1
|
Hord JM, Burns S, Willer T, Goddeeris MM, Venzke D, Campbell KP. Sarcolemma resilience and skeletal muscle health require O-mannosylation of dystroglycan. Skelet Muscle 2025; 15:1. [PMID: 39789642 PMCID: PMC11715199 DOI: 10.1186/s13395-024-00370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions. Extensive post-translational processing and O-mannosylation are required for α-DG to bind ECM proteins, which is mediated by a glycan structure known as matriglycan. O-mannose glycan biosynthesis is initiated by the protein O-mannosyltransferase 1 (POMT1) and POMT2 enzyme complex and leads to three subtypes of glycans called core M1, M2, and M3. The lengthy core M3 is capped with matriglycan. Genetic defects in post-translational O-mannosylation of DG interfere with its receptor function and result in muscular dystrophy with central nervous system and skeletal muscle pathophysiology. METHODS To evaluate how the loss of O-mannosylated DG in skeletal muscle affects the development and progression of myopathology, we generated and characterized mice in which the Pomt1 gene was specifically deleted in skeletal muscle (Pomt1skm) to interfere with POMT1/2 enzyme activity. To investigate whether matriglycan is the primary core M glycan structure that provides the stabilizing link between the sarcolemma and ECM, we generated mice that retained cores M1, M2, and M3, but lacked matriglycan (conditional deletion of like-acetylglucosaminyltransferase 1; Large1skm). Next, we restored Pomt1 using gene transfer via AAV2/9-MCK-mPOMT1 and determined the effect on Pomt1skm pathophysiology. RESULTS Our data showed that in Pomt1skm mice O-mannosylated DG is required for sarcolemma resilience, remodeling of muscle fibers and muscle tissue, and neuromuscular function. Notably, we observed similar body size limitations, sarcolemma weakness, and neuromuscular weakness in Large1skm mice that only lacked matriglycan. Furthermore, our data indicate that genetic rescue of Pomt1 in Pomt1skm mice limits contraction-induced sarcolemma damage and skeletal muscle pathology. CONCLUSIONS Collectively, our data indicate that DG modification by Pomt1/2 results in core M3 capped with matriglycan, and that this is required to reinforce the sarcolemma and enable skeletal muscle health and neuromuscular strength.
Collapse
Affiliation(s)
- Jeffrey M Hord
- Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Sarah Burns
- Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Tobias Willer
- Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Matthew M Goddeeris
- Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - David Venzke
- Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Kevin P Campbell
- Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
2
|
Sciandra F, Desiderio C, Vincenzoni F, Viscuso S, Bozzi M, Hübner W, Jimenez-Gutierrez GE, Cisneros B, Brancaccio A. Analysis of the GFP-labelled β-dystroglycan interactome in HEK-293 transfected cells reveals novel intracellular networks. Biochem Biophys Res Commun 2024; 703:149656. [PMID: 38364681 DOI: 10.1016/j.bbrc.2024.149656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Dystroglycan (DG) is a cell adhesion complex that is widely expressed in tissues. It is composed by two subunits, α-DG, a highly glycosylated protein that interacts with several extracellular matrix proteins, and transmembrane β-DG whose, cytodomain binds to the actin cytoskeleton. Glycosylation of α-DG is crucial for functioning as a receptor for its multiple extracellular binding partners. Perturbation of α-DG glycosylation is the central event in the pathogenesis of severe pathologies such as muscular dystrophy and cancer. β-DG acts as a scaffold for several cytoskeletal and nuclear proteins and very little is known about the fine regulation of some of these intracellular interactions and how they are perturbed in diseases. To start filling this gap by identifying uncharacterized intracellular networks preferentially associated with β-DG, HEK-293 cells were transiently transfected with a plasmid carrying the β-DG subunit with GFP fused at its C-terminus. With this strategy, we aimed at forcing β-DG to occupy multiple intracellular locations instead of sitting tightly at its canonical plasma membrane milieu, where it is commonly found in association with α-DG. Immunoprecipitation by anti-GFP antibodies followed by shotgun proteomic analysis led to the identification of an interactome formed by 313 exclusive protein matches for β-DG binding. A series of already known β-DG interactors have been found, including ezrin and emerin, whilst significant new matches, which include potential novel β-DG interactors and their related networks, were identified in diverse subcellular compartments, such as cytoskeleton, endoplasmic reticulum/Golgi, mitochondria, nuclear membrane and the nucleus itself. Of particular interest amongst the novel identified matches, Lamina-Associated Polypeptide-1B (LAP1B), an inner nuclear membrane protein, whose mutations are known to cause nuclear envelopathies characterized by muscular dystrophy, was found to interact with β-DG in HEK-293 cells. This evidence was confirmed by immunoprecipitation, Western blotting and immunofluorescence experiments. We also found by immunofluorescence experiments that LAP1B looses its nuclear envelope localization in C2C12 DG-knock-out cells, suggesting that LAP1B requires β-DG for a proper nuclear localization. These results expand the role of β-DG as a nuclear scaffolding protein and provide novel evidence of a possible link between dystroglycanopathies and nuclear envelopathies displaying with muscular dystrophy.
