• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646951)   Today's Articles (2592)   Subscriber (50684)
For: Ma J, Yong J. Adapted solution of a degenerate backward spde, with applications. Stoch Process Their Appl 1997;70:59-84. [DOI: 10.1016/s0304-4149(97)00057-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Number Cited by Other Article(s)
1
Qiu J. Weak solution for a class of fully nonlinear stochastic Hamilton–Jacobi–Bellman equations. Stoch Process Their Appl 2017. [DOI: 10.1016/j.spa.2016.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
2
Yin H. Forward–backward stochastic partial differential equations with non-monotonic coefficients. STOCH DYNAM 2016. [DOI: 10.1142/s0219493716500258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
3
Tang S, Wei W. On the Cauchy problem for backward stochastic partial differential equations in Hölder spaces. ANN PROBAB 2016. [DOI: 10.1214/14-aop976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
4
Ma J, Wu Z, Zhang D, Zhang J. On well-posedness of forward–backward SDEs—A unified approach. ANN APPL PROBAB 2015. [DOI: 10.1214/14-aap1046] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
5
Yin H. Solvability of forward–backward stochastic partial differential equations. Stoch Process Their Appl 2014. [DOI: 10.1016/j.spa.2014.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
6
Englezos N, Frangos NE, Kartala XI, Yannacopoulos AN. Stochastic Burgers PDEs with random coefficients and a generalization of the Cole–Hopf transformation. Stoch Process Their Appl 2013. [DOI: 10.1016/j.spa.2013.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
7
Du K, Zhang Q. Semi-linear degenerate backward stochastic partial differential equations and associated forward–backward stochastic differential equations. Stoch Process Their Appl 2013. [DOI: 10.1016/j.spa.2013.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
8
Ma J, Yin H, Zhang J. On non-Markovian forward–backward SDEs and backward stochastic PDEs. Stoch Process Their Appl 2012. [DOI: 10.1016/j.spa.2012.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
9
Du K, Tang S. Strong solution of backward stochastic partial differential equations in C 2 domains. Probab Theory Relat Fields 2011. [DOI: 10.1007/s00440-011-0369-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
10
Du K, Meng Q. A revisit to W2n-theory of super-parabolic backward stochastic partial differential equations in Rd. Stoch Process Their Appl 2010. [DOI: 10.1016/j.spa.2010.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Sundar P, Yin H. Existence and uniqueness of solutions to the backward 2D stochastic Navier–Stokes equations. Stoch Process Their Appl 2009. [DOI: 10.1016/j.spa.2008.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
12
Confortola F. Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity. Stoch Process Their Appl 2007. [DOI: 10.1016/j.spa.2006.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
13
Fuhrman M. Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. ANN PROBAB 2002. [DOI: 10.1214/aop/1029867132] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA