1
|
Savva CG, Sobhy MA, De Biasio A, Hamdan SM. Structure of Aquifex aeolicus lumazine synthase by cryo-electron microscopy to 1.42 Å resolution. IUCRJ 2024; 11:723-729. [PMID: 38965901 PMCID: PMC11364023 DOI: 10.1107/s2052252524005530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) has become an essential structural determination technique with recent hardware developments making it possible to reach atomic resolution, at which individual atoms, including hydrogen atoms, can be resolved. In this study, we used the enzyme involved in the penultimate step of riboflavin biosynthesis as a test specimen to benchmark a recently installed microscope and determine if other protein complexes could reach a resolution of 1.5 Å or better, which so far has only been achieved for the iron carrier ferritin. Using state-of-the-art microscope and detector hardware as well as the latest software techniques to overcome microscope and sample limitations, a 1.42 Å map of Aquifex aeolicus lumazine synthase (AaLS) was obtained from a 48 h microscope session. In addition to water molecules and ligands involved in the function of AaLS, we can observe positive density for ∼50% of the hydrogen atoms. A small improvement in the resolution was achieved by Ewald sphere correction which was expected to limit the resolution to ∼1.5 Å for a molecule of this diameter. Our study confirms that other protein complexes can be solved to near-atomic resolution. Future improvements in specimen preparation and protein complex stabilization may allow more flexible macromolecules to reach this level of resolution and should become a priority of study in the field.
Collapse
Affiliation(s)
- Christos G. Savva
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology4700 KAUSTThuwal23955Saudi Arabia
| | - Mohamed A. Sobhy
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology4700 KAUSTThuwal23955Saudi Arabia
| | - Alfredo De Biasio
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology4700 KAUSTThuwal23955Saudi Arabia
| | - Samir M. Hamdan
- Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology4700 KAUSTThuwal23955Saudi Arabia
| |
Collapse
|
2
|
Bromberg R, Guo Y, Borek D, Otwinowski Z. Validation of 3D cryoEM single particle reconstruction correctness and handedness with Ewald's sphere correction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610390. [PMID: 39257812 PMCID: PMC11383999 DOI: 10.1101/2024.08.29.610390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The correct description of quantum scattering places the observed scattering contributions on the Ewald's sphere and its Friedel mate. In electron microscopy, due to the large radius of the Ewald's sphere, these contributions are typically merged during data analysis. We present an approach that separates and factorizes these contributions into inversion-symmetric and inversion-antisymmetric components. The correlations between reconstructions derived from these symmetric and antisymmetric components enable the automatic determination of handedness and provide additional validation for the quality of 3D reconstructions. These correlations are robust enough to be routinely used in single-particle reconstructions, even at resolutions below the limit where the curvature of the Ewald's sphere affects the overall signal-to-noise ratio.
Collapse
Affiliation(s)
- Raquel Bromberg
- Ligo Analytics, 2707 Chunk Ct., Dallas, TX, 75206, United States
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, United States
| | - Yirui Guo
- Ligo Analytics, 2707 Chunk Ct., Dallas, TX, 75206, United States
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, United States
| | - Dominika Borek
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Zbyszek Otwinowski
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, United States
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| |
Collapse
|
3
|
Yeo J, Daurer BJ, Kimanius D, Balakrishnan D, Bepler T, Tan YZ, Loh ND. Ghostbuster: A phase retrieval diffraction tomography algorithm for cryo-EM. Ultramicroscopy 2024; 262:113962. [PMID: 38642481 DOI: 10.1016/j.ultramic.2024.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Ewald sphere curvature correction, which extends beyond the projection approximation, stretches the shallow depth of field in cryo-EM reconstructions of thick particles. Here we show that even for previously assumed thin particles, reconstruction artifacts which we refer to as ghosts can appear. By retrieving the lost phases of the electron exitwaves and accounting for the first Born approximation scattering within the particle, we show that these ghosts can be effectively eliminated. Our simulations demonstrate how such ghostbusting can improve reconstructions as compared to existing state-of-the-art software. Like ptychographic cryo-EM, our Ghostbuster algorithm uses phase retrieval to improve reconstructions, but unlike the former, we do not need to modify the existing data acquisition pipelines.
Collapse
Affiliation(s)
- Joel Yeo
- NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore, Singapore; Department of Physics, National University of Singapore, 117551 Singapore, Singapore; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634 Singapore, Singapore
| | - Benedikt J Daurer
- Center for Bio-Imaging Sciences, National University of Singapore, 117557 Singapore, Singapore; Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; CZ Imaging Institute, 3400 Bridge Parkway, Redwood City, CA 94065, USA
| | - Deepan Balakrishnan
- Department of Biological Sciences, National University of Singapore, 117558 Singapore, Singapore; Center for Bio-Imaging Sciences, National University of Singapore, 117557 Singapore, Singapore
| | - Tristan Bepler
- Simons Machine Learning Center, New York Structural Biology Center, New York, NY, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, 117558 Singapore, Singapore; Center for Bio-Imaging Sciences, National University of Singapore, 117557 Singapore, Singapore; Disease Intervention Technology Laboratory (DITL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 138648 Singapore, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, 138673 Singapore, Singapore
| | - N Duane Loh
- NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore, Singapore; Department of Physics, National University of Singapore, 117551 Singapore, Singapore; Department of Biological Sciences, National University of Singapore, 117558 Singapore, Singapore; Center for Bio-Imaging Sciences, National University of Singapore, 117557 Singapore, Singapore.
| |
Collapse
|
4
|
Dodony E, Dódony I, Sáfrán G. EDIC intensity correction of electron diffraction. Micron 2024; 183:103649. [PMID: 38729043 DOI: 10.1016/j.micron.2024.103649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Transmission electron microscopy (TEM) has recently become indispensable in determining crystal structures. The location of atoms in crystals can be determined using electron diffraction (ED) intensity data series if the diffracted intensities are directly proportional to the square of the structure factor (|Fhkl|2). However, due to the crystal thickness, the used electron wavelength and the potential misalignment of the measured crystal the detected intensities differ from the ideal values. A method, Electron Diffraction Intensity Correction (EDIC), and a computer program have been developed to recover the ideal |Fhkl|2 proportional intensities from experimental data for kinematic scattering, for further structure studies.
Collapse
Affiliation(s)
- Erzsébet Dodony
- Hungarian Research Network, Center for Energy Research, Institute of Technical Physics and Materials Science, Thin Film Physics Laboratory, Konkoly-Thege M. St. 29-33, Budapest H-1121, Hungary; Department of Material Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest H-1117, Hungary.
| | - István Dódony
- Department of Mineralogy, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest H-1117, Hungary
| | - György Sáfrán
- Department of Material Physics, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest H-1117, Hungary
| |
Collapse
|
5
|
Zhu D, Cao D, Zhang X. Virus structures revealed by advanced cryoelectron microscopy methods. Structure 2023; 31:1348-1359. [PMID: 37797619 DOI: 10.1016/j.str.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
Before the resolution revolution, cryoelectron microscopy (cryo-EM) single-particle analysis (SPA) already achieved resolutions beyond 4 Å for certain icosahedral viruses, enabling ab initio atomic model building of these viruses. As the only samples that achieved such high resolution at that time, cryo-EM method development was closely intertwined with the improvement of reconstructions of symmetrical viruses. Viral morphology exhibits significant diversity, ranging from small to large, uniform to non-uniform, and from containing single symmetry to multiple symmetries. Furthermore, viruses undergo conformational changes during their life cycle. Several methods, such as asymmetric reconstruction, Ewald sphere correction, cryoelectron tomography (cryo-ET), and sub-tomogram averaging (STA), have been developed and applied to determine virus structures in vivo and in vitro. This review outlines current advanced cryo-EM methods for high-resolution structure determination of viruses and summarizes accomplishments obtained with these approaches. Moreover, persisting challenges in comprehending virus structures are discussed and we propose potential solutions.