Collapse
Affiliation(s)
- Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Simona Viscuso
- Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy
| | - Manuela Bozzi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy; Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma, Italy
| | - Wolfgang Hübner
- Biomolecular Photonics, University of Bielefeld, 33615, Bielefeld, Germany
| | | | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, CINVESTAV Zacatenco IPN, Ciudad de México, 07360, Mexico
| | - Andrea Brancaccio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR), Largo F. Vito, 00168, Roma, Italy; School of Biochemistry, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
3
|
Cook M, Stevenson B, Jacobs LA, Leocadio Victoria D, Cisneros B, Hobbs JK, Stewart CL, Winder SJ. The Role of β-Dystroglycan in Nuclear Dynamics. Cells 2024; 13:431. [PMID: 38474395 PMCID: PMC10931191 DOI: 10.3390/cells13050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Dystroglycan is a ubiquitously expressed heterodimeric cell-surface laminin receptor with roles in cell adhesion, signalling, and membrane stabilisation. More recently, the transmembrane β-subunit of dystroglycan has been shown to localise to both the nuclear envelope and the nucleoplasm. This has led to the hypothesis that dystroglycan may have a structural role at the nuclear envelope analogous to its role at the plasma membrane. The biochemical fraction of myoblast cells clearly supports the presence of dystroglycan in the nucleus. Deletion of the dystroglycan protein by disruption of the DAG1 locus using CRISPR/Cas9 leads to changes in nuclear size but not overall morphology; moreover, the Young's modulus of dystroglycan-deleted nuclei, as determined by atomic force microscopy, is unaltered. Dystroglycan-disrupted myoblasts are also no more susceptible to nuclear stresses including chemical and mechanical, than normal myoblasts. Re-expression of dystroglycan in DAG1-disrupted myoblasts restores nuclear size without affecting other nuclear parameters.
Collapse
Affiliation(s)
- Matthew Cook
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- A*STAR Skin Research Laboratories, Singapore 138648, Singapore
| | - Ben Stevenson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Laura A. Jacobs
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, Mexico City 07360, Mexico;
| | - Jamie K. Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
| | | | - Steve J. Winder
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
4
|
Jimenez-Gutierrez GE, Mondragon-Gonzalez R, Soto-Ponce LA, Gómez-Monsiváis WL, García-Aguirre I, Pacheco-Rivera RA, Suárez-Sánchez R, Brancaccio A, Magaña JJ, C.R. Perlingeiro R, Cisneros B. Loss of Dystroglycan Drives Cellular Senescence via Defective Mitosis-Mediated Genomic Instability. Int J Mol Sci 2020; 21:E4961. [PMID: 32674290 PMCID: PMC7404207 DOI: 10.3390/ijms21144961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Nuclear β-dystroglycan (β-DG) is involved in the maintenance of nuclear architecture and function. Nonetheless, its relevance in defined nuclear processes remains to be determined. In this study we generated a C2C12 cell-based DG-null model using CRISPR-Cas9 technology to provide insights into the role of β-DG on nuclear processes. Since DG-null cells exhibited decreased levels of lamin B1, we aimed to elucidate the contribution of DG to senescence, owing to the central role of lamin B1 in this pathway. Remarkably, the lack of DG enables C2C12 cells to acquire senescent features, including cell-cycle arrest, increased senescence-associated-β-galactosidase activity, heterochromatin loss, aberrant nuclear morphology and nucleolar disruption. We demonstrated that genomic instability is one driving cause of the senescent phenotype in DG-null cells via the activation of a DNA-damage response associated with mitotic failure, as shown by the presence of multipolar mitotic spindles, which in turn induced the formation of micronuclei and γH2AX foci (DNA-damage marker), telomere shortening and p53/p21 upregulation. Altogether, these events might ultimately lead to premature senescence, impeding the replication of the damaged genome. In summary, we present evidence supporting a role for DG in protecting against senescence, through the maintenance of proper lamin B1 expression/localization and proper mitotic spindle organization.
Collapse
Affiliation(s)
- Guadalupe Elizabeth Jimenez-Gutierrez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (G.E.J.-G.); (R.M.-G.); (L.A.S.-P.); (W.L.G.-M.); (I.G.-A.)
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Ricardo Mondragon-Gonzalez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (G.E.J.-G.); (R.M.-G.); (L.A.S.-P.); (W.L.G.-M.); (I.G.-A.)
| | - Luz Adriana Soto-Ponce
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (G.E.J.-G.); (R.M.-G.); (L.A.S.-P.); (W.L.G.-M.); (I.G.-A.)
| | - Wendy Lilián Gómez-Monsiváis
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (G.E.J.-G.); (R.M.-G.); (L.A.S.-P.); (W.L.G.-M.); (I.G.-A.)
| | - Ian García-Aguirre
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (G.E.J.-G.); (R.M.-G.); (L.A.S.-P.); (W.L.G.-M.); (I.G.-A.)
| | - Ruth Abigail Pacheco-Rivera
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Rocío Suárez-Sánchez
- Departamento de Genética, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico;
| | - Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK;
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC), 00168 Roma, Italy
| | - Jonathan Javier Magaña
- Departamento de Genética, Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Ciudad de México 14389, Mexico;
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey-Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Rita C.R. Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (G.E.J.-G.); (R.M.-G.); (L.A.S.-P.); (W.L.G.-M.); (I.G.-A.)
| |
Collapse
|
5
|
Trajanovska S, Ban J, Huang J, Gregorevic P, Morsch M, Allen DG, Phillips WD. Muscle specific kinase protects dystrophic mdx mouse muscles from eccentric contraction-induced loss of force-producing capacity. J Physiol 2019; 597:4831-4850. [PMID: 31340406 DOI: 10.1113/jp277839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Adeno-associated viral vector was used to elevate the expression of muscle specific kinase (MuSK) and rapsyn (a cytoplasmic MuSK effector protein) in the tibialis anterior muscle of wild-type and dystrophic (mdx) mice. In mdx mice, enhanced expression of either MuSK or rapsyn ameliorated the acute loss of muscle force associated with strain injury. Increases in sarcolemmal immunolabelling for utrophin and β-dystroglycan suggest a mechanism for the protective effect of MuSK in mdx muscles. MuSK also caused subtle changes to the structure and function of the neuromuscular junction, suggesting novel roles for MuSK in muscle physiology and pathophysiology. ABSTRACT Muscle specific kinase (MuSK) has a well-defined role in stabilizing the developing mammalian neuromuscular junction, but MuSK might also be protective in some neuromuscular diseases. In the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy, limb muscles are especially fragile. We injected the tibialis anterior muscle of 8-week-old mdx and wild-type (C57BL10) mice with adeno-associated viral vectors encoding either MuSK or rapsyn (a cytoplasmic MuSK effector protein) fused to green fluorescent protein (MuSK-GFP and rapsyn-GFP, respectively). Contralateral muscles injected with empty vector served as controls. One month later mice were anaesthetized with isoflurane and isometric force-producing capacity was recorded from the distal tendon. MuSK-GFP caused an unexpected decay in nerve-evoked tetanic force, both in wild-type and mdx muscles, without affecting contraction elicited by direct electrical stimulation of the muscle. Muscle fragility was probed by challenging muscles with a strain injury protocol consisting of a series of four strain-producing eccentric contractions in vivo. When applied to muscles of mdx mice, eccentric contraction produced an acute 27% reduction in directly evoked muscle force output, affirming the susceptibility of mdx muscles to strain injury. mdx muscles overexpressing MuSK-GFP or rapsyn-GFP exhibited significantly milder force deficits after the eccentric contraction challenge (15% and 14%, respectively). The protective effect of MuSK-GFP in muscles of mdx mice was associated with increased immunolabelling for utrophin and β-dystroglycan in the sarcolemma. Elevating the expression of MuSK or rapsyn revealed several distinct synaptic and extrasynaptic effects, suggesting novel roles for MuSK signalling in muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- S Trajanovska
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - J Ban
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - J Huang
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - P Gregorevic
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia.,Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - M Morsch
- Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - D G Allen
