1
|
Dai SP, Yang CC, Chin Y, Sun WH. T cell death-associated gene 8-mediated distinct signaling pathways modulate the early and late phases of neuropathic pain. iScience 2024; 27:110955. [PMID: 39381739 PMCID: PMC11460492 DOI: 10.1016/j.isci.2024.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injury alters the transduction of nociceptive signaling. The coordination of neurons, glia, and immune cells results in persistent pain and inflammation. T cell death-associated gene 8 (TDAG8), located at nociceptors and immune cells, is involved in inflammatory pain and arthritis-induced pain. Here, we employed TDAG8-deficient mice, pharmacological approaches, and calcium/sodium imaging to elucidate how TDAG8-mediated signaling modulates neuron activities in a mouse model of chronic constriction injury-induced neuropathic pain. We demonstrated that TDAG8 participated alone in mechanical allodynia induced by constriction injury. (1) TDAG8-Nav1.8 signaling in small-diameter isolectin B4-positive [IB4(+)] neurons initiates mechanical allodynia; it also modulated substance P release from IB4(-) neurons to facilitate the development of early mechanical allodynia. (2) TDAG8-mediated signaling increased medium-to large-diameter IB4(-) neuron activity to maintain late mechanical allodynia; it also modulated substance P release in soma to reduce satellite glial number and Nav1.7 expression, thus attenuating chronic mechanical allodynia.
Collapse
Affiliation(s)
- Shih-Ping Dai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chieh Yang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yin Chin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Kan P, Zhu YF, Ma J, Singh G. Computational modeling to study the impact of changes in Nav1.8 sodium channel on neuropathic pain. Front Comput Neurosci 2024; 18:1327986. [PMID: 38784679 PMCID: PMC11111952 DOI: 10.3389/fncom.2024.1327986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Objective Nav1.8 expression is restricted to sensory neurons; it was hypothesized that aberrant expression and function of this channel at the site of injury contributed to pathological pain. However, the specific contributions of Nav1.8 to neuropathic pain are not as clear as its role in inflammatory pain. The aim of this study is to understand how Nav1.8 present in peripheral sensory neurons regulate neuronal excitability and induce various electrophysiological features on neuropathic pain. Methods To study the effect of changes in sodium channel Nav1.8 kinetics, Hodgkin-Huxley type conductance-based models of spiking neurons were constructed using the NEURON v8.2 simulation software. We constructed a single-compartment model of neuronal soma that contained Nav1.8 channels with the ionic mechanisms adapted from some existing small DRG neuron models. We then validated and compared the model with our experimental data from in vivo recordings on soma of small dorsal root ganglion (DRG) sensory neurons in animal models of neuropathic pain (NEP). Results We show that Nav1.8 is an important parameter for the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability. The typical increased excitability seen is dominated by a left shift in the steady state of activation of this channel and is further modulated by this channel's maximum conductance and steady state of inactivation. Therefore, modified action potential shape, decreased threshold, and increased repetitive firing of sensory neurons in our neuropathic animal models may be orchestrated by these modulations on Nav1.8. Conclusion Computational modeling is a novel strategy to understand the generation of chronic pain. In this study, we highlight that changes to the channel functions of Nav1.8 within the small DRG neuron may contribute to neuropathic pain.
Collapse
Affiliation(s)
- Peter Kan
- Department of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yong Fang Zhu
- Department of Health Sciences, Redeemer University, Hamilton, ON, Canada
| | - Junling Ma
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Tyszkiewicz C, Hwang SK, DaSilva JK, Kovi RC, Fader KA, Sirivelu MP, Liu J, Somps C, Cook J, Liu CN, Wang H. Absence of functional deficits in rats following systemic administration of an AAV9 vector despite moderate peripheral nerve and dorsal root ganglia findings: A clinically silent peripheral neuropathy. Neurotoxicology 2024; 101:46-53. [PMID: 38316190 DOI: 10.1016/j.neuro.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Adeno-associated virus (AAV)-based vectors are commonly used for delivering transgenes in gene therapy studies, but they are also known to cause dorsal root ganglia (DRG) and peripheral nerve toxicities in animals. However, the functional implications of these pathologic findings and their time course remain unclear. At 2, 4, 6, and 8 weeks following a single dose of an AAV9 vector carrying human frataxin transgene in rats, non-standard functional assessments, including von Frey filament, electrophysiology, and Rotarod tests, were conducted longitudinally to measure allodynia, nerve conduction velocity, and coordination, respectively. Additionally, DRGs, peripheral nerves, brain and spinal cord were evaluated histologically and circulating neurofilament light chain (NfL) was quantified at 1, 2, 4, and 8 weeks, respectively. At 2 and 4 weeks after dosing, minimal-to-moderate nerve fiber degeneration and neuronal degeneration were observed in the DRGs in some of the AAV9 vector-dosed animals. At 8 weeks, nerve fiber degeneration was observed in DRGs, with or without neuronal degeneration, and in sciatic nerves of all AAV9 vector-dosed animals. NfL values were higher in AAV9 vector-treated animals at weeks 4 and 8 compared with controls. However, there were no significant differences in the three functional endpoints evaluated between the AAV9 vector- and vehicle-dosed animals, or in a longitudinal comparison between baseline (predose), 4, and 8 week values in the AAV9 vector-dose animals. These findings demonstrate that there is no detectable functional consequence to the minimal-to-moderate neurodegeneration observed with our AAV9 vector treatment in rats, suggesting a functional tolerance or reserve for loss of DRG neurons after systemic administration of AAV9 vector.
Collapse
Affiliation(s)
- Cheryl Tyszkiewicz
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Seo-Kyoung Hwang
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Jamie K DaSilva
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Ramesh C Kovi
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - Kelly A Fader
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Madhu P Sirivelu
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - June Liu
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Chris Somps
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Jon Cook
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Chang-Ning Liu
- Drug Safety Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Helen Wang
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Jung M, Dourado M, Maksymetz J, Jacobson A, Laufer BI, Baca M, Foreman O, Hackos DH, Riol-Blanco L, Kaminker JS. Cross-species transcriptomic atlas of dorsal root ganglia reveals species-specific programs for sensory function. Nat Commun 2023; 14:366. [PMID: 36690629 PMCID: PMC9870891 DOI: 10.1038/s41467-023-36014-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Sensory neurons of the dorsal root ganglion (DRG) are critical for maintaining tissue homeostasis by sensing and initiating responses to stimuli. While most preclinical studies of DRGs are conducted in rodents, much less is known about the mechanisms of sensory perception in primates. We generated a transcriptome atlas of mouse, guinea pig, cynomolgus monkey, and human DRGs by implementing a common laboratory workflow and multiple data-integration approaches to generate high-resolution cross-species mappings of sensory neuron subtypes. Using our atlas, we identified conserved core modules highlighting subtype-specific biological processes related to inflammatory response. We also identified divergent expression of key genes involved in DRG function, suggesting species-specific adaptations specifically in nociceptors that likely point to divergent function of nociceptors. Among these, we validated that TAFA4, a member of the druggable genome, was expressed in distinct populations of DRG neurons across species, highlighting species-specific programs that are critical for therapeutic development.
Collapse
Affiliation(s)
- Min Jung
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, USA
| | - Michelle Dourado
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - James Maksymetz
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Amanda Jacobson
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA, USA
| | - Benjamin I Laufer
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, USA
| | - Miriam Baca
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - David H Hackos
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA.
| | - Lorena Riol-Blanco
- Department of Immunology Discovery, Genentech, Inc., South San Francisco, CA, USA.
| | - Joshua S Kaminker
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
6
|
Ambroxol for neuropathic pain: hiding in plain sight? Pain 2023; 164:3-13. [PMID: 35580314 DOI: 10.1097/j.pain.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Ambroxol is a multifaceted drug with primarily mucoactive and secretolytic actions, along with anti-inflammatory, antioxidant, and local anaesthetic properties. It has a long history of use in the treatment of respiratory tract diseases and has shown to be efficacious in relieving sore throat. In more recent years, ambroxol has gained interest for its potential usefulness in treating neuropathic pain. Research into this area has been slow, despite clear preclinical evidence to support its primary analgesic mechanism of action-blockade of voltage-gated sodium (Na v ) channels in sensory neurons. Ambroxol is a commercially available inhibitor of Na v 1.8, a crucial player in the pathophysiology of neuropathic pain, and Na v 1.7, a particularly exciting target for the treatment of chronic pain. In this review, we discuss the analgesic mechanisms of action of ambroxol, as well as proposed synergistic properties, followed by the preclinical and clinical results of its use in the treatment of persistent pain and neuropathic pain symptoms, including trigeminal neuralgia, fibromyalgia, and complex regional pain syndrome. With its well-established safety profile, extensive preclinical and clinical drug data, and early evidence of clinical effectiveness, ambroxol is an old drug worthy of further investigation for repurposing. As a patent-expired drug, a push is needed to progress the drug to clinical trials for neuropathic pain. We encourage the pharmaceutical industry to look at patented drug formulations and take an active role in bringing an optimized version for neuropathic pain to market.