Collapse
Affiliation(s)
- Dongjie Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Bernard Heymann J, Merk A, Ognjenovic J. Accounting for the Ewald Spheres in CryoEM Reconstructions and Their Relationship to 3D Fourier Transforms of Focal Series. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1030-1031. [PMID: 37613436 DOI: 10.1093/micmic/ozad067.523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- J Bernard Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Alan Merk
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Jana Ognjenovic
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| |
Collapse
|
7
|
Heymann JB. The Ewald sphere/focus gradient does not limit the resolution of cryoEM reconstructions. J Struct Biol X 2022; 7:100083. [PMID: 36632443 PMCID: PMC9826812 DOI: 10.1016/j.yjsbx.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
In our quest to solve biomolecular structures to higher resolutions in cryoEM, care must be taken to deal with all aspects of image formation in the electron microscope. One of these is the Ewald sphere/focus gradient that derives from the scattering geometry in the microscope and its implications for recovering high resolution and handedness information. While several methods to deal with it has been proposed and implemented, there are still questions as to the correct approach. At the high acceleration voltages used for cryoEM, the traditional projection approximation that ignores the Ewald sphere breaks down around 2-3 Å and with large particles. This is likely not crucial for most biologically interesting molecules, but is required to understand detail about catalytic events, molecular orbitals, orientation of bound water molecules, etc. Through simulation I show that integration along the Ewald spheres in frequency space during reconstruction, the "simple insertion method" is adequate to reach resolutions to the Nyquist frequency. Both theory and simulations indicate that the handedness information encoded in such phases is irretrievably lost in the formation of real space images. The conclusion is that correct reconstruction along the Ewald spheres avoids the limitations of the projection approximation.
Collapse
Affiliation(s)
- J. Bernard Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| |
Collapse
|
8
|
A novel capsid protein network allows the characteristic internal membrane structure of Marseilleviridae giant viruses. Sci Rep 2022; 12:21428. [PMID: 36504202 PMCID: PMC9742146 DOI: 10.1038/s41598-022-24651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Marseilleviridae is a family of giant viruses, showing a characteristic internal membrane with extrusions underneath the icosahedral vertices. However, such large objects, with a maximum diameter of 250 nm are technically difficult to examine at sub-nanometre resolution by cryo-electron microscopy. Here, we tested the utility of 1 MV high-voltage cryo-EM (cryo-HVEM) for single particle structural analysis (SPA) of giant viruses using tokyovirus, a species of Marseilleviridae, and revealed the capsid structure at 7.7 Å resolution. The capsid enclosing the viral DNA consisted primarily of four layers: (1) major capsid proteins (MCPs) and penton proteins, (2) minor capsid proteins (mCPs), (3) scaffold protein components (ScPCs), and (4) internal membrane. The mCPs showed a novel capsid lattice consisting of eight protein components. ScPCs connecting the icosahedral vertices supported the formation of the membrane extrusions, and possibly act like tape measure proteins reported in other giant viruses. The density on top of the MCP trimer was suggested to include glycoproteins. This is the first attempt at cryo-HVEM SPA. We found the primary limitations to be the lack of automated data acquisition and software support for collection and processing and thus achievable resolution. However, the results pave the way for using cryo-HVEM for structural analysis of larger biological specimens.
Collapse
|
9
|
Rodríguez de Francisco B, Bezault A, Xu XP, Hanein D, Volkmann N. MEPSi: A tool for simulating tomograms of membrane-embedded proteins. J Struct Biol 2022; 214:107921. [PMID: 36372192 DOI: 10.1016/j.jsb.2022.107921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
The throughput and fidelity of cryogenic cellular electron tomography (cryo-ET) is constantly increasing through advances in cryogenic electron microscope hardware, direct electron detection devices, and powerful image processing algorithms. However, the need for careful optimization of sample preparations and for access to expensive, high-end equipment, make cryo-ET a costly and time-consuming technique. Generally, only after the last step of the cryo-ET workflow, when reconstructed tomograms are available, it becomes clear whether the chosen imaging parameters were suitable for a specific type of sample in order to answer a specific biological question. Tools for a-priory assessment of the feasibility of samples to answer biological questions and how to optimize imaging parameters to do so would be a major advantage. Here we describe MEPSi (Membrane Embedded Protein Simulator), a simulation tool aimed at rapid and convenient evaluation and optimization of cryo-ET data acquisition parameters for studies of transmembrane proteins in their native environment. We demonstrate the utility of MEPSi by showing how to detangle the influence of different data collection parameters and different orientations in respect to tilt axis and electron beam for two examples: (1) simulated plasma membranes with embedded single-pass transmembrane αIIbβ3 integrin receptors and (2) simulated virus membranes with embedded SARS-CoV-2 spike proteins.
Collapse
Affiliation(s)
- Borja Rodríguez de Francisco
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Image Analysis Unit, Paris, France
| | - Armel Bezault
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Image Analysis Unit, Paris, France
| | | | - Dorit Hanein
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Studies of Macromolecular Machines in Cellulo Unit, Paris, France; Scintillon Institute, San Diego, CA 92121, USA
| | - Niels Volkmann
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Image Analysis Unit, Paris, France.
| |
Collapse
|
10
|
Russo CJ, Dickerson JL, Naydenova K. Cryomicroscopy in situ: what is the smallest molecule that can be directly identified without labels in a cell? Faraday Discuss 2022; 240:277-302. [PMID: 35913392 PMCID: PMC9642008 DOI: 10.1039/d2fd00076h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
Electron cryomicroscopy (cryoEM) has made great strides in the last decade, such that the atomic structure of most biological macromolecules can, at least in principle, be determined. Major technological advances - in electron imaging hardware, data analysis software, and cryogenic specimen preparation technology - continue at pace and contribute to the exponential growth in the number of atomic structures determined by cryoEM. It is now conceivable that within the next decade we will have structures for hundreds of thousands of unique protein and nucleic acid molecular complexes. But the answers to many important questions in biology would become obvious if we could identify these structures precisely inside cells with quantifiable error. In the context of an abundance of known structures, it is appropriate to consider the current state of electron cryomicroscopy for frozen specimens prepared directly from cells, and try to answer to the question of the title, both now and in the foreseeable future.
Collapse
Affiliation(s)
- Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Joshua L Dickerson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
11
|
Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, Maruthi K, Kuang H, Zimanyi CM, Cheng A, Eng ET, Noble AJ, Potter CS, Carragher B. Better, Faster, Cheaper: Recent Advances in Cryo-Electron Microscopy. Annu Rev Biochem 2022; 91:1-32. [PMID: 35320683 PMCID: PMC10393189 DOI: 10.1146/annurev-biochem-032620-110705] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cryo-electron microscopy (cryo-EM) continues its remarkable growth as a method for visualizing biological objects, which has been driven by advances across the entire pipeline. Developments in both single-particle analysis and in situ tomography have enabled more structures to be imaged and determined to better resolutions, at faster speeds, and with more scientists having improved access. This review highlights recent advances at each stageof the cryo-EM pipeline and provides examples of how these techniques have been used to investigate real-world problems, including antibody development against the SARS-CoV-2 spike during the recent COVID-19 pandemic.