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - W D Phillips
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Kálmán M, Lőrincz DL, Sebők OM, Ari C, Oszwald E, Somiya H, Jancsik V. Cerebrovascular β-dystroglycan immunoreactivity in vertebrates: not detected in anurans and in the teleosts Ostariophysi and Euteleostei. Integr Zool 2019; 15:16-31. [PMID: 30811839 DOI: 10.1111/1749-4877.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of the present paper was to check for the presence of cerebrovascular dystroglycan in vertebrates, because dystroglycan, which is localized in the vascular astroglial end-feet, has a pivotal function in glio-vascular connections. In mammalian brains, the immunoreactivity of β-dystroglycan subunit delineates the vessels. The results of the present study demonstrate similar patterns in other vertebrates, except for anurans and the teleost groups Ostariophysi and Euteleostei. In this study, we investigated 1 or 2 representative species of the main groups of Chondrichthyes, teleost and non-teleost ray-finned fishes, urodeles, anurans, and reptiles. We also investigated 5 mammalian and 3 bird species. Animals were obtained from breeders or fishermen. The presence of β-dystroglycan was investigated immunohistochemically in free-floating sections. Pre-embedding electron microscopical immunohistochemistry on Heterodontus japonicus shark brains demonstrated that in Elasmobranchii, β-dystroglycan is also localized in the perivascular glial end-feet despite the different construction of their blood-brain barrier. The results indicated that the cerebrovascular β-dystroglycan immunoreactivity disappeared separately in anurans, and in teleosts, in the latter group before its division to Ostariophysi and Euteleostei. Immunohistochemistry in muscles and western blots from brain homogenates, however, detected the presence of β-dystroglycan, even in anurans and all teleosts. A possible explanation is that in the glial end-feet, β-dystroglycan is masked in these animals, or disappeared during adaptation to the freshwater habitat.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - David L Lőrincz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,University of Leicester, Dept. of Neuroscience, Psychology and Behaviour, Leicester, United Kingdom
| | - Olivér M Sebők
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csilla Ari
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.,Hyperbaric Neuroscience Research Lab., Dept of Psychology, University of South Florida, Tampa, Florida, USA
| | - Erzsébet Oszwald
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Hiroaki Somiya
- Department of Environmental Biology, Chubu University, Chubu, Japan
| | | |
Collapse
|
7
|
Azuara-Medina PM, Sandoval-Duarte AM, Morales-Lázaro SL, Modragón-González R, Vélez-Aguilera G, Gómez-López JDD, Jiménez-Gutiérrez GE, Tiburcio-Félix R, Martínez-Vieyra I, Suárez-Sánchez R, Längst G, Magaña JJ, Winder SJ, Ortega A, Ramos Perlingeiro RDC, Jacobs LA, Cisneros B. The intracellular domain of β-dystroglycan mediates the nucleolar stress response by suppressing UBF transcriptional activity. Cell Death Dis 2019; 10:196. [PMID: 30814495 PMCID: PMC6393529 DOI: 10.1038/s41419-019-1454-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022]
Abstract
β-dystroglycan (β-DG) is a key component of multiprotein complexes in the plasma membrane and nuclear envelope. In addition, β-DG undergoes two successive proteolytic cleavages that result in the liberation of its intracellular domain (ICD) into the cytosol and nucleus. However, stimuli-inducing ICD cleavage and the physiological relevance of this proteolytic fragment are largely unknown. In this study we show for the first time that β-DG ICD is targeted to the nucleolus where it interacts with the nuclear proteins B23 and UBF (central factor of Pol I-mediated rRNA gene transcription) and binds to rDNA promoter regions. Interestingly DG silencing results in reduced B23 and UBF levels and aberrant nucleolar morphology. Furthermore, β-DG ICD cleavage is induced by different nucleolar stressors, including oxidative stress, acidosis, and UV irradiation, which implies its participation in the response to nucleolar stress. Consistent with this idea, overexpression of β-DG elicited mislocalization and decreased levels of UBF and suppression of rRNA expression, which in turn provoked altered ribosome profiling and decreased cell growth. Collectively our data reveal that β-DG ICD acts as negative regulator of rDNA transcription by impeding the transcriptional activity of UBF, as a part of the protective mechanism activated in response to nucleolar stress.
