spinal cord at 24 h after the ischemic insult. The other 20 rats (n = 10 per group) were used in the second experiments to evaluate the safety of this drug. Survival of rats was recorded 28 days after reperfusion. Intrathecal pretreatment with 60 microg of ketorolac significantly reduced neuronal death and improved hindlimb motor function, and the long-term survival was similar to that in the control group. The results suggest that intrathecal ketorolac may be of therapeutic potential for preventing spinal cord ischemic injury during thoracoabdominal aortic surgery.
Collapse
Affiliation(s)
- Ying-Chou Hsieh
- *Graduate Institute of Medical Science, National Defense Medical Center; †Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Neihu; and Departments of ‡Anesthesiology and §Pathology, Veterans General Hospital, Shipai, Taipei, Taiwan
| | | | | | | |
Collapse
|
13
|
Yang L, Sameshima H, Yamaguchi M, Ikenoue T. Expression of inducible nitric oxide synthase and cyclooxygenase-2 mRNA in brain damage induced by lipopolysaccharide and intermittent hypoxia-ischemia in neonatal rats. J Obstet Gynaecol Res 2005; 31:185-91. [PMID: 15771647 DOI: 10.1111/j.1341-8076.2005.00266.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM The purpose of the present study was to examine the effect of lipopolysaccharide (LPS) and intermittent hypoxia-ischemia (HI) on brain damage in neonatal rats. METHODS Seven-day-old Wistar rats were injected with saline or LPS (1 mg/kg), and then underwent left common carotid artery ligation followed by a repetitive 8% hypoxia (2.0-4.5 min) at 10-min intervals 10 times. The rats were divided into three groups: LPS with HI (LPS/HI, n = 46), saline with HI (HI alone, n = 42) and LPS alone (n = 16). Seven days later, brains were assessed for neuronal damage and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression. RESULTS Neuronal damage in the ligated side was significantly higher in LPS/HI than the other two groups (P < 0.01). The expression of iNOS and COX-2 mRNA was observed in the affected brain in LPS/HI, which corresponded well to histologic neuronal loss. CONCLUSIONS LPS enhanced intermittent HI brain damage in immature animals. The expression of iNOS and COX-2 mRNA is considered to be associated with perinatal brain injury processes.
Collapse
Affiliation(s)
- Li Yang
- Department of Obstetrics and Gynecology, Miyazaki Medical College, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | | | | | | |
Collapse
|
14
|
Abstract
Indomethacin has been suggested as a therapeutic tool to manage elevated intracranial pressure in patients with severe head injury and patients undergoing craniotomy for brain tumors. Indomethacin is a non-selective cyclooxygenase inhibitor. Compared to other cyclooxygenase inhibitors indomethacin has unique effects on cerebral blood flow. Administration of indomethacin causes cerebral vasoconstriction and decreases cerebral blood flow, which elicits a decrease in intracranial pressure. The mechanism of indomethacin-induced cerebral vasoconstriction is not completely understood and controversies exist whether indomethacin causes cerebral ischemia. The primary aims of this article were to review the existing knowledge of indomethacin's influence upon cerebral hemodynamics and elevated ICP in patients with brain pathology. Furthermore, indomethacin's mechanism of action and whether it causes cerebral ischemia are discussed.
Collapse
Affiliation(s)
- M Rasmussen
- Department of Neuroanesthesia, Arhus University Hospital, 8000 Arhus C, Denmark.