Collapse
Affiliation(s)
- Eugene Y D Chua
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Joshua H Mendez
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Micah Rapp
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Serban L Ilca
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
| | - Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, Singapore;
- Disease Intervention Technology Laboratory, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kashyap Maruthi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Huihui Kuang
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Christina M Zimanyi
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Anchi Cheng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
| | - Edward T Eng
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
| | - Alex J Noble
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Clinton S Potter
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| | - Bridget Carragher
- New York Structural Biology Center, New York, NY, USA; , , , , , , , , , , ,
- Simons Electron Microscopy Center, New York, NY, USA
- National Center for CryoEM Access and Training, New York, NY, USA
- National Resource for Automated Molecular Microscopy, New York, NY, USA
- National Center for In-Situ Tomographic Ultramicroscopy, New York, NY, USA
- Simons Machine Learning Center, New York, NY, USA
| |
Collapse
|
12
|
Gureyev TE, Paganin DM, Brown HG, Quiney HM, Allen LJ. A Method for High-Resolution Three-Dimensional Reconstruction with Ewald Sphere Curvature Correction from Transmission Electron Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-17. [PMID: 35485646 DOI: 10.1017/s1431927622000630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A method for three-dimensional reconstruction of objects from defocused images collected at multiple illumination directions in high-resolution transmission electron microscopy is presented. The method effectively corrects for the Ewald sphere curvature by taking into account the in-particle propagation of the electron beam. Numerical simulations demonstrate that the proposed method is capable of accurately reconstructing biological molecules or nanoparticles from high-resolution defocused images under conditions achievable in single-particle electron cryo-microscopy or electron tomography with realistic radiation doses, non-trivial aberrations, multiple scattering, and other experimentally relevant factors. The physics of the method is based on the well-known Diffraction Tomography formalism, but with the phase-retrieval step modified to include a conjugation of the phase (i.e., multiplication of the phase by a negative constant). At each illumination direction, numerically backpropagating the beam with the conjugated phase produces maximum contrast at the location of individual atoms in the molecule or nanoparticle. The resultant algorithm, Conjugated Holographic Reconstruction, can potentially be incorporated into established software tools for single-particle analysis, such as, for example, RELION or FREALIGN, in place of the conventional contrast transfer function correction procedure, in order to account for the Ewald sphere curvature and improve the spatial resolution of the three-dimensional reconstruction.
Collapse
Affiliation(s)
- Timur E Gureyev
- ARC Centre in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, VIC3010, Australia
- School of Physics and Astronomy, Monash University, Clayton, VIC3800, Australia
| | - David M Paganin
- School of Physics and Astronomy, Monash University, Clayton, VIC3800, Australia
| | - Hamish G Brown
- ARC Centre in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, VIC3010, Australia
| | - Harry M Quiney
- ARC Centre in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, VIC3010, Australia
| | - Leslie J Allen
- ARC Centre in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, VIC3010, Australia
| |
Collapse
|
13
|
Wang G, Zha Z, Huang P, Sun H, Huang Y, He M, Chen T, Lin L, Chen Z, Kong Z, Que Y, Li T, Gu Y, Yu H, Zhang J, Zheng Q, Chen Y, Li S, Xia N. Structures of pseudorabies virus capsids. Nat Commun 2022; 13:1533. [PMID: 35318331 PMCID: PMC8940892 DOI: 10.1038/s41467-022-29250-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
Pseudorabies virus (PRV) is a major etiological agent of swine infectious diseases and is responsible for significant economic losses in the swine industry. Recent data points to human viral encephalitis caused by PRV infection, suggesting that PRV may be able to overcome the species barrier to infect humans. To date, there is no available therapeutic for PRV infection. Here, we report the near-atomic structures of the PRV A-capsid and C-capsid, and illustrate the interaction that occurs between these subunits. We show that the C-capsid portal complex is decorated with capsid-associated tegument complexes. The PRV capsid structure is highly reminiscent of other α-herpesviruses, with some additional structural features of β- and γ-herpesviruses. These results illustrate the structure of the PRV capsid and elucidate the underlying assembly mechanism at the molecular level. This knowledge may be useful for the development of oncolytic agents or specific therapeutics against this arm of the herpesvirus family.
Collapse
Affiliation(s)
- Guosong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenghui Zha
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Pengfei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Maozhou He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tian Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Lina Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China. .,Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| |
Collapse
|
14
|
Perspective: Emerging strategies for determining atomic-resolution structures of macromolecular complexes within cells. J Struct Biol 2021; 214:107827. [PMID: 34915129 PMCID: PMC8978977 DOI: 10.1016/j.jsb.2021.107827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/28/2022]
Abstract
In principle, electron cryo-tomography (cryo-ET) of thin portions of cells provides high-resolution images of the three-dimensional spatial arrangement of all members of the proteome. In practice, however, radiation damage creates a tension between recording images at many different tilt angles, but at correspondingly reduced exposure levels, versus limiting the number of tilt angles in order to improve the signal-to-noise ratio (SNR). Either way, it is challenging to read the available information out at the level of atomic structure. Here, we first review work that explores the optimal strategy for data collection, which currently seems to favor the use of a limited angular range for tilting the sample or even the use of a single image to record the high-resolution information. Looking then to the future, we point to the alternative of so-called “deconvolution microscopy”, which may be applied to tilt-series or optically-sectioned, focal series data. Recording data as a focal series has the advantage that little or no translational alignment of frames might be needed, and a three-dimensional reconstruction might require only 2/3 the number of images as does standard tomography. We also point to the unexploited potential of phase plates to increase the contrast, and thus to reduce the electron exposure levels while retaining the ability align and merge the data. In turn, using much lower exposures per image could have the advantage that high-resolution information is retained throughout the full data-set, whether recorded as a tilt series or a focal series of images.
Collapse
|
15
|
Kamiya R, Uchiyama J, Matsuzaki S, Murata K, Iwasaki K, Miyazaki N. Acid-stable capsid structure of Helicobacter pylori bacteriophage KHP30 by single-particle cryoelectron microscopy. Structure 2021; 30:300-312.e3. [PMID: 34597601 DOI: 10.1016/j.str.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/04/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment.
Collapse
Affiliation(s)
- Ryosuke Kamiya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan; Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shigenobu Matsuzaki
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi 780-0955, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan
| | - Naoyuki Miyazaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan.