Collapse
Affiliation(s)
- Paulina Margarita Azuara-Medina
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Ariana María Sandoval-Duarte
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Ricardo Modragón-González
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Griselda Vélez-Aguilera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Juan de Dios Gómez-López
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Guadalupe Elizabeth Jiménez-Gutiérrez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Reynaldo Tiburcio-Félix
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, 07320, Ciudad de México, Mexico
| | - Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, 14389, Ciudad de México, Mexico
| | - Gernot Längst
- Biochemistry Centre Regensburg (BCR), Universität Regensburg, 93053, Regensburg, Germany
| | - Jonathan Javier Magaña
- Laboratorio de Medicina Genómica, Instituto Nacional de Rehabilitación, 14389, Ciudad de México, Mexico
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07000, Ciudad de México, Mexico
| | | | - Laura A Jacobs
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del Instituto Politécnico Nacional, 07360, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Lin X, Yang H, Wang L, Li W, Diao S, Du J, Wang S, Dong R, Li J, Fan Z. AP2a enhanced the osteogenic differentiation of mesenchymal stem cells by inhibiting the formation of YAP/RUNX2 complex and BARX1 transcription. Cell Prolif 2018; 52:e12522. [PMID: 30443989 PMCID: PMC6430486 DOI: 10.1111/cpr.12522] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Objectives Bone regeneration by bone tissue engineering is a therapeutic option for bone defects. Improving the osteogenic differentiation of mesenchymal stem cells (MSCs) is essential for successful bone regeneration. We previously showed that AP2a enhances the osteogenic differentiation in MSCs. The present study investigated the mechanism of how AP2a regulates the direct differentiation. Materials and methods Co‐immunoprecipitation and ChIP assays were carried out to investigate the underlying mechanism in MSCs differentiation. The osteogenic differentiation potential was determined by mineralization ability and the expression of osteogenic marker in vitro and the in vivo bone‐like tissue generation in nude mice. Results We show that AP2a can compete with RUNX2, a key transcription factor in osteogenic differentiation, to recruit YAP and release the inhibition of RUNX2 activity from YAP by forming YAP‐AP2a protein complex. YAP‐AP2a protein complex also interacts with the BARX1 promoter through AP2a, inhibit the transcription of BARX1. Moreover, BARX1 inhibits osteogenic differentiation of MSCs. Conclusions Our discoveries revealed that AP2a may regulate the osteogenic differentiation in an indirect way through competing with RUNX2 to relieve the RUNX2 activity which inhibited by YAP, and also in a direct way via targeting the BARX1 and directly repressed its transcription. Thus, our discoveries shed new light on the mechanism of direct differentiation of MSCs and provide candidate targets for improving the osteogenic differentiation and enhancing bone tissue regeneration.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| | - Lijun Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Wenzhi Li
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Endodontics, Capital Medical University School of Stomatology, Beijing, China
| | - Shu Diao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Pediatrics, Capital Medical University School of Stomatology, Beijing, China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| | - Jun Li
- Department of Implant Dentistry, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory for Tooth Regeneration and Function Reconstruction of Oral Tissues, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
9
|
Cho EB, Yoo W, Yoon SK, Yoon JB. β-dystroglycan is regulated by a balance between WWP1-mediated degradation and protection from WWP1 by dystrophin and utrophin. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2199-2213. [PMID: 29635000 DOI: 10.1016/j.bbadis.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
Abstract
Dystroglycan is a ubiquitous membrane protein that functions as a mechanical connection between the extracellular matrix and cytoskeleton. In skeletal muscle, dystroglycan plays an indispensable role in regulating muscle regeneration; a malfunction in dystroglycan is associated with muscular dystrophy. The regulation of dystroglycan stability is poorly understood. Here, we report that WWP1, a member of NEDD4 E3 ubiquitin ligase family, promotes ubiquitination and subsequent degradation of β-dystroglycan. Our results indicate that dystrophin and utrophin protect β-dystroglycan from WWP1-mediated degradation by competing with WWP1 for the shared binding site at the cytosolic tail of β-dystroglycan. In addition, we show that a missense mutation (arginine 440 to glutamine) in WWP1-which is known to cause muscular dystrophy in chickens-increases the ubiquitin ligase-mediated ubiquitination of both β-dystroglycan and WWP1. The R440Q missense mutation in WWP1 decreases HECT domain-mediated intramolecular interactions to relieve autoinhibition of the enzyme. Our results provide new insight into the regulation of β-dystroglycan degradation by WWP1 and other Nedd4 family members and improves our understanding of dystroglycan-related disorders.