| |
Collapse
|
15
|
Phillis JW, O'Regan MH. A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. ACTA ACUST UNITED AC 2004; 44:13-47. [PMID: 14739001 DOI: 10.1016/j.brainresrev.2003.10.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phospholipases are a diverse group of enzymes whose activation may be responsible for the development of injury following insult to the brain. Amongst the numerous isoforms of phospholipase proteins expressed in mammals are 19 different phospholipase A2's (PLA2s), classified functionally as either secretory, calcium dependent, or calcium independent, 11 isozymes belonging to three structural groups of PLC, and 3 PLD gene products. Many of these phospholipases have been identified in selected brain regions. Under normal conditions, these enzymes regulate the turnover of free fatty acids (FFAs) in membrane phospholipids affecting membrane stability, fluidity, and transport processes. The measurement of free fatty acids thus provides a convenient method to follow phospholipase activity and their regulation. Phospholipase activity is also responsible for the generation of an extensive list of intracellular messengers including arachidonic acid metabolites. Phospholipases are regulated by many factors including selective phosphorylation, intracellular calcium and pH. However, under abnormal conditions, excessive phospholipase activation, along with a decreased ability to resynthesize membrane phospholipids, can lead to the generation of free radicals, excitotoxicity, mitochondrial dysfunction, and apoptosis/necrosis. This review evaluates the critical contribution of the various phospholipases to brain injury following ischemia and trauma and in neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, Wayne State University School of Medicine, 5374 Scott Hall, 540 E. Canfield, Detroit, MI 48201-1928, USA.
| | | |
Collapse
|
16
|
Miyamoto O, Tamae K, Kasai H, Hirakawa H, Hayashida Y, Konishi R, Itano T. Suppression of hyperemia and DNA oxidation by indomethacin in cerebral ischemia. Eur J Pharmacol 2003; 459:179-86. [PMID: 12524144 DOI: 10.1016/s0014-2999(02)02876-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated antioxidative activity and the effect of indomethacin, an agent that inhibits cyclooxygenase, on extracellular glutamate and cerebral blood flow in cerebral ischemia in gerbils. Pre-ischemic administration of indomethacin (5 mg/kg, i.p.) significantly rescued hippocampal CA1 neurons (9+/-6 cells/mm in the ischemia, 87+/-43 cells/mm in the indomethacin group, P<0.001). DNA fragmentation induced by ischemia was also examined using the terminal deoxynucleotidyl transferase-mediated UTP nick end labeling (TUNEL) method and indomethacin reduced TUNEL positive cells (140+/-21 in the ischemia, 99+/-31 in the indomethacin group, P<0.01). In addition, indomethacin attenuated the increase in hippocampal blood flow during reperfusion, but not increased extracellular glutamate by ischemia. Eight-hydroxydeoxyguanosine (8-OH-dG), a highly sensitive marker of DNA oxidation, was measured 90 min following ischemia using high-pressure liquid chromatography. Indomethacin significantly decreased the level of ischemia-induced 8-OH-dG in the hippocampus (P<0.05). These results suggest that indomethacin may protect neurons by attenuating oxidative stress and reperfusion injury in ischemic insult.
Collapse
Affiliation(s)
- Osamu Miyamoto
- Department of Neurobiology, Kagawa Medical University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Pepicelli O, Fedele E, Bonanno G, Raiteri M, Ajmone-Cat MA, Greco A, Levi G, Minghetti L. In vivo activation of N-methyl-D-aspartate receptors in the rat hippocampus increases prostaglandin E(2) extracellular levels and triggers lipid peroxidation through cyclooxygenase-mediated mechanisms. J Neurochem 2002; 81:1028-34. [PMID: 12065615 DOI: 10.1046/j.1471-4159.2002.00897.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclooxygenases (COX) are a family of enzymes involved in the biosynthesis of prostaglandin (PG) and thromboxanes. The inducible enzyme cyclooxygenase-2 (COX-2) is the major isoform found in normal brain, where it is constitutively expressed in neurons and is further up-regulated during several pathological events, including seizures and ischaemia. Emerging evidence suggests that COX-2 is implicated in excitotoxic neurodegenerative phenomena. It remains unclear whether PGs or other products associated to COX activity take part in these processes. Indeed, it has been suggested that reactive oxygen species, produced by COX, could mediate neuronal damage. In order to obtain direct evidence of free radical production during COX activity, we undertook an in vivo microdialysis study to monitor the levels of PGE(2) and 8-epi-PGF(2alpha) following infusion of N-methyl-D-aspartate (NMDA). A 20-min application of 1 mm NMDA caused an immediate, MK-801-sensitive increase of both PGE(2) and 8-epi-PGF(2alpha) basal levels. These effects were largely prevented by the specific cytosolic phospholipase A(2) (cPLA(2) ) inhibitor arachidonyl trifluoromethyl ketone (ATK), by non- selective COX inhibitors indomethacin and flurbiprofen or by the COX-2 selective inhibitor NS-398, suggesting that the NMDA-evoked prostaglandin synthesis and free radical-mediated lipid peroxidation are largely dependent on COX-2 activity. As several lines of evidence suggest that prostaglandins may be potentially neuroprotective, our findings support the hypothesis that free radicals, rather than prostaglandins, mediate the toxicity associated to COX-2 activity.