| |
Collapse
|
16
|
Burton-Smith RN, Murata K. Cryo-Electron Microscopy of the Giant Viruses. Microscopy (Oxf) 2021; 70:477-486. [PMID: 34490462 DOI: 10.1093/jmicro/dfab036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022] Open
Abstract
High resolution study of the giant viruses presents one of the latest challenges in cryo-electron microscopy of viruses. Too small for light microscopy, but too large for easy study at high resolution by electron microscopy, they range in size from ~0.2-2 μm, from high symmetry icosahedral viruses such as Paramecium burseria Chlorella virus 1 to asymmetric forms like Tupanvirus or Pithovirus. To attain high resolution, two strategies exist to study these large viruses by cryo-EM: firstly, increasing the acceleration voltage of the electron microscope to improve sample penetration and overcome the limitations imposed by electro-optical physics at lower voltages, and secondly the method of "block-based reconstruction" pioneered by Michael G. Rossmann and his collaborators, which resolves the latter limitation through an elegant leveraging of high symmetry, but cannot overcome sample penetration limitations. In addition, more recent advances in both computational capacity and image processing also yield assistance in studying the giant viruses. Especially, the inclusion of Ewald sphere correction can provide large improvements in attainable resolutions for 300 kV electron microscopes. Despite this, the study of giant viruses remains a significant challenge.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
| |
Collapse
|
17
|
Sub-3 Å Cryo-EM Structures of Necrosis Virus Particles via the Use of Multipurpose TEM with Electron Counting Camera. Int J Mol Sci 2021; 22:ijms22136859. [PMID: 34202259 PMCID: PMC8268952 DOI: 10.3390/ijms22136859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
During this global pandemic, cryo-EM has made a great impact on the structure determination of COVID-19 proteins. However, nearly all high-resolution results are based on data acquired on state-of-the-art microscopes where their availability is restricted to a number of centers across the globe with the studies on infectious viruses being further regulated or forbidden. One potential remedy is to employ multipurpose microscopes. Here, we investigated the capability of 200 kV multipurpose microscopes equipped with a direct electron camera in determining the structures of infectious particles. We used 30 nm particles of the grouper nerve necrosis virus as a test sample and obtained the cryo-EM structure with a resolution as high as ∼2.7 Å from a setting that used electron counting. For comparison, we tested a high-end cryo-EM (Talos Arctica) using a similar virus (Macrobrachium rosenbergii nodavirus) to obtain virtually the same resolution. Those results revealed that the resolution is ultimately limited by the depth of field. Our work updates the density maps of these viruses at the sub-3Å level to allow for building accurate atomic models from de novo to provide structural insights into the assembly of the capsids. Importantly, this study demonstrated that multipurpose TEMs are capable of the high-resolution cryo-EM structure determination of infectious particles and is thus germane to the research on pandemics.
Collapse
|
18
|
A new solution to the curved Ewald sphere problem for 3D image reconstruction in electron microscopy. Ultramicroscopy 2021; 224:113234. [DOI: 10.1016/j.ultramic.2021.113234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 11/24/2022]
|
19
|
Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat Methods 2021; 18:186-193. [PMID: 33542511 PMCID: PMC7611018 DOI: 10.1038/s41592-020-01054-7] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
Cryo-electron microscopy (cryo-EM) enables macromolecular structure determination in vitro and inside cells. In addition to aligning individual particles, accurate registration of sample motion and three-dimensional deformation during exposures are crucial for achieving high-resolution reconstructions. Here we describe M, a software tool that establishes a reference-based, multi-particle refinement framework for cryo-EM data and couples a comprehensive spatial deformation model to in silico correction of electron-optical aberrations. M provides a unified optimization framework for both frame-series and tomographic tilt-series data. We show that tilt-series data can provide the same resolution as frame-series data on a purified protein specimen, indicating that the alignment step no longer limits the resolution obtainable from tomographic data. In combination with Warp and RELION, M resolves to residue level a 70S ribosome bound to an antibiotic inside intact bacterial cells. Our work provides a computational tool that facilitates structural biology in cells.
Collapse
|
20
|
Buijsse B, Trompenaars P, Altin V, Danev R, Glaeser RM. Spectral DQE of the Volta phase plate. Ultramicroscopy 2020; 218:113079. [DOI: 10.1016/j.ultramic.2020.113079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022]
|
21
|
Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown PMGE, Grigoras IT, Malinauskaite L, Malinauskas T, Miehling J, Uchański T, Yu L, Karia D, Pechnikova EV, de Jong E, Keizer J, Bischoff M, McCormack J, Tiemeijer P, Hardwick SW, Chirgadze DY, Murshudov G, Aricescu AR, Scheres SHW. Single-particle cryo-EM at atomic resolution. Nature 2020; 587:152-156. [PMID: 33087931 PMCID: PMC7611073 DOI: 10.1038/s41586-020-2829-0] [Citation(s) in RCA: 496] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022]
Abstract
The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the β3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.
Collapse
Affiliation(s)
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | | | - Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | - Ioana T Grigoras
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Physics, Imperial College London, London, UK
| | | | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Lingbo Yu
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Dimple Karia
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Evgeniya V Pechnikova
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Erwin de Jong
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Jeroen Keizer
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Maarten Bischoff
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Jamie McCormack
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Peter Tiemeijer
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Eindhoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Liu W, Cui Y, Wang C, Li Z, Gong D, Dai X, Bi GQ, Sun R, Zhou ZH. Structures of capsid and capsid-associated tegument complex inside the Epstein-Barr virus. Nat Microbiol 2020; 5:1285-1298. [PMID: 32719506 DOI: 10.1038/s41564-020-0758-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
As the first discovered human cancer virus, Epstein-Barr virus (EBV) causes Burkitt's lymphoma and nasopharyngeal carcinoma. Isolating virions for determining high-resolution structures has been hindered by latency-a hallmark of EBV infection-and atomic structures are thus available only for recombinantly expressed EBV proteins. In the present study, by symmetry relaxation and subparticle reconstruction, we have determined near-atomic-resolution structures of the EBV capsid with an asymmetrically attached DNA-translocating portal and capsid-associated tegument complexes from cryogenic electron microscopy images of just 2,048 EBV virions obtained by chemical induction. The resulting atomic models reveal structural plasticity among the 20 conformers of the major capsid protein, 2 conformers of the small capsid protein (SCP), 4 conformers of the triplex monomer proteins and 2 conformers of the triplex dimer proteins. Plasticity reaches the greatest level at the capsid-tegument interfaces involving SCP and capsid-associated tegument complexes (CATC): SCPs crown pentons/hexons and mediate tegument protein binding, and CATCs bind and rotate all five periportal triplexes, but notably only about one peri-penton triplex. These results offer insights into the EBV capsid assembly and a mechanism for recruiting cell-regulating factors into the tegument compartment as 'cargoes', and should inform future anti-EBV strategies.
Collapse
Affiliation(s)
- Wei Liu
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caiyan Wang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zihang Li
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Xinghong Dai
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Guo-Qiang Bi
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ren Sun
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Department of Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Tichelaar W, Hagen WJH, Gorelik TE, Xue L, Mahamid J. TEM bright field imaging of thick specimens: nodes in Thon ring patterns. Ultramicroscopy 2020; 216:113023. [PMID: 32559707 DOI: 10.1016/j.ultramic.2020.113023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/24/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
The thickness of an object will, at some point, exceed the depth of field of a transmission electron microscope; the value at which this occurs, depends on the resolution and the wavelength considered. An image is then no longer a true projection of the 3D structure. This effect will be expressed in the power spectrum. Here, we first demonstrate this phenomenon experimentally, using carbon foils of different thicknesses and working at 40, 60, 80 and 300 kV. Since we determined the thicknesses of the foils by tomography, we are also able to confirm experimentally that in the case of a thick object, the Thon ring pattern can be described as the sum of the power spectra originating from thin, independently scattering slices. Thus, a sinc function envelope is observed that attenuates the Thon rings' amplitudes, yielding "nodes" in the pattern at which the amplitudes are zero. These nodes move to lower spatial frequencies with decreasing acceleration voltages and increasing thicknesses. Conversely, the object thickness can be directly derived from node positions at a particular acceleration voltage. We validate our approach by applying it to frozen-hydrated bacteria with experimentally determined thicknesses. Our model will contribute to more reliably determining the defocus to be used with contrast transfer function correction for thicker objects and at lower acceleration voltages.
Collapse
Affiliation(s)
- Willem Tichelaar
- Corrected Electron Optical Systems GmbH, Englerstrasse 28, Heidelberg, 69126, Germany; Central Facility of Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany.
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | - Tatiana E Gorelik
- Central Facility of Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| |
Collapse
|
24
|
Abrishami V, Ilca SL, Gomez-Blanco J, Rissanen I, de la Rosa-Trevín JM, Reddy VS, Carazo JM, Huiskonen JT. Localized reconstruction in Scipion expedites the analysis of symmetry mismatches in cryo-EM data. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 160:43-52. [PMID: 32470354 DOI: 10.1016/j.pbiomolbio.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 01/10/2023]
Abstract
Technological advances in transmission electron microscopes and detectors have turned cryogenic electron microscopy (cryo-EM) into an essential tool for structural biology. A commonly used cryo-EM data analysis method, single particle analysis, averages hundreds of thousands of low-dose images of individual macromolecular complexes to determine a density map of the complex. The presence of symmetry in the complex is beneficial since each projection image can be assigned to multiple views of the complex. However, data processing that applies symmetry can average out asymmetric features and consequently data analysis methods are required to resolve asymmetric structural features. Scipion is a cryo-EM image processing framework that integrates functions from different image processing packages as plugins. To extend its functionality for handling symmetry mismatches, we present here a Scipion plugin termed LocalRec implementing the localized reconstruction method. When tested on an adenovirus data set, the plugin enables resolving the symmetry-mismatched trimeric fibre bound to the five-fold vertices of the capsid. Furthermore, it improves the structure determination of the icosahedral capsid by dealing with the defocus gradient across the particle. LocalRec is expected to be widely applicable in a range of cryo-EM investigations of flexible and symmetry mismatched complexes.
Collapse
Affiliation(s)
- Vahid Abrishami
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Serban L Ilca
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Josue Gomez-Blanco
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Current address: Department of Anatomy & Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, H3A 0C7, Canada
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland
| | | | - Vijay S Reddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - José-Maria Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), Calle Darwin 3, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental and Sciences, University of Helsinki, 00014, Helsinki, Finland; Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
25
|
Goetschius DJ, Lee H, Hafenstein S. CryoEM reconstruction approaches to resolve asymmetric features. Adv Virus Res 2019; 105:73-91. [PMID: 31522709 DOI: 10.1016/bs.aivir.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although icosahedral viruses have highly symmetrical capsid features, asymmetric structural elements are also present since the genome and minor structural proteins are usually incorporated without adhering to icosahedral symmetry. Besides this inherent asymmetry, interactions with the host during the virus life cycle are also asymmetric. However, until recently it was impossible to resolve high resolution asymmetric features during single-particle cryoEM image processing. This review summarizes the current approaches that can be used to visualize asymmetric structural features. We have included examples of advanced structural strategies developed to reveal unique features and asymmetry in icosahedral viruses.
Collapse
Affiliation(s)
- Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States
| | - Hyunwook Lee
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Susan Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA, United States; Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
26
|
Gong D, Dai X, Jih J, Liu YT, Bi GQ, Sun R, Zhou ZH. DNA-Packing Portal and Capsid-Associated Tegument Complexes in the Tumor Herpesvirus KSHV. Cell 2019; 178:1329-1343.e12. [PMID: 31447177 PMCID: PMC6753055 DOI: 10.1016/j.cell.2019.07.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/16/2019] [Accepted: 07/17/2019] [Indexed: 01/07/2023]
Abstract
Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.
Collapse
Affiliation(s)
- Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinghong Dai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan Jih
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yun-Tao Liu
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China (USTC), Hefei, Anhui 230026, China
| | - Guo-Qiang Bi
- Center for Integrative Imaging, Hefei National Laboratory for Physical Sciences at the Microscale, and School of Life Sciences, University of Science and Technology of China (USTC), Hefei, Anhui 230026, China
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 2019; 570:257-261. [PMID: 31142842 PMCID: PMC6732574 DOI: 10.1038/s41586-019-1248-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 04/26/2019] [Indexed: 11/28/2022]
Abstract
Herpesviruses are enveloped viruses prevalent in the human population, responsible for a host of pathologies ranging from cold sores to birth defects and cancers. They are characterized by a highly pressurized, T (triangulation number) = 16 pseudo-icosahedral capsid encapsidating a tightly packed dsDNA genome1–3. A key process in the herpesvirus life cycle involves the recruitment of an ATP-driven terminase to a unique portal vertex to recognize, package, and cleave concatemeric dsDNA, ultimately giving rise to a pressurized, genome-containing virion4,5. Though this process has been studied in dsDNA phages6–9—with which herpesviruses bear some similarities—a lack of high-resolution in situ structures of genome-packaging machinery has prevented the elucidation of how these multi-step reactions, which require close coordination among multiple actors, occur in an integrated environment. Thus, to better define the structural basis of genome packaging and organization in the prototypical herpesvirus, herpes simplex virus type 1 (HSV-1), we developed sequential localized classification and symmetry relaxation methods to process cryoEM images of HSV-1 virions, enabling us to decouple and reconstruct hetero-symmetric and asymmetric elements within the pseudo-icosahedral capsid. Here we show in situ structures of the unique portal vertex, genomic termini, and ordered dsDNA coils in the capsid spooled around a disordered dsDNA core. We identify tentacle-like helices and a globular complex capping the portal vertex not observed in phages, indicative of adaptations in the DNA-packaging process specific to herpesviruses. Finally, our atomic models of portal vertex elements reveal how the five-fold-related capsid accommodates symmetry mismatch imparted by the dodecameric portal—long a mystery in icosahedral viruses—and inform possible DNA sequence-recognition and headful-sensing pathways involved in genome packaging. Our work represents the first fully symmetry-resolved structure of a portal vertex and first atomic model of a portal complex in a eukaryotic virus.
Collapse
|
28
|
Abstract
Cryogenic electron microscopy (cryo-EM) enables structure determination of macromolecular objects and their assemblies. Although the techniques have been developing for nearly four decades, they have gained widespread attention in recent years due to technical advances on numerous fronts, enabling traditional microscopists to break into the world of molecular structural biology. Many samples can now be routinely analyzed at near-atomic resolution using standard imaging and image analysis techniques. However, numerous challenges to conventional workflows remain, and continued technical advances open entirely novel opportunities for discovery and exploration. Here, I will review some of the main methods surrounding cryo-EM with an emphasis specifically on single-particle analysis, and I will highlight challenges, open questions, and opportunities for methodology development.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- From the Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
29
|
Greber BJ, Sutter M, Kerfeld CA. The Plasticity of Molecular Interactions Governs Bacterial Microcompartment Shell Assembly. Structure 2019; 27:749-763.e4. [PMID: 30833088 DOI: 10.1016/j.str.2019.01.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Bacterial microcompartments (BMCs) are composed of an enzymatic core encapsulated by a selectively permeable protein shell that enhances catalytic efficiency. Many pathogenic bacteria derive competitive advantages from their BMC-based catabolism, implicating BMCs as drug targets. BMC shells are of interest for bioengineering due to their diverse and selective permeability properties and because they self-assemble. A complete understanding of shell composition and organization is a prerequisite for biotechnological applications. Here, we report the cryoelectron microscopy structure of a BMC shell at 3.0-Å resolution, using an image-processing strategy that allowed us to determine the previously uncharacterized structural details of the interactions formed by the BMC-TS and BMC-TD shell subunits in the context of the assembled shell. We found unexpected structural plasticity among these interactions, resulting in distinct shell populations assembled from varying numbers of the BMC-TS and BMC-TD subunits. We discuss the implications of these findings on shell assembly and function.