Collapse
Affiliation(s)
- Eun-Bee Cho
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Wonjin Yoo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sungjoo Kim Yoon
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
10
|
Vélez-Aguilera G, de Dios Gómez-López J, Jiménez-Gutiérrez GE, Vásquez-Limeta A, Laredo-Cisneros MS, Gómez P, Winder SJ, Cisneros B. Control of nuclear β-dystroglycan content is crucial for the maintenance of nuclear envelope integrity and function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:406-420. [PMID: 29175376 DOI: 10.1016/j.bbamcr.2017.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 01/28/2023]
Abstract
β-Dystroglycan (β-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling β-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that β-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced β-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and β-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear β-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear β-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity.
Collapse
Affiliation(s)
- Griselda Vélez-Aguilera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan de Dios Gómez-López
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Guadalupe E Jiménez-Gutiérrez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Alejandra Vásquez-Limeta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico; Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Marco S Laredo-Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Pablo Gómez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
11
|
Thomas PJ, Xu R, Martin PT. B4GALNT2 (GALGT2) Gene Therapy Reduces Skeletal Muscle Pathology in the FKRP P448L Mouse Model of Limb Girdle Muscular Dystrophy 2I. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:2429-48. [PMID: 27561302 DOI: 10.1016/j.ajpath.2016.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 12/22/2022]
Abstract
Overexpression of B4GALNT2 (previously GALGT2) inhibits the development of muscle pathology in mouse models of Duchenne muscular dystrophy, congenital muscular dystrophy 1A, and limb girdle muscular dystrophy 2D. In these models, muscle GALGT2 overexpression induces the glycosylation of α dystroglycan with the cytotoxic T cell glycan and increases the overexpression of dystrophin and laminin α2 surrogates known to inhibit disease. Here, we show that GALGT2 gene therapy significantly reduces muscle pathology in FKRP P448Lneo(-) mice, a model for limb girdle muscular dystrophy 2I. rAAVrh74.MCK.GALGT2-treated FKRP P448Lneo(-) muscles showed reduced levels of centrally nucleated myofibers, reduced variance, increased size of myofiber diameters, reduced myofiber immunoglobulin G uptake, and reduced muscle wasting at 3 and 6 months after treatment. GALGT2 overexpression in FKRP P448Lneo(-) muscles did not cause substantial glycosylation of α dystroglycan with the cytotoxic T cell glycan or increased expression of dystrophin and laminin α2 surrogates in mature skeletal myofibers, but it increased the number of embryonic myosin-positive regenerating myofibers. These data demonstrate that GALGT2 overexpression can reduce the extent of muscle pathology in FKRP mutant muscles, but that it may do so via a mechanism that differs from its ability to induce surrogate gene expression.