Collapse
|
7
|
Zdora I, Jubran L, Allnoch L, Hansmann F, Baumgärtner W, Leitzen E. Morphological and phenotypical characteristics of porcine satellite glial cells of the dorsal root ganglia. Front Neuroanat 2022; 16:1015281. [PMID: 36337140 PMCID: PMC9626980 DOI: 10.3389/fnana.2022.1015281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 10/23/2023] Open
Abstract
Satellite glial cells (SGCs) of the dorsal root ganglia (DRG) ensure homeostasis and proportional excitability of sensory neurons and gained interest in the field of development and maintenance of neuropathic pain. Pigs represent a suitable species for translational medicine with a more similar anatomy and physiology to humans compared to rodents, and are used in research regarding treatment of neuropathic pain. Knowledge of anatomical and physiological features of porcine SGCs is prerequisite for interpreting potential alterations. However, state of knowledge is still limited. In the present study, light microscopy, ultrastructural analysis and immunofluorescence staining was performed. SGCs tightly surround DRG neurons with little vascularized connective tissue between SGC-neuron units, containing, among others, axons and Schwann cells. DRG were mainly composed of large sized neurons (∼59%), accompanied by fewer medium sized (∼36%) and small sized sensory neurons (∼6%). An increase of neuronal body size was concomitant with an increased number of surrounding SGCs. The majority of porcine SGCs expressed glutamine synthetase and inwardly rectifying potassium channel Kir 4.1, known as SGC-specific markers in other species. Similar to canine SGCs, marked numbers of porcine SGCs were immunopositive for glial fibrillary acidic protein, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and the transcription factor Sox2. Low to moderate numbers of SGCs showed aquaporin 4-immunoreactivity (AQP4) as described for murine SGCs. AQP4-immunoreactivity was primarily found in SGCs ensheathing small and medium sized neuronal somata. Low numbers of SGCs were immunopositive for ionized calcium-binding adapter molecule 1, indicating a potential immune cell character. No immunoreactivity for common leukocyte antigen CD45 nor neural/glial antigen 2 was detected. The present study provides essential insights into the characteristic features of non-activated porcine SGCs, contributing to a better understanding of this cell population and its functional aspects. This will help to interpret possible changes that might occur under activating conditions such as pain.
Collapse
Affiliation(s)
- Isabel Zdora
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lorna Jubran
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
- Center of Systems Neuroscience, Hanover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hanover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine, Hanover, Germany
| |
Collapse
|
8
|
Roza C, Bernal L. Electrophysiological characterization of ectopic spontaneous discharge in axotomized and intact fibers upon nerve transection: a role in spontaneous pain? Pflugers Arch 2022; 474:387-396. [PMID: 35088129 DOI: 10.1007/s00424-021-02655-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Many patients experience positive symptoms after traumatic nerve injury. Despite the increasing number of experimental studies in models of peripheral neuropathy and the knowledge acquired, most of these patients lack an effective treatment for their chronic pain. One possible explanation might be that most of the preclinical studies focused on the development of mechanical or thermal allodynia/hyperalgesia, neglecting that most of the patients with peripheral neuropathies complain mostly about spontaneous forms of pains. Here, we summarize the aberrant electrophysiological behavior of peripheral nerve fibers recorded in experimental models, the underlying pathophysiological mechanisms, and their relationship with the symptoms reported by patients. Upon nerve section, axotomized but also intact fibers develop ectopic spontaneous activity. Most interestingly, a proportion of axotomized fibers might present receptive fields in the skin far beyond the site of damage, indicative of a functional cross talk between neuromatose and intact fibers. All these features can be linked with some of the symptoms that neuropathic patients experience. Furthermore, we spotlight the consequence of primary afferents with different patterns of spontaneous discharge on the neural code and its relationship with chronic pain states. With this article, readers will be able to understand the pathophysiological mechanisms that might underlie some of the symptoms that experience neuropathic patients, with a special focus on spontaneous pain.
Collapse
Affiliation(s)
- Carolina Roza
- Dpto. Biología de Sistemas, Edificio de Medicina Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | | |
Collapse
|
9
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
11
|
Kankowski S, Grothe C, Haastert-Talini K. Neuropathic pain: Spotlighting anatomy, experimental models, mechanisms, and therapeutic aspects. Eur J Neurosci 2021; 54:4475-4496. [PMID: 33942412 DOI: 10.1111/ejn.15266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
The International Association for the Study of Pain defines neuropathic pain as "pain arising as a direct consequence of a lesion or disease affecting the somatosensory system". The associated changes can be observed in the peripheral as well as the central nervous system. The available literature discusses a wide variety of causes as predisposing for the development and amplification of neuropathic pain. Further, key interactions within sensory pathways have been discovered, but no common molecular mechanism leading to neuropathic pain has been identified until now. In the first part of this review, the pain mediating lateral spinothalamic tract is described. Different in vivo models are presented that allow studying trauma-, chemotherapy-, virus-, and diabetes-induced neuropathic pain in rodents. We furthermore discuss approaches to assess neuropathic pain in these models. Second, the current knowledge about cellular and molecular mechanisms suggested to underlie the development of neuropathic pain is presented and discussed. A summary of established therapies that are already applied in the clinic and novel, promising approaches closes the paper. In conclusion, the established animal models are able to emulate the diversity of neuropathic pain observed in the clinics. However, the assessment of neuropathic pain in the presented in vivo models should be improved. The determination of common molecular markers with suitable in vitro models would simplify the assessment of neuropathic pain in vivo. This would furthermore provide insights into common molecular mechanisms of the disease and establish a basis to search for satisfying therapeutic approaches.
Collapse
Affiliation(s)
- Svenja Kankowski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany
| | - Claudia Grothe
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School (MHH), Hannover, Germany.,Center for Systems Neuroscience (ZNS) Hannover, Hannover, Germany
| |
Collapse
|
12
|
Nava-Mesa MO, Aispuru Lanche GR. [Role of B vitamins, thiamine, pyridoxine, and cyanocobalamin in back pain and other musculoskeletal conditions: a narrative review]. Semergen 2021; 47:551-562. [PMID: 33865694 DOI: 10.1016/j.semerg.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
Low back pain, as well as other musculoskeletal disorders (neck pain, osteoarthritis, etc.), are a very frequent cause of consultation both in primary care and in other hospital specialties and are usually associated with high functional and work disability. Acute low back pain can present different nociceptive, neuropathic and nonciplastic components, which leads to consider it as a mixed type pain. The importance of the concept of mixed pain is due to the fact that the symptomatic relief of these pathologies requires a multimodal therapeutic approach to various pharmacological targets. The antinociceptive role of the B vitamin complex has been recognized for several decades, specifically the combination of Thiamine, Pyridoxine and Cyanocobalamin (TPC). Likewise, there is accumulated evidence that indicates an adjuvant analgesic action in low back pain. The aim of the present review is to present the existing evidence and the latest findings on the therapeutic effects of the TPC combination in low back pain. Likewise, some of the most relevant mechanisms of action involved that can explain these effects are analyzed. The reviewed evidence indicates that the combined use of PCT has an adjuvant analgesic effect in mixed pain, specifically in low back pain and other musculoskeletal disorders with nociceptive and neuropathic components. This effect can be explained by an anti-inflammatory, antinociceptive, neuroprotective and neuromodulatory action of the TPC combination on the descending pain system.
Collapse
Affiliation(s)
- M O Nava-Mesa
- Grupo de Investigación en Neurociencias (NEUROS), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - G R Aispuru Lanche
- Grupo de Trabajo Aparato Locomotor Semergen. Gerencia de Atención Primaria de Burgos, Castilla y León, España.
| |
Collapse
|
13
|
Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics 2021; 13:pharmaceutics13040450. [PMID: 33810493 PMCID: PMC8067282 DOI: 10.3390/pharmaceutics13040450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain in humans results from an injury or disease of the somatosensory nervous system at the peripheral or central level. Despite the considerable progress in pain management methods made to date, peripheral neuropathic pain significantly impacts patients' quality of life, as pharmacological and non-pharmacological methods often fail or induce side effects. Topical treatments are gaining popularity in the management of peripheral neuropathic pain, due to excellent safety profiles and preferences. Moreover, topical treatments applied locally may target the underlying mechanisms of peripheral sensitization and pain. Recent studies showed that peripheral sensitization results from interactions between neuronal and non-neuronal cells, with numerous signaling molecules and molecular/cellular targets involved. This narrative review discusses the molecular/cellular mechanisms of drugs available in topical formulations utilized in clinical practice and their effectiveness in clinical studies in patients with peripheral neuropathic pain. We searched PubMed for papers published from 1 January 1995 to 30 November 2020. The key search phrases for identifying potentially relevant articles were "topical AND pain", "topical AND neuropathic", "topical AND treatment", "topical AND mechanism", "peripheral neuropathic", and "mechanism". The result of our search was 23 randomized controlled trials (RCT), 9 open-label studies, 16 retrospective studies, 20 case (series) reports, 8 systematic reviews, 66 narrative reviews, and 140 experimental studies. The data from preclinical studies revealed that active compounds of topical treatments exert multiple mechanisms of action, directly or indirectly modulating ion channels, receptors, proteins, and enzymes expressed by neuronal and non-neuronal cells, and thus contributing to antinociception. However, which mechanisms and the extent to which the mechanisms contribute to pain relief observed in humans remain unclear. The evidence from RCTs and reviews supports 5% lidocaine patches, 8% capsaicin patches, and botulinum toxin A injections as effective treatments in patients with peripheral neuropathic pain. In turn, single RCTs support evidence of doxepin, funapide, diclofenac, baclofen, clonidine, loperamide, and cannabidiol in neuropathic pain states. Topical administration of phenytoin, ambroxol, and prazosin is supported by observational clinical studies. For topical amitriptyline, menthol, and gabapentin, evidence comes from case reports and case series. For topical ketamine and baclofen, data supporting their effectiveness are provided by both single RCTs and case series. The discussed data from clinical studies and observations support the usefulness of topical treatments in neuropathic pain management. This review may help clinicians in making decisions regarding whether and which topical treatment may be a beneficial option, particularly in frail patients not tolerating systemic pharmacotherapy.
Collapse
|
14
|
Bernal L, Cisneros E, Roza C. Activation of the regeneration-associated gene STAT3 and functional changes in intact nociceptors after peripheral nerve damage in mice. Eur J Pain 2021; 25:886-901. [PMID: 33345380 DOI: 10.1002/ejp.1718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the context of neuropathic pain, the contribution of regeneration to the development of positive symptoms is not completely understood. Several efforts have been done to described changes in axotomized neurons, however, there is scarce data on changes occurring in intact neurons, despite experimental evidence of functional changes. To address this issue, we analysed by immunohistochemistry the presence of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), an accepted marker of regeneration, within DRGs where axotomized neurons were retrogradely labelled following peripheral nerve injury. Likewise, we have characterized abnormal electrophysiological properties in intact fibres after partial nerve injury. METHODS/RESULTS We showed that induction of pSTAT3 in sensory neurons was similar after partial or total transection of the sciatic nerve and to the same extent within axotomized and non-axotomized neurons. We also examined pSTAT3 presence on non-peptidergic and peptidergic nociceptors. Whereas the percentage of neurons marked by IB4 decrease after injury, the proportion of CGRP neurons did not change, but its expression switched from small- to large-diameter neurons. Besides, the percentage of CGRP+ neurons expressing pSTAT3 increased significantly 2.5-folds after axotomy, preferentially in neurons with large diameters. Electrophysiological recordings showed that after nerve damage, most of the neurons with ectopic spontaneous activity (39/46) were non-axotomized C-fibres with functional receptive fields in the skin far beyond the site of damage. CONCLUSIONS Neuronal regeneration after nerve injury, likely triggered from the site of injury, may explain the abnormal functional properties gained by intact neurons, reinforcing their role in neuropathic pain. SIGNIFICANCE Positive symptoms in patients with peripheral neuropathies correlate to abnormal functioning of different subpopulations of primary afferents. Peripheral nerve damage triggers regenerating programs in the cell bodies of axotomized but also in non-axotomized nociceptors which is in turn, develop abnormal spontaneous and evoked discharges. Therefore, intact nociceptors have a significant role in the development of neuropathic pain due to their hyperexcitable peripheral terminals. Therapeutical targets should focus on inhibiting peripheral hyperexcitability in an attempt to limit peripheral and central sensitization.
Collapse
Affiliation(s)
- Laura Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| | - Elsa Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain.,Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain.,Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
15
|
Hulme AJ, McArthur JR, Maksour S, Miellet S, Ooi L, Adams DJ, Finol-Urdaneta RK, Dottori M. Molecular and Functional Characterization of Neurogenin-2 Induced Human Sensory Neurons. Front Cell Neurosci 2020; 14:600895. [PMID: 33362470 PMCID: PMC7761588 DOI: 10.3389/fncel.2020.600895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Sensory perception is fundamental to everyday life, yet understanding of human sensory physiology at the molecular level is hindered due to constraints on tissue availability. Emerging strategies to study and characterize peripheral neuropathies in vitro involve the use of human pluripotent stem cells (hPSCs) differentiated into dorsal root ganglion (DRG) sensory neurons. However, neuronal functionality and maturity are limited and underexplored. A recent and promising approach for directing hPSC differentiation towards functionally mature neurons involves the exogenous expression of Neurogenin-2 (NGN2). The optimized protocol described here generates sensory neurons from hPSC-derived neural crest (NC) progenitors through virally induced NGN2 expression. NC cells were derived from hPSCs via a small molecule inhibitor approach and enriched for migrating NC cells (66% SOX10+ cells). At the protein and transcript level, the resulting NGN2 induced sensory neurons (NGN2iSNs) express sensory neuron markers such as BRN3A (82% BRN3A+ cells), ISLET1 (91% ISLET1+ cells), TRKA, TRKB, and TRKC. Importantly, NGN2iSNs repetitively fire action potentials (APs) supported by voltage-gated sodium, potassium, and calcium conductances. In-depth analysis of the molecular basis of NGN2iSN excitability revealed functional expression of ion channels associated with the excitability of primary afferent neurons, such as Nav1.7, Nav1.8, Kv1.2, Kv2.1, BK, Cav2.1, Cav2.2, Cav3.2, ASICs and HCN among other ion channels, for which we provide functional and transcriptional evidence. Our characterization of stem cell-derived sensory neurons sheds light on the molecular basis of human sensory physiology and highlights the suitability of using hPSC-derived sensory neurons for modeling human DRG development and their potential in the study of human peripheral neuropathies and drug therapies.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Rosenberger DC, Blechschmidt V, Timmerman H, Wolff A, Treede RD. Challenges of neuropathic pain: focus on diabetic neuropathy. J Neural Transm (Vienna) 2020; 127:589-624. [PMID: 32036431 PMCID: PMC7148276 DOI: 10.1007/s00702-020-02145-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a frequent condition caused by a lesion or disease of the central or peripheral somatosensory nervous system. A frequent cause of peripheral neuropathic pain is diabetic neuropathy. Its complex pathophysiology is not yet fully elucidated, which contributes to underassessment and undertreatment. A mechanism-based treatment of painful diabetic neuropathy is challenging but phenotype-based stratification might be a way to develop individualized therapeutic concepts. Our goal is to review current knowledge of the pathophysiology of peripheral neuropathic pain, particularly painful diabetic neuropathy. We discuss state-of-the-art clinical assessment, validity of diagnostic and screening tools, and recommendations for the management of diabetic neuropathic pain including approaches towards personalized pain management. We also propose a research agenda for translational research including patient stratification for clinical trials and improved preclinical models in relation to current knowledge of underlying mechanisms.
Collapse
Affiliation(s)
- Daniela C Rosenberger
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Vivian Blechschmidt
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hans Timmerman
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - André Wolff
- Department of Anesthesiology, Pain Center, University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
17
|
Ma RSY, Kayani K, Whyte-Oshodi D, Whyte-Oshodi A, Nachiappan N, Gnanarajah S, Mohammed R. Voltage gated sodium channels as therapeutic targets for chronic pain. J Pain Res 2019; 12:2709-2722. [PMID: 31564962 PMCID: PMC6743634 DOI: 10.2147/jpr.s207610] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023] Open
Abstract
Being maladaptive and frequently unresponsive to pharmacotherapy, chronic pain presents a major unmet clinical need. While an intact central nervous system is required for conscious pain perception, nociceptor hyperexcitability induced by nerve injury in the peripheral nervous system (PNS) is sufficient and necessary to initiate and maintain neuropathic pain. The genesis and propagation of action potentials is dependent on voltage-gated sodium channels, in particular, Nav1.7, Nav1.8 and Nav1.9. However, nerve injury triggers changes in their distribution, expression and/or biophysical properties, leading to aberrant excitability. Most existing treatment for pain relief acts through non-selective, state-dependent sodium channel blockage and have narrow therapeutic windows. Natural toxins and developing subtype-specific and molecular-specific sodium channel blockers show promise for treatment of neuropathic pain with minimal side effects. New approaches to analgesia include combination therapy and gene therapy. Here, we review how individual sodium channel subtypes contribute to pain, and the attempts made to develop more effective analgesics for the treatment of chronic pain.