Collapse
Affiliation(s)
- Basil J Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Markus Sutter
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A Kerfeld
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Glaeser RM. How Good Can Single-Particle Cryo-EM Become? What Remains Before It Approaches Its Physical Limits? Annu Rev Biophys 2019; 48:45-61. [PMID: 30786229 DOI: 10.1146/annurev-biophys-070317-032828] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Impressive though the achievements of single-particle cryo-electron microscopy are today, a substantial gap still remains between what is currently accomplished and what is theoretically possible. As is reviewed here, twofold or more improvements are possible as regards (a) the detective quantum efficiency of cameras at high resolution, (b) converting phase modulations to intensity modulations in the image, and (c) recovering the full amount of high-resolution signal in the presence of beam-induced motion of the specimen. In addition, potential for improvement is reviewed for other topics such as optimal choice of electron energy, use of aberration correctors, and quantum metrology. With the help of such improvements, it does not seem to be too much to imagine that determining the structural basis for every aspect of catalytic control, signaling, and regulation, in any type of cell of interest, could easily be accelerated fivefold or more.
Collapse
Affiliation(s)
- Robert M Glaeser
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA;
| |
Collapse
|
31
|
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 2018; 7:42166. [PMID: 30412051 PMCID: PMC6250425 DOI: 10.7554/elife.42166] [Citation(s) in RCA: 3249] [Impact Index Per Article: 541.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022] Open
Abstract
Here, we describe the third major release of RELION. CPU-based vector acceleration has been added in addition to GPU support, which provides flexibility in use of resources and avoids memory limitations. Reference-free autopicking with Laplacian-of-Gaussian filtering and execution of jobs from python allows non-interactive processing during acquisition, including 2D-classification, de novo model generation and 3D-classification. Per-particle refinement of CTF parameters and correction of estimated beam tilt provides higher resolution reconstructions when particles are at different heights in the ice, and/or coma-free alignment has not been optimal. Ewald sphere curvature correction improves resolution for large particles. We illustrate these developments with publicly available data sets: together with a Bayesian approach to beam-induced motion correction it leads to resolution improvements of 0.2–0.7 Å compared to previous RELION versions.
Collapse
Affiliation(s)
- Jasenko Zivanov
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Takanori Nakane
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Björn O Forsberg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Dari Kimanius
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Wim Jh Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cryo-Electron Microscopy Service Platform, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
32
|
Sub-2 Å Ewald curvature corrected structure of an AAV2 capsid variant. Nat Commun 2018; 9:3628. [PMID: 30194371 PMCID: PMC6128836 DOI: 10.1038/s41467-018-06076-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/11/2018] [Indexed: 01/08/2023] Open
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) provides a powerful methodology for structural biologists, but the resolutions typically attained with experimentally determined structures have lagged behind microscope capabilities. Here, we exploit several technical advances to improve resolution, including per-particle contrast transfer function (CTF) refinement and correction for Ewald sphere curvature. The latter is demonstrated with several experimental samples and should become more standard as resolutions increase or at lower microscope accelerating voltages. The combined application of the described methods to micrographs recorded on a Titan Krios enables structure determination at ~1.86-Å resolution of an adeno-associated virus serotype 2 variant (AAV2), an important gene-delivery vehicle. The resulting structural details provide an improved model for understanding the biology of AAV that will guide future vector development for gene therapy. Single-particle cryo-EM is a powerful method for macromolecular structure determination. Here the authors demonstrate that Ewald sphere curvature correction, sub-Angstrom pixilation and per-particle CTF refinement can improve map quality and resolution and present the 1.86 Å cryo-EM structure of an adeno-associated virus serotype 2 variant.
Collapse
|
33
|
Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nat Commun 2018; 9:1552. [PMID: 29674632 PMCID: PMC5908801 DOI: 10.1038/s41467-018-04051-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/28/2018] [Indexed: 01/05/2023] Open
Abstract
The Ewald sphere effect is generally neglected when using the Central Projection Theorem for cryo electron microscopy single-particle reconstructions. This can reduce the resolution of a reconstruction. Here we estimate the attainable resolution and report a “block-based” reconstruction method for extending the resolution limit. We find the Ewald sphere effect limits the resolution of large objects, especially large viruses. After processing two real datasets of large viruses, we show that our procedure can extend the resolution for both datasets and can accommodate the flexibility associated with large protein complexes. Conventional reconstruction methods used in cryo-EM single particle analysis do not take the depth of field effect into account. Here the authors present a block-based reconstruction method to deal with the depth of field effect and show that this approach can improve the resolution of cryo-EM virus structures.
Collapse
|
34
|
Yu X, Jih J, Jiang J, Zhou ZH. Atomic structure of the human cytomegalovirus capsid with its securing tegument layer of pp150. Science 2018; 356:356/6345/eaam6892. [PMID: 28663444 DOI: 10.1126/science.aam6892] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
Abstract
Herpesviruses possess a genome-pressurized capsid. The 235-kilobase genome of human cytomegalovirus (HCMV) is by far the largest of any herpesvirus, yet it has been unclear how its capsid, which is similar in size to those of other herpesviruses, is stabilized. Here we report a HCMV atomic structure consisting of the herpesvirus-conserved capsid proteins MCP, Tri1, Tri2, and SCP and the HCMV-specific tegument protein pp150-totaling ~4000 molecules and 62 different conformers. MCPs manifest as a complex of insertions around a bacteriophage HK97 gp5-like domain, which gives rise to three classes of capsid floor-defining interactions; triplexes, composed of two "embracing" Tri2 conformers and a "third-wheeling" Tri1, fasten the capsid floor. HCMV-specific strategies include using hexon channels to accommodate the genome and pp150 helix bundles to secure the capsid via cysteine tetrad-to-SCP interactions. Our structure should inform rational design of countermeasures against HCMV, other herpesviruses, and even HIV/AIDS.
Collapse
Affiliation(s)
- Xuekui Yu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA
| | - Jonathan Jih
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA
| | - Jiansen Jiang
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA. .,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095-7364, USA
| |
Collapse
|
35
|
Ewald sphere correction using a single side-band image processing algorithm. Ultramicroscopy 2018; 187:26-33. [PMID: 29413409 PMCID: PMC5862657 DOI: 10.1016/j.ultramic.2017.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022]
Abstract
Curvature of the Ewald sphere limits the resolution at which Fourier components in an image can be approximated as corresponding to a projection of the object. Since the radius of the Ewald sphere is inversely proportional to the wavelength of the imaging electrons, this normally imposes a limit on the thickness of specimen for which images can be easily interpreted to a particular resolution. Here we present a computational method for precisely correcting for the curvature of the Ewald sphere using defocused images that delocalise the high-resolution Fourier components from the primary image. By correcting for each approximately Friedel-symmetry-related sideband separately using two distinct complex transforms that effectively move the displaced Fourier components back to where they belong in the structure, we can determine the amplitude and phase of each of the Fourier components separately. This precisely accounts for the effect of Ewald sphere curvature over a bandwidth defined by the defocus and the size of the particle being imaged. We demonstrate this processing algorithm using: 1. simulated images of a particle with only a single, high-resolution Fourier component, and 2. experimental images of gold nanoparticles embedded in ice. Processing micrographs with this algorithm will allow higher resolution imaging of thicker specimens at lower energies without any image degradation or blurring due to errors made by the assumption of a flat Ewald sphere. Although the procedure will work best on images recorded with higher defocus settings than used normally, it should still improve 3D single-particle structure determination using images recorded at any defocus and any electron energy. Finally, since the Ewald sphere curvature is in a known direction in the third dimension which is parallel to the direction of view, this algorithm automatically determines the absolute hand of the specimen without the need for pairs of images with a known tilt angle difference.