Collapse
Affiliation(s)
- O Pepicelli
- Section of Pharmacology and Toxicology, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Strauss KI, Marini AM. Cyclooxygenase-2 inhibition protects cultured cerebellar granule neurons from glutamate-mediated cell death. J Neurotrauma 2002; 19:627-38. [PMID: 12042097 PMCID: PMC1456322 DOI: 10.1089/089771502753754091] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Primary insults to the brain can initiate glutamate release that may result in excitotoxicity followed by neuronal cell death. This secondary process is mediated by both N-methyl-D-aspartate (NMDA) and non-NMDA receptors in vivo and requires new gene expression. Neuronal cyclooxygenase-2 (COX2) expression is upregulated following brain insults, via glutamatergic and inflammatory mechanisms. The products of COX2 are bioactive prostanoids and reactive oxygen species that may play a role in neuronal survival. This study explores the role of neuronal COX2 in glutamate excitotoxicity using cultured cerebellar granule neurons (day 8 in vitro). Treatment with excitotoxic concentrations of glutamate or kainate transiently induced COX2 mRNA (two- and threefold at 6 h, respectively, p < 0.05, Dunnett) and prostaglandin production (five- and sixfold at 30 min, respectively, p < 0.05, Dunnett). COX2 induction peaked at toxic concentrations of these excitatory amino acids. Surprisingly, NMDA, L-quisqualate, and trans-ACPD did not induce COX2 mRNA at any concentration tested. The glutamate receptor antagonist NBQX (5 microM, AMPA/kainate receptor) completely inhibited kainate-induced COX2 mRNA and partially inhibited glutamate-induced COX2 (p < 0.05, Dunnett). Other glutamate receptor antagonists, such as MK-801 (1 microM, NMDA receptor) or MCPG (500 microM, class 1 metabotropic receptors), partially attenuated glutamate-induced COX2 mRNA. These antagonists all reduced steady-state COX2 mRNA (p < 0.05, Dunnett). To determine whether COX2 might be an effector of excitotoxic cell death, cerebellar granule cells were pretreated (24 h) with the COX2-specific enzyme inhibitor, DFU (5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl) phenyl-2((5)H)-furanone) prior to glutamate challenge. DFU (1 to 1000 nM) completely protected cultured neurons from glutamate-mediated neurotoxicity. Approximately 50% protection from NMDA-mediated neurotoxicity, and no protection from kainate-mediated neurotoxicity was observed. Therefore, glutamate-mediated COX2 induction contributes to excitotoxic neuronal death. These results suggest that glutamate, NMDA, and kainate neurotoxicity involve distinct excitotoxic pathways, and that the glutamate and NMDA pathways may intersect at the level of COX2.