Collapse
Affiliation(s)
- Renee Siu Yu Ma
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kayani Kayani
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | | | - Raihan Mohammed
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Hermanns H, Hollmann MW, Stevens MF, Lirk P, Brandenburger T, Piegeler T, Werdehausen R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. Br J Anaesth 2019; 123:335-349. [DOI: 10.1016/j.bja.2019.06.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
|
19
|
Price TJ, Gold MS. From Mechanism to Cure: Renewing the Goal to Eliminate the Disease of Pain. PAIN MEDICINE 2019; 19:1525-1549. [PMID: 29077871 DOI: 10.1093/pm/pnx108] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective Persistent pain causes untold misery worldwide and is a leading cause of disability. Despite its astonishing prevalence, pain is undertreated, at least in part because existing therapeutics are ineffective or cause intolerable side effects. In this review, we cover new findings about the neurobiology of pain and argue that all but the most transient forms of pain needed to avoid tissue damage should be approached as a disease where a cure can be the goal of all treatment plans, even if attaining this goal is not yet always possible. Design We reviewed the literature to highlight recent advances in the area of the neurobiology of pain. Results We discuss barriers that are currently hindering the achievement of this goal, as well as the development of new therapeutic strategies. We also discuss innovations in the field that are creating new opportunities to treat and even reverse persistent pain, some of which are in late-phase clinical trials. Conclusion We conclude that the confluence of new basic science discoveries and development of new technologies are creating a path toward pain therapeutics that should offer significant hope of a cure for patients and practitioners alike. Classification of Evidence. Our review points to new areas of inquiry for the pain field to advance the goal of developing new therapeutics to treat chronic pain.
Collapse
Affiliation(s)
- Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas
| | - Michael S Gold
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Haberberger RV, Barry C, Dominguez N, Matusica D. Human Dorsal Root Ganglia. Front Cell Neurosci 2019; 13:271. [PMID: 31293388 PMCID: PMC6598622 DOI: 10.3389/fncel.2019.00271] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Sensory neurons with cell bodies situated in dorsal root ganglia convey information from external or internal sites of the body such as actual or potential harm, temperature or muscle length to the central nervous system. In recent years, large investigative efforts have worked toward an understanding of different types of DRG neurons at transcriptional, translational, and functional levels. These studies most commonly rely on data obtained from laboratory animals. Human DRG, however, have received far less investigative focus over the last 30 years. Nevertheless, knowledge about human sensory neurons is critical for a translational research approach and future therapeutic development. This review aims to summarize both historical and emerging information about the size and location of human DRG, and highlight advances in the understanding of the neurochemical characteristics of human DRG neurons, in particular nociceptive neurons.
Collapse
Affiliation(s)
- Rainer Viktor Haberberger
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| | - Christine Barry
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Nicholas Dominguez
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
21
|
Bennett DL, Clark AJ, Huang J, Waxman SG, Dib-Hajj SD. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol Rev 2019; 99:1079-1151. [DOI: 10.1152/physrev.00052.2017] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute pain signaling has a key protective role and is highly evolutionarily conserved. Chronic pain, however, is maladaptive, occurring as a consequence of injury and disease, and is associated with sensitization of the somatosensory nervous system. Primary sensory neurons are involved in both of these processes, and the recent advances in understanding sensory transduction and human genetics are the focus of this review. Voltage-gated sodium channels (VGSCs) are important determinants of sensory neuron excitability: they are essential for the initial transduction of sensory stimuli, the electrogenesis of the action potential, and neurotransmitter release from sensory neuron terminals. Nav1.1, Nav1.6, Nav1.7, Nav1.8, and Nav1.9 are all expressed by adult sensory neurons. The biophysical characteristics of these channels, as well as their unique expression patterns within subtypes of sensory neurons, define their functional role in pain signaling. Changes in the expression of VGSCs, as well as posttranslational modifications, contribute to the sensitization of sensory neurons in chronic pain states. Furthermore, gene variants in Nav1.7, Nav1.8, and Nav1.9 have now been linked to human Mendelian pain disorders and more recently to common pain disorders such as small-fiber neuropathy. Chronic pain affects one in five of the general population. Given the poor efficacy of current analgesics, the selective expression of particular VGSCs in sensory neurons makes these attractive targets for drug discovery. The increasing availability of gene sequencing, combined with structural modeling and electrophysiological analysis of gene variants, also provides the opportunity to better target existing therapies in a personalized manner.
Collapse
Affiliation(s)
- David L. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Alex J. Clark
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Jianying Huang
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Stephen G. Waxman
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Sulayman D. Dib-Hajj
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut; and Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
22
|
Hameed S. Na v1.7 and Na v1.8: Role in the pathophysiology of pain. Mol Pain 2019; 15:1744806919858801. [PMID: 31172839 PMCID: PMC6589956 DOI: 10.1177/1744806919858801] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/25/2019] [Accepted: 05/30/2019] [Indexed: 01/25/2023] Open
Abstract
Chronic pain is a significant unmet medical problem. Current research regarding sodium channel function in pathological pain is advancing with the hope that it will enable the development of isoform-specific sodium channel blockers, a promising treatment for chronic pain. Before advancements in the pharmacological field, an elucidation of the roles of Nav1.7 and Nav1.8 in the pathophysiology of pain states is required. Thus, the aim of this report is to present what is currently known about the contributions of these sodium channel subtypes in the pathophysiology of neuropathic and inflammatory pain. The electrophysiological properties and localisation of sodium channel isoforms is discussed. Research concerning the genetic links of Nav1.7 and Nav1.8 in acquired neuropathic and inflammatory pain states from the scientific literature in this field is reported. The role of Nav1.7 and Nav1.8 in the generation and maintenance of abnormal neuronal electrogenesis and hyperexcitability highlights the importance of these channels in the development of pathological pain. However, further research in this area is required to fully elucidate the roles of Nav1.7 and Nav1.8 in the pathophysiology of pain for the development of subtype-specific sodium channel blockers.
Collapse
Affiliation(s)
- Shaila Hameed
- Department of Physiology, King’s College London, London, UK
| |
Collapse
|
23
|
Kinesins: Motor Proteins as Novel Target for the Treatment of Chronic Pain. Mol Neurobiol 2018; 56:3854-3864. [DOI: 10.1007/s12035-018-1327-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
|
24
|
Cardoso FC, Lewis RJ. Sodium channels and pain: from toxins to therapies. Br J Pharmacol 2018; 175:2138-2157. [PMID: 28749537 PMCID: PMC5980290 DOI: 10.1111/bph.13962] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (NaV channels) are essential for the initiation and propagation of action potentials that critically influence our ability to respond to a diverse range of stimuli. Physiological and pharmacological studies have linked abnormal function of NaV channels to many human disorders, including chronic neuropathic pain. These findings, along with the description of the functional properties and expression pattern of NaV channel subtypes, are helping to uncover subtype specific roles in acute and chronic pain and revealing potential opportunities to target these with selective inhibitors. High-throughput screens and automated electrophysiology platforms have identified natural toxins as a promising group of molecules for the development of target-specific analgesics. In this review, the role of toxins in defining the contribution of NaV channels in acute and chronic pain states and their potential to be used as analgesic therapies are discussed. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| | - Richard J Lewis
- Department of Chemistry and Structural Biology, Institute for Molecular BioscienceThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
25
|
Wang J, Ou SW, Wang YJ. Distribution and function of voltage-gated sodium channels in the nervous system. Channels (Austin) 2017; 11:534-554. [PMID: 28922053 DOI: 10.1080/19336950.2017.1380758] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Shao-Wu Ou
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Yun-Jie Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| |
Collapse
|
26
|
Benoliel R, Epstein J, Eliav E, Jurevic R, Elad S. Orofacial Pain in Cancer: Part I—Mechanisms. J Dent Res 2016; 86:491-505. [PMID: 17525348 DOI: 10.1177/154405910708600604] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The mechanisms involved, and possible treatment targets, in orofacial pain due to cancer are poorly understood. The aim of the first of this two-part series is to review the involved pathophysiological mechanisms and explore their possible roles in the orofacial region. However, there is a lack of relevant research in the trigeminal region, and we have therefore applied data accumulated from experiments on cancer pain mechanisms in rodent spinal models. In the second part, we review the clinical presentation of cancer-associated orofacial pain at various stages: initial diagnosis, during therapy (chemo-, radiotherapy, surgery), and in the post-therapy period. In the present article, we provide a brief outline of trigeminal functional neuro-anatomy and pain-modulatory pathways. Tissue destruction by invasive tumors (or metastases) induces inflammation and nerve damage, with attendant acute pain. In some cases, chronic pain, involving inflammatory and neuropathic mechanisms, may ensue. Distant, painful effects of tumors include paraneoplastic neuropathic syndromes and effects secondary to the release of factors by the tumor (growth factors, cytokines, and enzymes). Additionally, pain is frequent in cancer management protocols (surgery, chemotherapy, and radiotherapy). Understanding the mechanisms involved in cancer-related orofacial pain will enhance patient management.
Collapse
Affiliation(s)
- R Benoliel
- Department of Oral Medicine, The Hebrew University, Hadassah Faculty of Dental Medicine, PO Box 12272, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
27
|
Enright HA, Felix SH, Fischer NO, Mukerjee EV, Soscia D, Mcnerney M, Kulp K, Zhang J, Page G, Miller P, Ghetti A, Wheeler EK, Pannu S. Long-term non-invasive interrogation of human dorsal root ganglion neuronal cultures on an integrated microfluidic multielectrode array platform. Analyst 2016; 141:5346-57. [PMID: 27351032 DOI: 10.1039/c5an01728a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Scientific studies in drug development and toxicology rely heavily on animal models, which often inaccurately predict the true response for human exposure. This may lead to unanticipated adverse effects or misidentified risks that result in, for example, drug candidate elimination. The utilization of human cells and tissues for in vitro physiological platforms has become a growing area of interest to bridge this gap and to more accurately predict human responses to drugs and toxins. The effects of new drugs and toxins on the peripheral nervous system are often investigated with neurons isolated from dorsal root ganglia (DRG), typically with one-time measurement techniques such as patch clamping. Here, we report the use of our multi-electrode array (MEA) platform for long-term noninvasive assessment of human DRG cell health and function. In this study, we acquired simultaneous optical and electrophysiological measurements from primary human DRG neurons upon chemical stimulation repeatedly through day in vitro (DIV) 23. Distinct chemical signatures were noted for the cellular responses evoked by each chemical stimulus. Additionally, the cell viability and function of the human DRG neurons were consistent through DIV 23. To the best of our knowledge, this is the first report on long-term measurements of the cell health and function of human DRG neurons on a MEA platform. Future generations will include higher electrode numbers in customized arrangements as well as integration with different tissue types on a single device. This platform will provide a valuable testing tool for both rodent and human cells, enabling a more comprehensive risk assessment for drug candidates and toxicants.
Collapse
Affiliation(s)
- H A Enright
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
van der Wal SEI, van den Heuvel SAS, Radema SA, van Berkum BFM, Vaneker M, Steegers MAH, Scheffer GJ, Vissers KCP. The in vitro mechanisms and in vivo efficacy of intravenous lidocaine on the neuroinflammatory response in acute and chronic pain. Eur J Pain 2015; 20:655-74. [PMID: 26684648 DOI: 10.1002/ejp.794] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The neuroinflammatory response plays a key role in several pain syndromes. Intravenous (iv) lidocaine is beneficial in acute and chronic pain. This review delineates the current literature concerning in vitro mechanisms and in vivo efficacy of iv lidocaine on the neuroinflammatory response in acute and chronic pain. DATABASES AND DATA TREATMENT We searched PUBMED and the Cochrane Library for in vitro and in vivo studies from July 1975 to August 2014. In vitro articles providing an explanation for the mechanisms of action of lidocaine on the neuroinflammatory response in pain were included. Animal or clinical studies were included concerning iv lidocaine for acute or chronic pain or during inflammation. RESULTS Eighty-eight articles regarding iv lidocaine were included: 36 in vitro studies evaluating the effect on ion channels and receptors; 31 animal studies concerning acute and chronic pain and inflammatory models; 21 clinical studies concerning acute and chronic pain. Low-dose lidocaine inhibits in vitro voltage-gated sodium channels, the glycinergic system, some potassium channels and Gαq-coupled protein receptors. Higher lidocaine concentrations block potassium and calcium channels, and NMDA receptors. Animal studies demonstrate lidocaine to have analgesic effects in acute and neuropathic pain syndromes and anti-inflammatory effects early in the inflammatory response. Clinical studies demonstrate lidocaine to have advantage in abdominal surgery and in some neuropathic pain syndromes. CONCLUSIONS Intravenous lidocaine has analgesic, anti-inflammatory and antihyperalgesic properties mediated by an inhibitory effect on ion channels and receptors. It attenuates the neuroinflammatory response in perioperative pain and chronic neuropathic pain.
Collapse
Affiliation(s)
- S E I van der Wal
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - S A S van den Heuvel
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - S A Radema
- Department of Medical Oncology, RUMC, Nijmegen, The Netherlands
| | - B F M van Berkum
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - M Vaneker
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - M A H Steegers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - G J Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| | - K C P Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center (RUMC), Nijmegen, The Netherlands
| |
Collapse
|
29
|
Effective anaesthesia of the acutely inflamed pulp: part 1. The acutely inflamed pulp. Br Dent J 2015; 219:385-90. [DOI: 10.1038/sj.bdj.2015.812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 11/08/2022]
|
30
|
Bao L. Trafficking regulates the subcellular distribution of voltage-gated sodium channels in primary sensory neurons. Mol Pain 2015; 11:61. [PMID: 26423360 PMCID: PMC4590712 DOI: 10.1186/s12990-015-0065-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) comprise at least nine pore-forming α subunits. Of these, Nav1.6, Nav1.7, Nav1.8 and Nav1.9 are the most frequently studied in primary sensory neurons located in the dorsal root ganglion and are mainly localized to the cytoplasm. A large pool of intracellular Navs raises the possibility that changes in Nav trafficking could alter channel function. The molecular mediators of Nav trafficking mainly consist of signals within the Navs themselves, interacting proteins and extracellular factors. The surface expression of Navs is achieved by escape from the endoplasmic reticulum and proteasome degradation, forward trafficking and plasma membrane anchoring, and it is also regulated by channel phosphorylation and ubiquitination in primary sensory neurons. Axonal transport and localization of Navs in afferent fibers involves the motor protein KIF5B and scaffold proteins, including contactin and PDZ domain containing 2. Localization of Nav1.6 to the nodes of Ranvier in myelinated fibers of primary sensory neurons requires node formation and the submembrane cytoskeletal protein complex. These findings inform our understanding of the molecular and cellular mechanisms underlying Nav trafficking in primary sensory neurons.
Collapse
Affiliation(s)
- Lan Bao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
31
|
Payne CE, Brown AR, Theile JW, Loucif AJC, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM, Prime RL, Stockbridge G, Kirkup AJ, Bannon AW, England S, Chapman ML, Bagal S, Roeloffs R, Anand U, Anand P, Bungay PJ, Kemp M, Butt RP, Stevens EB. A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol 2015; 172:2654-70. [PMID: 25625641 DOI: 10.1111/bph.13092] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE NaV 1.8 ion channels have been highlighted as important molecular targets for the design of low MW blockers for the treatment of chronic pain. Here, we describe the effects of PF-01247324, a new generation, selective, orally bioavailable Nav 1.8 channel blocker of novel chemotype. EXPERIMENTAL APPROACH The inhibition of Nav 1.8 channels by PF-01247324 was studied using in vitro patch-clamp electrophysiology and the oral bioavailability and antinociceptive effects demonstrated using in vivo rodent models of inflammatory and neuropathic pain. KEY RESULTS PF-01247324 inhibited native tetrodotoxin-resistant (TTX-R) currents in human dorsal root ganglion (DRG) neurons (IC50 : 331 nM) and in recombinantly expressed h Nav 1.8 channels (IC50 : 196 nM), with 50-fold selectivity over recombinantly expressed TTX-R hNav 1.5 channels (IC50 : ∼10 μM) and 65-100-fold selectivity over TTX-sensitive (TTX-S) channels (IC50 : ∼10-18 μM). Native TTX-R currents in small-diameter rodent DRG neurons were inhibited with an IC50 448 nM, and the block of both human recombinant Nav 1.8 channels and TTX-R from rat DRG neurons was both frequency and state dependent. In vitro current clamp showed that PF-01247324 reduced excitability in both rat and human DRG neurons and also altered the waveform of the action potential. In vivo experiments n rodents demonstrated efficacy in both inflammatory and neuropathic pain models. CONCLUSIONS AND IMPLICATIONS Using PF-01247324, we have confirmed a role for Nav 1.8 channels in both inflammatory and neuropathic pain. We have also demonstrated a key role for Nav 1.8 channels in action potential upstroke and repetitive firing of rat and human DRG neurons.