Collapse
|
36
|
Jiang W, Tang L. Atomic cryo-EM structures of viruses. Curr Opin Struct Biol 2017; 46:122-129. [PMID: 28787658 PMCID: PMC5683926 DOI: 10.1016/j.sbi.2017.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 01/30/2023]
Abstract
During the development of single particle cryo-EM in past five decades, icosahedral viruses have led the resolution progress owing to their large mass and high symmetry. Many technical advances in cryo-EM were first established with viruses. Since reaching ∼4Å resolution in 2008, it has become a relatively routine task to solve the atomic structure of isolated viruses. The future of structural virology will be increasingly focused on remaining challenges including solving structures of jumbo viruses, intermediate functional states during assembly, maturation, and infection, and in situ structures. Recent demonstrations of near-atomic resolution structure with electron tomography and sub-tomogram averaging opens a new direction for high resolution studies of pleomorphic viruses and the pleomorphic states of icosahedral viruses that have defied past efforts using the single particle cryo-EM approach.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Biological Sciences, Immunology and Infectious Disease, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, USA; Department of Chemistry, Immunology and Infectious Disease, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, USA; Markey Center for Structural Biology, Immunology and Infectious Disease, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, IN 47907, USA.
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA.
| |
Collapse
|
37
|
Downing KH, Glaeser RM. Estimating the effect of finite depth of field in single-particle cryo-EM. Ultramicroscopy 2017; 184:94-99. [PMID: 28869854 DOI: 10.1016/j.ultramic.2017.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/05/2017] [Accepted: 08/15/2017] [Indexed: 01/30/2023]
Abstract
The extent to which the resolution varies within a three-dimensional (3-D) reconstruction, when the diameter of an object is large, is investigated computationally. Numerical simulation is used to model ideal three-dimensional point-spread functions at different radial positions within an object. It is shown that reconstructed density maps are affected less than might have been expected when particles are larger than the depth of field. This favorable outcome is attributed mainly to the fact that a point which lies outside the depth of field relative to the center, for some orientations of the object, will also lie within the depth of field for other orientations. We find, as a result, that the diameter of a particle can be as much as four times the depth of field (as defined by a 90° phase-error criterion) before curvature of the Ewald sphere becomes a limiting factor in determining the resolution that can be achieved.
Collapse
Affiliation(s)
- Kenneth H Downing
- Lawrence Berkeley National Laboratory, University of California, Berkeley CA 94720, USA
| | - Robert M Glaeser
- Lawrence Berkeley National Laboratory, University of California, Berkeley CA 94720, USA.
| |
Collapse
|
38
|
Li X, Zhou N, Chen W, Zhu B, Wang X, Xu B, Wang J, Liu H, Cheng L. Near-Atomic Resolution Structure Determination of a Cypovirus Capsid and Polymerase Complex Using Cryo-EM at 200kV. J Mol Biol 2016; 429:79-87. [PMID: 27914893 DOI: 10.1016/j.jmb.2016.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/15/2016] [Accepted: 11/26/2016] [Indexed: 12/23/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) allows the high-resolution structural determination of biological assemblies in a near-native environment. However, all high-resolution (better than 3.5Å) cryo-EM structures reported to date were obtained by using 300kV transmission electron microscopes (TEMs). We report here the structures of a cypovirus capsid of 750-Å diameter at 3.3-Å resolution and of RNA-dependent RNA polymerase (RdRp) complexes within the capsid at 3.9-Å resolution using a 200-kV TEM. The newly resolved structure revealed conformational changes of two subdomains in the RdRp. These conformational changes, which were involved in RdRp's switch from non-transcribing to transcribing mode, suggest that the RdRp may facilitate the unwinding of genomic double-stranded RNA. The possibility of 3-Å resolution structural determinations for biological assemblies of relatively small sizes using cryo-EM at 200kV was discussed.
Collapse
Affiliation(s)
- Xiaowu Li
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan, 410081, China; Technology Center for Protein Sciences, Tsinghua University, Beijing, 100084, China
| | - Niyun Zhou
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenyuan Chen
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Bin Zhu
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Xurong Wang
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Bin Xu
- Technology Center for Protein Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiawei Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hongrong Liu
- College of Physics and Information Science, Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Lingpeng Cheng
- Technology Center for Protein Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
39
|
Abstract
The suddenness with which single-particle cryo-electron microscopy (cryo-EM) has emerged as a method for determining high-resolution structures of biological macromolecules invites the questions, how much better can this technology get, and how fast is that likely to happen? Though we can rightly celebrate the maturation of cryo-EM as a high-resolution structure-determination tool, I believe there still are many developments to look forward to.
Collapse
|
40
|
Russo CJ, Passmore LA. Progress towards an optimal specimen support for electron cryomicroscopy. Curr Opin Struct Biol 2016; 37:81-9. [PMID: 26774849 PMCID: PMC4863039 DOI: 10.1016/j.sbi.2015.12.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 01/04/2023]
Abstract
Physical principles of electron scattering govern the design of specimen supports. Radiation-induced motion causes loss of resolution in electron micrographs. Specimen supports can now be designed to reduce specimen motion. Tailored surfaces in the support allow control of particle distribution and orientation. Future developments in support technology will further improve image quality.
The physical principles of electron–specimen interaction govern the design of specimen supports for electron cryomicroscopy (cryo-EM). Supports are constructed to suspend biological samples within the vacuum of the electron microscope in a way that maximises image contrast. Although the problem of specimen motion during imaging has been known since cryo-EM was first developed, the role of the support in this movement has only been recently identified. Here we review the key technological advances in specimen supports for cryo-EM. This includes the use of graphene as a surface for the adsorption of proteins and the design of an ultrastable, all-gold substrate that reduces the motion of molecules during electron irradiation. We discuss the implications of these and other recent improvements in specimen supports on resolution, and place them in the context of important developments in structure determination by cryo-EM.
Collapse
Affiliation(s)
- Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
41
|
Zhang K. Gctf: Real-time CTF determination and correction. J Struct Biol 2015; 193:1-12. [PMID: 26592709 PMCID: PMC4711343 DOI: 10.1016/j.jsb.2015.11.003] [Citation(s) in RCA: 2590] [Impact Index Per Article: 287.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 11/26/2022]
Abstract
Accurate estimation of the contrast transfer function (CTF) is critical for a near-atomic resolution cryo electron microscopy (cryoEM) reconstruction. Here, a GPU-accelerated computer program, Gctf, for accurate and robust, real-time CTF determination is presented. The main target of Gctf is to maximize the cross-correlation of a simulated CTF with the logarithmic amplitude spectra (LAS) of observed micrographs after background subtraction. Novel approaches in Gctf improve both speed and accuracy. In addition to GPU acceleration (e.g. 10–50×), a fast ‘1-dimensional search plus 2-dimensional refinement (1S2R)’ procedure further speeds up Gctf. Based on the global CTF determination, the local defocus for each particle and for single frames of movies is accurately refined, which improves CTF parameters of all particles for subsequent image processing. Novel diagnosis method using equiphase averaging (EPA) and self-consistency verification procedures have also been implemented in the program for practical use, especially for aims of near-atomic reconstruction. Gctf is an independent program and the outputs can be easily imported into other cryoEM software such as Relion (Scheres, 2012) and Frealign (Grigorieff, 2007). The results from several representative datasets are shown and discussed in this paper.