Collapse
Affiliation(s)
- Kenneth I Strauss
- Department of Neurosurgery, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | |
Collapse
|
19
|
Cernak I, O'Connor C, Vink R. Activation of cyclo-oxygenase-2 contributes to motor and cognitive dysfunction following diffuse traumatic brain injury in rats. Clin Exp Pharmacol Physiol 2001; 28:922-5. [PMID: 11703397 DOI: 10.1046/j.1440-1681.2001.03549.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Post-traumatic inflammation may play a significant role in the development of delayed secondary brain damage following traumatic brain injury. 2. During post-traumatic inflammation, metabolic products of arachidonic acid, known as prostanoids (prostaglandins and thromboxanes) are released and aggravate the injury process. Prostanoid synthesis is regulated by the enzyme cyclo-oxygenase (COX), which is present in at least two isoforms, COX-1 (the constitutive form) and COX-2 (the inducible form). 3. In the present study, we examine the temporal and spatial profiles of COX-2 expression and the effects of the COX-2 inhibitor nimesulide on motor and cognitive outcome following diffuse traumatic brain injury in rats. 4. Adult male Sprague-Dawley rats were injured using the 2 m impact acceleration model of diffuse traumatic brain injury. At preselected time points after injury, animals were killed and the expression of COX-2 was measured in the cortex and hippocampus by western blotting techniques. 5. Increased expression of COX-2 was found in the cortex at 3 days and in the hippocampus as early as 3 h postinjury and this persisted for at least 12 days. 6. Administration of nimesulide (6 mg/kg, i.p.) at 30 min after injury and daily over a 10 day post-traumatic neurological assessment period resulted in a significant improvement compared with vehicle (2% dimethylsulphoxide diluted in isotonic saline)-treated controls in cognitive deficits, as assessed by the Barnes circular maze. There was also a significant improvement in motor dysfunction as assessed by the rotarod test on days 1 and 2 post-trauma compared with vehicle-treated controls. 7. These results implicate the involvement of COX-2 in cognitive and motor dysfunction following diffuse traumatic brain injury.
Collapse
Affiliation(s)
- I Cernak
- Department of Physiology and Pharmacology, James Cook University, Townsville, Queensland, Australia.
| | | | | |
Collapse
|
20
|
Abstract
After neuronal injury and in several neurodegenerative diseases, activated microglia secrete proinflammatory molecules that can contribute to the progressive neural damage. The recent demonstration of a protective role of estrogen in neurodegenerative disorders in humans and experimental animal models led us to investigate whether this hormone regulates the inflammatory response in the CNS. We here show that estrogen exerts an anti-inflammatory activity on primary cultures of rat microglia, as suggested by the blockage of the phenotypic conversion associated with activation and by the prevention of lipopolysaccharide-induced production of inflammatory mediators: inducible form of NO synthase (iNOS), prostaglandin-E(2) (PGE(2)), and metalloproteinase-9 (MMP-9). These effects are dose-dependent, maximal at 1 nm 17beta-estradiol, and can be blocked by the estrogen receptor (ER) antagonist ICI 182,780. The demonstration of ERalpha and ERbeta expression in microglia and macrophages and the observation of estrogen blockade of MMP-9 mRNA accumulation and MMP-9 promoter induction further support the hypothesis of a genomic activity of estrogen via intracellular receptors. This is the first report showing an anti-inflammatory activity of estrogen in microglia. Our study proposes a novel explanation for the protective effects of estrogen in neurodegenerative and inflammatory diseases and provides new molecular and cellular targets for the screening of ER ligands acting in the CNS.
Collapse
|
21
|
Govoni S, Masoero E, Favalli L, Rozza A, Scelsi R, Viappiani S, Buccellati C, Sala A, Folco G. The Cycloxygenase-2 inhibitor SC58236 is neuroprotective in an in vivo model of focal ischemia in the rat. Neurosci Lett 2001; 303:91-4. [PMID: 11311500 DOI: 10.1016/s0304-3940(01)01675-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Focal ischemia was induced in the fronto-parietal region of rat brain, by injection of Rose Bengal, followed by light activation. Focal ischemia was accompanied by formation of PGD(2) peaking 60-90 min post irradiation and declining thereafter. Increased Cycloxygenase-2 (COX-2) expression was also observed. Control ischemic rats showed distinct morphological alterations with necrosis of neurons, glial cells and blood vessels, surrounded by a halo with pyknotic cells with cytoplasm swelling and vacuolization. Compound SC58236, a selective COX-2 inhibitor, dose-dependently prevented, ischemia-induced eicosanoid formation (area under the curve (AUC) of controls: 3.11 +/- 0.87; AUC of 20 mg/kg SC58236: 0.39 +/- 0.24), and caused significant reduction of damaged area (30.7 and 18.9% at SC58236 20 and 6.6 mg/kg), suggesting that selective inhibitors of COX-2 are neuroprotective.