Collapse
|
32
|
Pain related channels are differentially expressed in neuronal and non-neuronal cells of glabrous skin of fabry knockout male mice. PLoS One 2014; 9:e108641. [PMID: 25337704 PMCID: PMC4206276 DOI: 10.1371/journal.pone.0108641] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022] Open
Abstract
Fabry disease (FD) is one of the X-linked lysosomal storage disorders caused by deficient functioning of the alpha-galactosidase A (α-GalA) enzyme. The α-GalA deficiency leads to multi-systemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide in the endothelium and vascular smooth muscles. A hallmark symptom of FD patients is peripheral pain that appears in the early stage of the disease. Pain in FD patients is a peripheral small-fiber idiopathic neuropathy, with intra-epidermal fiber density and integrity being used for diagnosing FD in humans. However, the molecular correlates underlying pain sensation in FD remain elusive. Here, we have employed the α-GalA gene KO mouse as a model of FD in rodents to investigate molecular changes in their peripheral nervous system that may account for their algesic symptoms. The α-GalA null mice display neuropathic pain as evidenced by thermal hyperalgesia and mechanical allodynia, with histological analyses showing alterations in cutaneous innervation. Additionally, KO mice showed a decreased and scattered pattern of neuronal terminations consistent with the reduction in neuronal terminations in skin biopsies of patients with small fiber neuropathies. At the molecular level KO animals showed an increase in the expression of TRPV1 and Nav1.8, and a decrease in the expression of TRPM8. Notably, these alterations are observed in young animals. Taken together, our findings imply that the α-GalA KO mouse is a good model in which to study the peripheral small fiber neuropathy exhibited by FD patients, and provides molecular evidence for a hyperexcitability of small nociceptors in FD.
Collapse
|
33
|
Fukuoka T, Miyoshi K, Noguchi K. De novo expression of Nav1.7 in injured putative proprioceptive afferents: Multiple tetrodotoxin-sensitive sodium channels are retained in the rat dorsal root after spinal nerve ligation. Neuroscience 2014; 284:693-706. [PMID: 25453779 DOI: 10.1016/j.neuroscience.2014.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022]
Abstract
Tetrodotoxin-sensitive (TTX-s) spontaneous activity is recorded from the dorsal roots after peripheral nerve injury. Primary sensory neurons in the dorsal root ganglion (DRG) express multiple TTX-s voltage-gated sodium channel α-subunits (Navs). Since Nav1.3 increases, whereas all other Navs decrease, in the DRG neurons after peripheral nerve lesion, Nav1.3 is proposed to be critical for the generation of these spontaneous discharges and the contributions of other Navs have been ignored. Here, we re-evaluate the changes in expression of three other TTX-s Navs, Nav1.1, Nav1.6 and Nav1.7, in the injured 5th lumbar (L5) primary afferent components following L5 spinal nerve ligation (SNL) using in situ hybridization histochemistry and immunohistochemistry. While the overall signal intensities for these Nav mRNAs decreased, many injured DRG neurons still expressed these transcripts at clearly detectable levels. All these Nav proteins accumulated at the proximal stump of the ligated L5 spinal nerve. The immunostaining patterns of Nav1.6 and Nav1.7 associated with the nodes of Ranvier were maintained in the ipsilateral L5 dorsal root. Interestingly, putative proprioceptive neurons characterized by α3 Na+/K+ ATPase-immunostaining specifically lacked Nav1.7 mRNA in naïve DRG but displayed de novo expression of this transcript following SNL. Nav1.7-immunoreactive fibers were significantly increased in the ipsilateral gracile nucleus where central axonal branches of the injured A-fiber afferents terminated. These data indicate that multiple TTX-s channel subunits could contribute to the generation and propagation of the spontaneous discharges in the injured primary afferents. Specifically, Nav1.7 may cause some functional changes in sensory processing in the gracile nucleus after peripheral nerve injury.
Collapse
Affiliation(s)
- T Fukuoka
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | - K Miyoshi
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - K Noguchi
- Department of Anatomy & Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
34
|
Christidis N, Kang I, Cairns BE, Kumar U, Dong X, Rosén A, Kopp S, Ernberg M. Expression of 5-HT3 receptors and TTX resistant sodium channels (Na(V)1.8) on muscle nerve fibers in pain-free humans and patients with chronic myofascial temporomandibular disorders. J Headache Pain 2014; 15:63. [PMID: 25261281 PMCID: PMC4182444 DOI: 10.1186/1129-2377-15-63] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/08/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous studies have shown that 5-HT3-antagonists reduce muscle pain, but there are no studies that have investigated the expression of 5-HT3-receptors in human muscles. Also, tetrodotoxin resistant voltage gated sodium-channels (NaV) are involved in peripheral sensitization and found in trigeminal ganglion neurons innervating the rat masseter muscle. This study aimed to investigate the frequency of nerve fibers that express 5-HT3A-receptors alone and in combination with NaV1.8 sodium-channels in human muscles and to compare it between healthy pain-free men and women, the pain-free masseter and tibialis anterior muscles, and patients with myofascial temporomandibular disorders (TMD) and pain-free controls. METHODS Three microbiopsies were obtained from the most bulky part of the tibialis and masseter muscles of seven and six healthy men and seven and six age-matched healthy women, respectively, while traditional open biopsies were obtained from the most painful spot of the masseter of five female patients and from a similar region of the masseter muscle of five healthy, age-matched women. The biopsies were processed by routine immunohistochemical methods. The biopsy sections were incubated with monoclonal antibodies against the specific axonal marker PGP 9.5, and polyclonal antibodies against the 5-HT3A-receptors and NaV1.8 sodium-channels. RESULTS A similar percentage of nerve fibers in the healthy masseter (85.2%) and tibialis (88.7%) muscles expressed 5-HT3A-receptors. The expression of NaV1.8 by 5-HT3A positive nerve fibers associated with connective tissue was significantly higher than nerve fibers associated with myocytes (P < .001). In the patients, significantly more fibers per section were found with an average of 3.8 ± 3 fibers per section in the masseter muscle compared to 2.7 ± 0.2 in the healthy controls (P = .024). Further, the frequency of nerve fibers that co-expressed NaV1.8 and 5-HT3A receptors was significantly higher in patients (42.6%) compared to healthy controls (12.0%) (P < .001). CONCLUSIONS This study showed that the 5-HT3A-receptor is highly expressed in human masseter and tibialis muscles and that there are more nerve fibers that express 5-HT3A-receptors in the masseter of women with myofascial TMD compared to healthy women. These findings indicate that 5-HT3-receptors might be up-regulated in myofascial TMD and could serve as potential biomarkers of chronic muscle pain.
Collapse
Affiliation(s)
- Nikolaos Christidis
- Orofacial Pain and Jaw Function, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tseng TJ, Hsieh YL, Ko MH, Hsieh ST. Redistribution of voltage-gated sodium channels after nerve decompression contributes to relieve neuropathic pain in chronic constriction injury. Brain Res 2014; 1589:15-25. [PMID: 25038561 DOI: 10.1016/j.brainres.2014.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
Abstract
Nerve decompression is an important therapeutic strategy to relieve neuropathic pain and promote the peripheral nerve regeneration. To address these issues, we investigated the effects of nerve decompression on relief of neuropathic pain behaviors, redistribution of voltage-gated sodium channels (VGSCs), and skin reinnervation with chronic constriction injury (CCI). At post-operative week (POW) 4, animals were divided into a decompression group, in which the ligatures were removed, and a CCI group, in which the ligatures remained. Thermal hyperalgesia and mechanical allodynia at POW 8 had distinct reductions in decompression group compared to CCI group. At that time in CCI group, morphological evidence of pan VGSCs (Pan Nav) and isoforms of VGSCs (Nav1.6, Nav1.9, except for Nav1.8) were shown the widely distribution along the injured sciatic nerve. All of the VGSCs in decompression group became clustering around the node of Ranvier, similar to the pattern of control sciatic nerve at POW 8. Skin reinnervation was demonstrated by epidermal nerve density (END) for protein gene product 9.5 (PGP 9.5)-immunoreactive (IR) nerve fibers and a significant difference between groups only at POW 24 (p=0.01). Growth-associated protein 43 (GAP-43) is participated in the nerve fiber growth and sprouting, a difference in END for GAP-43-IR nerve fibers at POW 24 between groups were also significant (p=0.02). These observations demonstrated that nerve decompression was accompanied with the disappearance of neuropathic pain behaviors after CCI. Morphological studies provided the evidence that redistribution of VGSCs along the injured sciatic nerve but still with an incomplete skin reinnervation. These significant findings demonstrated a role of VGSCs in the pathogenesis of neuropathic pain, and gave an approaching in pharmacological basis of therapeutics.
Collapse
Affiliation(s)
- To-Jung Tseng
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Miau-Hwa Ko
- Department of Anatomy, College of Medicine, China Medical University, Taichung, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
36
|
Baxter JC, Ramachandra R, Mayne DR, Elmslie KS. Functional expression of α7-nicotinic acetylcholine receptors by muscle afferent neurons. J Neurophysiol 2014; 112:1549-58. [PMID: 24966300 DOI: 10.1152/jn.00035.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The exercise pressor reflex (EPR) is generated by group III and IV muscle afferents during exercise to increase cardiovascular function. Muscle contraction is triggered by ACh, which is metabolized into choline that could serve as a signal of exercise-induced activity. We demonstrate that ACh can induce current in muscle afferents neurons isolated from male Sprague-Dawley rats. The nicotinic ACh receptors (nAChRs) appear to be expressed by some group III-IV neurons since capsaicin (TRPV1) and/or ATP (P2X) induced current in 56% of ACh-responsive neurons. α7- And α4β2-nAChRs have been shown to be expressed in sensory neurons. An α7-nAChR antibody stained 83% of muscle afferent neurons. Functional expression was demonstrated by using the specific α7-nAChR blockers α-conotoxin ImI (IMI) and methyllycaconitine (MLA). MLA inhibited ACh responses in 100% of muscle afferent neurons, whereas IMI inhibited ACh responses in 54% of neurons. Dihydro-β-erythroidine, an α4β2-nAChR blocker, inhibited ACh responses in 50% of muscle afferent neurons, but recovery from block was not observed. Choline, an α7-nAChR agonist, elicited a response in 60% of ACh-responsive neurons. Finally, we demonstrated the expression of α7-nAChR by peripherin labeled (group IV) afferent fibers within gastrocnemius muscles. Some of these α7-nAChR-positive fibers were also positive for P2X3 receptors. Thus choline could serve as an activator of the EPR by opening α7-nAChR expressed by group IV (and possible group III) afferents. nAChRs could become pharmacological targets for suppressing the excessive EPR activation in patients with peripheral vascular disease.
Collapse
Affiliation(s)
- James C Baxter
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Dustin R Mayne
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| | - Keith S Elmslie
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri
| |
Collapse
|
37
|
Tanaka KI, Nakanishi Y, Sekino S, Ikegami M, Ikeda H, Kamei J. Fentanyl produces an anti-hyperalgesic effect through the suppression of sodium channels in mice with painful diabetic neuropathy. Eur J Pharmacol 2014; 733:68-74. [DOI: 10.1016/j.ejphar.2014.03.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 11/30/2022]
|
38
|
Belkouch M, Dansereau MA, Tétreault P, Biet M, Beaudet N, Dumaine R, Chraibi A, Mélik-Parsadaniantz S, Sarret P. Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation. J Neuroinflammation 2014; 11:45. [PMID: 24606981 PMCID: PMC4007624 DOI: 10.1186/1742-2094-11-45] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain. Conclusions Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philippe Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
39
|
Cahana A, Mavrocordatos P, Geurts JWM, Groen GJ. Do minimally invasive procedures have a place in the treatment of chronic low back pain? Expert Rev Neurother 2014; 4:479-90. [PMID: 15853544 DOI: 10.1586/14737175.4.3.479] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic low back pain is the leading cause of disability in the industrialized world. Medical and surgical treatments remain costly despite limited efficacy. The field of 'interventional pain' has grown enormously and evidence-based practice guidelines are systematically developed. In this article, the vast, complex and contradictory literature regarding the treatment of chronic low back pain is reviewed. Interventional pain literature suggests that there is moderate evidence (small randomized, nonrandomized, single group or matched-case controlled studies) for medial branch neurotomy and limited evidence (nonexperimental one or more center studies) for intradiscal treatments in mechanical low back pain. There is moderate evidence for the use of transforaminal epidural steroid injections, lumbar percutaneous adhesiolysis and spinal endoscopy for painful lumbar radiculopathy, and spinal cord stimulation and intrathecal pumps mostly after spinal surgery. In reality, there is no gold standard for the treatment of chronic low back pain, but these results appear promising.
Collapse
Affiliation(s)
- Alex Cahana
- Department of Anesthesiology, Pharmacology and Surgical Intensive Care, Geneva University Hospital, Geneva, Switzerland.
| | | | | | | |
Collapse
|
40
|
KIF5B promotes the forward transport and axonal function of the voltage-gated sodium channel Nav1.8. J Neurosci 2013; 33:17884-96. [PMID: 24198377 DOI: 10.1523/jneurosci.0539-13.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nav1.8 is a tetrodotoxin-resistant voltage-gated sodium channel selectively expressed in primary sensory neurons. Peripheral inflammation and nerve injury induce Nav1.8 accumulation in peripheral nerves. However, the mechanisms and related significance of channel accumulation in nerves remains unclear. Here we report that KIF5B promotes the forward transport of Nav1.8 to the plasma membrane and axons in dorsal root ganglion (DRG) neurons of the rat. In peripheral inflammation induced through the intraplantar injection of complete Freund's adjuvant, increased KIF5 and Nav1.8 accumulation were observed in the sciatic nerve. The knock-down of KIF5B, a highly expressed member of the KIF5 family in DRGs, reduced the current density of Nav1.8 in both cultured DRG neurons and ND7-23 cells. Overexpression of KIF5B in ND7-23 cells increased the current density and surface expression of Nav1.8, which were abolished through brefeldin A treatment, whereas the increases were lost in KIF5B mutants defective in ATP hydrolysis or cargo binding. Overexpression of KIF5B also decreased the proteasome-associated degradation of Nav1.8. In addition, coimmunoprecipitation experiments showed interactions between the N terminus of Nav1.8 and the 511-620 aa sequence in the stalk domain of KIF5B. Furthermore, KIF5B increased Nav1.8 accumulation, Nav1.8 current, and neuronal excitability detected in the axons of cultured DRG neurons, which were completely abolished by the disruption of interactions between KIF5B and the N terminus of Nav1.8. Therefore, our results reveal that KIF5B is required for the forward transport and axonal function of Nav1.8, suggesting a mechanism for axonal accumulation of Nav1.8 in inflammatory pain.
Collapse
|
41
|
Probing functional properties of nociceptive axons using a microfluidic culture system. PLoS One 2013; 8:e80722. [PMID: 24278311 PMCID: PMC3835735 DOI: 10.1371/journal.pone.0080722] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022] Open
Abstract
Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization.
Collapse
|
42
|
Bird EV, Christmas CR, Loescher AR, Smith KG, Robinson PP, Black JA, Waxman SG, Boissonade FM. Correlation of Nav1.8 and Nav1.9 sodium channel expression with neuropathic pain in human subjects with lingual nerve neuromas. Mol Pain 2013; 9:52. [PMID: 24144460 PMCID: PMC4016210 DOI: 10.1186/1744-8069-9-52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022] Open
Abstract
Background Voltage-gated sodium channels Nav1.8 and Nav1.9 are expressed preferentially in small diameter sensory neurons, and are thought to play a role in the generation of ectopic activity in neuronal cell bodies and/or their axons following peripheral nerve injury. The expression of Nav1.8 and Nav1.9 has been quantified in human lingual nerves that have been previously injured inadvertently during lower third molar removal, and any correlation between the expression of these ion channels and the presence or absence of dysaesthesia investigated. Results Immunohistochemical processing and quantitative image analysis revealed that Nav1.8 and Nav1.9 were expressed in human lingual nerve neuromas from patients with or without symptoms of dysaesthesia. The level of Nav1.8 expression was significantly higher in patients reporting pain compared with no pain, and a significant positive correlation was observed between levels of Nav1.8 expression and VAS scores for the symptom of tingling. No significant differences were recorded in the level of expression of Nav1.9 between patients with or without pain. Conclusions These results demonstrate that Nav1.8 and Nav1.9 are present in human lingual nerve neuromas, with significant correlations between the level of expression of Nav1.8 and symptoms of pain. These data provide further evidence that changes in expression of Nav1.8 are important in the development and/or maintenance of nerve injury-induced pain, and suggest that Nav1.8 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Emma V Bird
- Academic Unit of Oral and Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Knapp O, McArthur JR, Adams DJ. Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel) 2012. [PMID: 23202314 PMCID: PMC3509706 DOI: 10.3390/toxins4111236] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSC) are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.
Collapse
Affiliation(s)
- Oliver Knapp
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia.
| | | | | |
Collapse
|
44
|
Abstract
Here we review recent research into the mechanisms of chronic pain that has focused on neuronal sodium channels, a target of classic analgesic agents. We first discuss evidence that specific sodium channel isoforms are essential for the detection and conduction of normal acutely painful stimuli from nociceptors. We then review findings that show changes in sodium channel expression and localization in chronic inflammation and nerve injury in animal and human tissues. We conclude by discussing the role that myelination plays in organizing and maintaining sodium channel clusters at nodes of Ranvier in normal development and how inflammatory processes or nerve injury alter the characteristics of such clusters. Based on these findings, we suggest that chronic pain may in part result from partial demyelination of axons during chronic injury, which creates aberrant sodium channel clusters that serve as sites of ectopic sensitivity or spontaneous activity.