Collapse
Affiliation(s)
- Kai Zhang
- Medical Research Council Laboratory of Molecular Biology, Division of Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
42
|
McMullan G, Vinothkumar KR, Henderson R. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy. Ultramicroscopy 2015; 158:26-32. [PMID: 26103047 PMCID: PMC4584428 DOI: 10.1016/j.ultramic.2015.05.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/19/2015] [Accepted: 05/24/2015] [Indexed: 11/27/2022]
Abstract
We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å2 for every incident 300 keV e−/Å2. The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e−/Å2 per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. Thon rings can be seen from amorphous ice. Radiation damage to amorphous ice randomly displaces water molecules. Each incident 300 keV e−/Å2 displaces water molecules on average by ∼1 Å. Macromolecules embedded in amorphous ice undergo beam induced Brownian motion.
Collapse
Affiliation(s)
- G McMullan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - K R Vinothkumar
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - R Henderson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
43
|
KOECK P, KARSHIKOFF A. Limitations of the linear and the projection approximations in three-dimensional transmission electron microscopy of fully hydrated proteins. J Microsc 2015; 259:197-209. [DOI: 10.1111/jmi.12253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/09/2015] [Indexed: 11/29/2022]
Affiliation(s)
- P.J.B. KOECK
- Royal Institute of Technology; School of Technology and Health; Handen Sweden
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge Sweden
| | - A. KARSHIKOFF
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge Sweden
| |
Collapse
|
44
|
Abstract
With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3-4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced.
Collapse
Affiliation(s)
- Fei Guo
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
45
|
|
46
|
Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q Rev Biophys 2013; 46:283-322. [PMID: 24050525 PMCID: PMC3820380 DOI: 10.1017/s0033583513000061] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The nicotinic acetylcholine (ACh) receptor, at the neuromuscular junction, is a neurotransmitter-gated ion channel that has been fine-tuned through evolution to transduce a chemical signal into an electrical signal with maximum efficiency and speed. It is composed from three similar and two identical polypeptide chains, arranged in a ring around a narrow membrane pore. Central to the design of this assembly is a hydrophobic gate in the pore, more than 50 Å away from sites in the extracellular domain where ACh binds. Although the molecular properties of the receptor have been explored intensively over the last few decades, only recently have structures emerged revealing its complex architecture and illuminating how ACh entering the binding sites opens the distant gate. Postsynaptic membranes isolated from the (muscle-derived) electric organ of the Torpedo ray have underpinned most of the structural studies: the membranes form tubular vesicles having receptors arranged on a regular surface lattice, which can be imaged directly in frozen physiological solutions. Advances in electron crystallographic techniques have also been important, enabling analysis of the closed- and open-channel forms of the receptor in unreacted tubes or tubes reacted briefly with ACh. The structural differences between these two forms show that all five subunits participate in a concerted conformational change communicating the effect of ACh binding to the gate, but that three of them (αγ, β and δ) play a dominant role. Flexing of oppositely facing pore-lining α-helices is the principal motion determining the closed/open state of the gate. These results together with the findings of biochemical, biophysical and other structural studies allow an integrated description of the receptor and of its mode of action at the synapse.
Collapse
|
47
|
Vulović M, Ravelli RBG, van Vliet LJ, Koster AJ, Lazić I, Lücken U, Rullgård H, Öktem O, Rieger B. Image formation modeling in cryo-electron microscopy. J Struct Biol 2013; 183:19-32. [PMID: 23711417 DOI: 10.1016/j.jsb.2013.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 11/16/2022]
Abstract
Accurate modeling of image formation in cryo-electron microscopy is an important requirement for quantitative image interpretation and optimization of the data acquisition strategy. Here we present a forward model that accounts for the specimen's scattering properties, microscope optics, and detector response. The specimen interaction potential is calculated with the isolated atom superposition approximation (IASA) and extended with the influences of solvent's dielectric and ionic properties as well as the molecular electrostatic distribution. We account for an effective charge redistribution via the Poisson-Boltzmann approach and find that the IASA-based potential forms the dominant part of the interaction potential, as the contribution of the redistribution is less than 10%. The electron wave is propagated through the specimen by a multislice approach and the influence of the optics is included via the contrast transfer function. We incorporate the detective quantum efficiency of the camera due to the difference between signal and noise transfer characteristics, instead of using only the modulation transfer function. The full model was validated against experimental images of 20S proteasome, hemoglobin, and GroEL. The simulations adequately predict the effects of phase contrast, changes due to the integrated electron flux, thickness, inelastic scattering, detective quantum efficiency and acceleration voltage. We suggest that beam-induced specimen movements are relevant in the experiments whereas the influence of the solvent amorphousness can be neglected. All simulation parameters are based on physical principles and, when necessary, experimentally determined.
Collapse
Affiliation(s)
- Miloš Vulović
- Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Single particle electron microscopy is a versatile technique for the structural analysis of protein complexes in near-native conditions. While tremendous progress has been made during the past few decades in techniques for specimen preparation, imaging, and image analysis, the field is still in development. In the context of this volume on electron crystallography, the following chapter gives practical guidelines on how to begin single particle EM studies, including preparing specimens, selecting imaging conditions, and choosing which of the many approaches to image analysis are appropriate for a specific sample.
Collapse
Affiliation(s)
- Wilson C Y Lau
- Molecular Structure and Function Program, Departments of Biochemistry and Medical Biophysics, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
49
|
Vahedi-Faridi A, Jastrzebska B, Palczewski K, Engel A. 3D imaging and quantitative analysis of small solubilized membrane proteins and their complexes by transmission electron microscopy. Microscopy (Oxf) 2012; 62:95-107. [PMID: 23267047 DOI: 10.1093/jmicro/dfs091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Inherently unstable, detergent-solubilized membrane protein complexes can often not be crystallized. For complexes that have a mass of >300 kDa, cryo-electron microscopy (EM) allows their three-dimensional (3D) structure to be assessed to a resolution that makes secondary structure elements visible in the best case. However, many interesting complexes exist whose mass is below 300 kDa and thus need alternative approaches. Two methods are reviewed: (i) Mass measurement in a scanning transmission electron microscope, which has provided important information on the stoichiometry of membrane protein complexes. This technique is applicable to particulate, filamentous and sheet-like structures. (ii) 3D-EM of negatively stained samples, which determines the molecular envelope of small membrane protein complexes. Staining and dehydration artifacts may corrupt the quality of the 3D map. Staining conditions thus need to be optimized. 3D maps of plant aquaporin SoPIP2;1 tetramers solubilized in different detergents illustrate that the flattening artifact can be partially prevented and that the detergent itself contributes significantly. Another example discussed is the complex of G protein-coupled receptor rhodopsin with its cognate G protein transducin.
Collapse
Affiliation(s)
- Ardeschir Vahedi-Faridi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4965, USA
| | | | | | | |
Collapse
|
50
|
Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:49-90. [PMID: 22297510 DOI: 10.1007/978-1-4614-0980-9_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The past few decades have seen tremendous advances in single-particle electron -cryo-microscopy (cryo-EM). The field has matured to the point that near-atomic resolution density maps can be generated for icosahedral viruses without the need for crystallization. In parallel, substantial progress has been made in determining the structures of nonicosahedrally arranged proteins in viruses by employing either single-particle cryo-EM or cryo-electron tomography (cryo-ET). Implicit in this course have been the availability of a new generation of electron cryo-microscopes and the development of the computational tools that are essential for generating these maps and models. This methodology has enabled structural biologists to analyze structures in increasing detail for virus particles that are in different morphogenetic states. Furthermore, electron imaging of frozen, hydrated cells, in the process of being infected by viruses, has also opened up a new avenue for studying virus structures "in situ". Here we present the common techniques used to acquire and process cryo-EM and cryo-ET data and discuss their implications for structural virology both now and in the future.
Collapse
|