Collapse
Affiliation(s)
- S Govoni
- Department of Applied and Experimental Pharmacology, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Masoero E, Frattini P, Favalli L, Rozza A, Scelsi R, Govoni S. Effect of acute alcohol on ischemia-induced glutamate release and brain damage. Alcohol 2000; 22:173-7. [PMID: 11163125 DOI: 10.1016/s0741-8329(00)00117-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological studies show that chronic ethanol consumption at high doses enhances the risk of cerebral stroke. The mechanisms responsible for the greater vulnerability of alcoholics' brains to stroke have to be completely understood, but a role for excitatory amino acids has been suggested. In order to study the interaction between alcohol and ischemia, we investigated the effect of acute alcohol administration in a model of focal cerebral ischemia. In particular, we evaluated the release of glutamate and aspartate from the cerebral frontal cortex by a transdialysis technique. Alcohol was acutely administered at 1.5 and 3.0 g/kg ip. During the period of maximal alcoholemia, ethanol almost abolished the ischemia-induced release of glutamate leading to glutamate values around or below the basal. Aspartate levels were unaltered both following ischemia and alcohol+ischemia. The decrease in glutamate release, however, was not accompanied by a significant reduction of the extension of the damaged area assessed by histological analysis.
Collapse
Affiliation(s)
- E Masoero
- Department of Experimental and Applied Pharmacology, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Rozza A, Masoero E, Favalli L, Lanza E, Govoni S, Rizzo V, Montalbetti L. Influence of different anaesthetics on extracellular aminoacids in rat brain. J Neurosci Methods 2000; 101:165-9. [PMID: 10996377 DOI: 10.1016/s0165-0270(00)00266-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We used different anaesthetic procedures to study the possible effects of anaesthesia on extracellular aminoacid concentration in rat brain. Glutamate, aspartate and glycine concentrations were determined by HPLC in samples collected from the right fronto-parietal region of the rat brain cortex by transcerebral microdialysis before and up to 2 h following anaesthesia induction. Anaesthesia induced by ketamine, alone or in association with xylazine, caused a significant decrease in the levels of glutamate, aspartate and glycine, compared to before anaesthesia values (range: 27-72% according to the time of sampling and to the anaesthetic used). Inhalation anaesthesia with halothane (3%) in N2O/O2 mixture produced no significant effects on aminoacid levels. Equitensine (pentobarbital in association with chloral hydrate and ethanol) and pentobarbital also had no significant effect on glutamate, aspartate and glycine levels during anaesthesia. This demonstrates that some anaesthetics alter excitatory aminoacid release and suggests that Equitensine may represent an easy and reliable method to induce a long lasting anaesthesia associated without changes in excitatory aminoacid extracellular concentration.
Collapse
Affiliation(s)
- A Rozza
- Department of Experimental and Applied Pharmacology, University of Pavia, Viale Taramelli 14, 27100, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The newly introduced cyclo-oxygenase-2 (COX-2) inhibiting nonsteroidal anti-inflammatory drugs (NSAIDs) have been established as effective agents in treating arthritic conditions, while greatly reducing the gastrointestinal adverse effects of traditional NSAIDs. There are expectations that NSAIDs will be useful in the treatment of Alzheimer's disease (AD), and that COX-2 inhibitors might have a role. However, a recently reported clinical trial of a COX-2 inhibitor in AD indicated that it was neither protective nor did it accelerate the decline. The expectations were based on pathological evidence of inflammatory changes associated with AD lesions and epidemiological evidence of a reduced prevalence of AD in populations taking NSAIDs. They were supported by preliminary evidence showing efficacy of NSAIDs in treating patients with AD. These data are based on the use of traditional NSAIDs. Whether COX-2 inhibitors would be similarly effective was uncertain since COX-2 is constitutively expressed in neurons. Animal experiments suggest that COX-2 may be performing adaptive functions associated with normal neurons and protective functions associated with stressed neurons. These results emphasise that the appropriate target for NSAID trials in AD is COX-1, but they also indicate that there would be no contraindication to the use of those traditional NSAIDs which have mixed COX-1/COX-2 inhibiting activity.
Collapse
Affiliation(s)
- P L McGeer
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
25
|
Affiliation(s)
- I Ho
- Neuroinflammation Research Laboratories, Department of Psychiatry, Mount Sinai School of Medicine, Box 1229, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|