Collapse
Affiliation(s)
- Simon R Levinson
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
45
|
Ramachandra R, McGrew SY, Baxter JC, Howard JR, Elmslie KS. NaV1.8 channels are expressed in large, as well as small, diameter sensory afferent neurons. Channels (Austin) 2012; 7:34-7. [PMID: 23064159 PMCID: PMC3589279 DOI: 10.4161/chan.22445] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sensory neurons in the dorsal root ganglia (DRG) express a subset of voltage dependent sodium channels (NaV) including NaV1.1, 1.6, 1.7, 1.8 and 1.9. Previous work supported preferential localization of NaV1.8 channels to small-medium diameter, nociceptive afferent neurons. However, we recently published evidence that NaV1.8 was the dominant NaV channel expressed in the somas of small, medium and large diameter muscle afferent neurons, which is consistent with other reports. Here, we extend those results to show that NaV1.8 expression is not correlated with afferent neuron diameter. Using immunocytochemistry, we found NaV1.8 expression in ~50% of sensory afferent neurons with diameters ranging from 20 to 70 µm. In addition, electrophysiological analysis shows that the kinetic and inactivation properties of NaV1.8 current are invariant with neuron size. These data add further support to the idea that NaV1.8 contributes to the electrical excitability of both nociceptive and non-nociceptive sensory neurons.
Collapse
Affiliation(s)
- Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, AT Still University of Health Sciences, Kirksville, MO, USA
| | | | | | | | | |
Collapse
|
46
|
Hoeijmakers JGJ, Merkies ISJ, Gerrits MM, Waxman SG, Faber CG. Genetic aspects of sodium channelopathy in small fiber neuropathy. Clin Genet 2012; 82:351-8. [PMID: 22803682 DOI: 10.1111/j.1399-0004.2012.01937.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Small fiber neuropathy (SFN) is a disorder typically dominated by neuropathic pain and autonomic dysfunction, in which the thinly myelinated Aδ-fibers and unmyelinated C-fibers are selectively injured. The diagnosis SFN is based on a reduced intraepidermal nerve fiber density and/or abnormal thermal thresholds in quantitative sensory testing. The etiologies of SFN are diverse, although no apparent cause is frequently seen. Recently, SCN9A-gene variants (single amino acid substitutions) have been found in ∼30% of a cohort of idiopathic SFN patients, producing gain-of-function changes in sodium channel Na(V)1.7, which is preferentially expressed in small diameter peripheral axons. Functional testing showed that these variants altered fast inactivation, slow inactivation or resurgent current and rendered dorsal root ganglion neurons hyperexcitable. In this review, we discuss the role of Na(V)1.7 in pain and highlight the molecular genetics and pathophysiology of SCN9A-gene variants in SFN. With increasing knowledge regarding the underlying pathophysiology in SFN, the development of specific treatment in these patients seems a logical target for future studies.
Collapse
Affiliation(s)
- J G J Hoeijmakers
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Ramachandra R, McGrew SY, Baxter JC, Kiveric E, Elmslie KS. Tetrodotoxin-resistant voltage-dependent sodium channels in identified muscle afferent neurons. J Neurophysiol 2012; 108:2230-41. [PMID: 22855776 DOI: 10.1152/jn.00219.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Muscle afferents are critical regulators of motor function (Group I and II) and cardiovascular responses to exercise (Group III and IV). However, little is known regarding the expressed voltage-dependent ion channels. We identified muscle afferent neurons in dorsal root ganglia (DRGs), using retrograde labeling to examine voltage-dependent sodium (Na(V)) channels. In patch-clamp recordings, we found that the dominant Na(V) current in the majority of identified neurons was insensitive to tetrodotoxin (TTX-R), with Na(V) current in only a few (14%) neurons showing substantial (>50%) TTX sensitivity (TTX-S). The TTX-R current was sensitive to a Na(V)1.8 channel blocker, A803467. Immunocytochemistry demonstrated labeling of muscle afferent neurons by a Na(V)1.8 antibody, which further supported expression of these channels. A portion of the TTX-R Na(V) current appeared to be noninactivating during our 25-ms voltage steps, which suggested activity of Na(V)1.9 channels. The majority of the noninactivating current was insensitive to A803467 but sensitive to extracellular sodium. Immunocytochemistry showed labeling of muscle afferent neurons by a Na(V)1.9 channel antibody, which supports expression of these channels. Further examination of the muscle afferent neurons showed that functional TTX-S channels were expressed, but were largely inactivated at physiological membrane potentials. Immunocytochemistry showed expression of the TTX-S channels Na(V)1.6 and Na(V)1.7 but not Na(V)1.1. Na(V)1.8 and Na(V)1.9 appear to be the dominant functional sodium channels in small- to medium-diameter muscle afferent neurons. The expression of these channels is consistent with the identification of these neurons as Group III and IV, which mediate the exercise pressor reflex.
Collapse
Affiliation(s)
- Renuka Ramachandra
- The Baker Laboratory of Pharmacology, Department of Pharmacology, Kirksville College of Osteopathic Medicine, AT Still University of Health Sciences, Kirksville, MO 63501, USA
| | | | | | | | | |
Collapse
|
48
|
Tate S, Derjean D, Rugiero F. Nav(1.8)igating the maze of sensory function. Pain 2012; 153:1985-1986. [PMID: 22738797 DOI: 10.1016/j.pain.2012.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022]
Affiliation(s)
- Simon Tate
- Convergence Pharmaceuticals Ltd., Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | | |
Collapse
|
49
|
Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 2012; 153:2017-2030. [PMID: 22703890 DOI: 10.1016/j.pain.2012.04.022] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/23/2012] [Accepted: 04/25/2012] [Indexed: 12/22/2022]
Abstract
A vast diversity of salient cues is sensed by numerous classes of primary sensory neurons, defined by specific neuropeptides, ion channels, or cytoskeletal proteins. Recent evidence has demonstrated a correlation between the expression of some of these molecular markers and transmission of signals related to distinct sensory modalities (eg, heat, cold, pressure). Voltage-gated sodium channel Na(v)1.8 has been reported to be preferentially expressed in small-diameter unmyelinated sensory afferents specialized for the detection of noxious stimuli (nociceptors), and Na(v)1.8-Cre mice have been widely used to investigate gene function in nociceptors. However, the identity of neurons in which Cre-mediated recombination occurs in these animals has not been resolved, and whether expression of Na(v)1.8 in these neurons is dynamic during development is not known, rendering interpretation of conditional knockout mouse phenotypes problematic. Here, we used genetics, immunohistochemistry, electrophysiology, and calcium imaging to precisely characterize the expression of Na(v)1.8 in the peripheral nervous system. We demonstrate that 75% of dorsal root ganglion (DRG) neurons express Na(v)1.8-Cre, including >90% of neurons expressing markers of nociceptors and, unexpectedly, a large population (∼40%) of neurons with myelinated A fibers. Furthermore, analysis of DRG neurons' central and peripheral projections revealed that Na(v)1.8-Cre is not restricted to nociceptors but is also expressed by at least 2 types of low-threshold mechanoreceptors essential for touch sensation, including those with C and Aβ fibers. Our results indicate that Na(v)1.8 underlies electrical activity of sensory neurons subserving multiple functional modalities, and call for cautious interpretation of the phenotypes of Na(v)1.8-Cre-driven conditional knockout mice.
Collapse
|
50
|
Birch R, Misra P, Stewart MPM, Eardley WGP, Ramasamy A, Brown K, Shenoy R, Anand P, Clasper J, Dunn R, Etherington J. Nerve injuries sustained during warfare: part II: Outcomes. ACTA ACUST UNITED AC 2012; 94:529-35. [PMID: 22434471 DOI: 10.1302/0301-620x.94b4.28488] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The outcomes of 261 nerve injuries in 100 patients were graded good in 173 cases (66%), fair in 70 (26.8%) and poor in 18 (6.9%) at the final review (median 28.4 months (1.3 to 64.2)). The initial grades for the 42 sutures and graft were 11 good, 14 fair and 17 poor. After subsequent revision repairs in seven, neurolyses in 11 and free vascularised fasciocutaneous flaps in 11, the final grades were 15 good, 18 fair and nine poor. Pain was relieved in 30 of 36 patients by nerve repair, revision of repair or neurolysis, and flaps when indicated. The difference in outcome between penetrating missile wounds and those caused by explosions was not statistically significant; in the latter group the onset of recovery from focal conduction block was delayed (mean 4.7 months (2.5 to 10.2) vs 3.8 months (0.6 to 6); p = 0.0001). A total of 42 patients (47 lower limbs) presented with an insensate foot. By final review (mean 27.4 months (20 to 36)) plantar sensation was good in 26 limbs (55%), fair in 16 (34%) and poor in five (11%). Nine patients returned to full military duties, 18 to restricted duties, 30 to sedentary work, and 43 were discharged from military service. Effective rehabilitation must be early, integrated and vigorous. The responsible surgeons must be firmly embedded in the process, at times exerting leadership.
Collapse
Affiliation(s)
- R Birch
- War Nerve Injury Clinic, Headley Court, Epsom, Surrey KT18 6JW, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|