Collapse
Affiliation(s)
- Paul J Thomas
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Rui Xu
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Paul T Martin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
12
|
Foltz SJ, Luan J, Call JA, Patel A, Peissig KB, Fortunato MJ, Beedle AM. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet Muscle 2016; 6:20. [PMID: 27257474 PMCID: PMC4890530 DOI: 10.1186/s13395-016-0091-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Background Secondary dystroglycanopathies are a subset of muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (αDG). Loss of αDG functional glycosylation prevents it from binding to laminin and other extracellular matrix receptors, causing muscular dystrophy. Mutations in a number of genes, including FKTN (fukutin), disrupt αDG glycosylation. Methods We analyzed conditional Fktn knockout (Fktn KO) muscle for levels of mTOR signaling pathway proteins by Western blot. Two cohorts of Myf5-cre/Fktn KO mice were treated with the mammalian target of rapamycin (mTOR) inhibitor rapamycin (RAPA) for 4 weeks and evaluated for changes in functional and histopathological features. Results Muscle from 17- to 25-week-old fukutin-deficient mice has activated mTOR signaling. However, in tamoxifen-inducible Fktn KO mice, factors related to Akt/mTOR signaling were unchanged before the onset of dystrophic pathology, suggesting that Akt/mTOR signaling pathway abnormalities occur after the onset of disease pathology and are not causative in early dystroglycanopathy development. To determine any pharmacological benefit of targeting mTOR signaling, we administered RAPA daily for 4 weeks to Myf5/Fktn KO mice to inhibit mTORC1. RAPA treatment reduced fibrosis, inflammation, activity-induced damage, and central nucleation, and increased muscle fiber size in Myf5/Fktn KO mice compared to controls. RAPA-treated KO mice also produced significantly higher torque at the conclusion of dosing. Conclusions These findings validate a misregulation of mTOR signaling in dystrophic dystroglycanopathy skeletal muscle and suggest that such signaling molecules may be relevant targets to delay and/or reduce disease burden in dystrophic patients. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0091-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven J Foltz
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Junna Luan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA 30602 USA ; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602 USA
| | - Ankit Patel
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Kristen B Peissig
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Marisa J Fortunato
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| | - Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, GA 30602 USA
| |
Collapse
|
13
|
Leocadio D, Mitchell A, Winder SJ. γ-Secretase Dependent Nuclear Targeting of Dystroglycan. J Cell Biochem 2016; 117:2149-57. [PMID: 26990187 PMCID: PMC4982099 DOI: 10.1002/jcb.25537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/09/2016] [Indexed: 12/01/2022]
Abstract
Dystroglycan is frequently lost in adenocarcinoma. α‐dystroglycan is known to become hypoglycosylated due to transcriptional silencing of LARGE, whereas β‐dystroglycan is proteolytically cleaved and degraded. The mechanism and proteases involved in the cleavage events affecting β‐dystroglycan are poorly understood. Using LNCaP prostate cancer cells as a model system, we have investigated proteases and tyrosine phosphorylation affecting β‐dystroglycan proteolysis and nuclear targeting. Cell density or phorbol ester treatment increases dystroglycan proteolysis, whereas furin or γ‐secretase inhibitors decreased dystroglycan proteolysis. Using resveratrol treatment of LNCaP cells cultured at low cell density in order to up‐regulate notch and activate proteolysis, we identified significant increases in the levels of a 26 kDa β‐dystroglycan fragment. These data, therefore, support a cell density‐dependent γ‐secretase and furin mediated proteolysis of β‐dystroglycan, which could be notch stimulated, leading to nuclear targeting and subsequent degradation. 117: 2149–2157, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel Leocadio
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Andrew Mitchell
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
14
|
Lipscomb L, Piggott RW, Emmerson T, Winder SJ. Dasatinib as a treatment for Duchenne muscular dystrophy. Hum Mol Genet 2015; 25:266-74. [PMID: 26604135 PMCID: PMC4706114 DOI: 10.1093/hmg/ddv469] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models, we have identified tyrosine phosphorylation and degradation of β-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus, preventing tyrosine phosphorylation and degradation of β-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish, we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor, was found to decrease the levels of β-dystroglycan phosphorylation on tyrosine and to increase the relative levels of non-phosphorylated β-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming of dasatinib-treated fish compared with control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of β-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Leanne Lipscomb
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Robert W Piggott
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tracy Emmerson
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
15
|
Humphrey EL, Lacey E, Le LT, Feng L, Sciandra F, Morris CR, Hewitt JE, Holt I, Brancaccio A, Barresi R, Sewry CA, Brown SC, Morris GE. A new monoclonal antibody DAG-6F4 against human alpha-dystroglycan reveals reduced core protein in some, but not all, dystroglycanopathy patients. Neuromuscul Disord 2015; 25:32-42. [DOI: 10.1016/j.nmd.2014.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 11/28/2022]
|
16
|
Theiler RN, Snyder RR, Theiler SK. Dystroglycan in human fetal membranes decreases in later gestation and with spontaneous membrane rupture. Gynecol Obstet Invest 2014; 79:244-9. [PMID: 25341560 DOI: 10.1159/000367894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/26/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The transmembrane protein dystroglycan (DG) is known to anchor the cell membrane to the extracellular matrix, and is susceptible to cleavage by matrix metalloproteinases. This study tested the hypothesis that changes in DG abundance in fetal membranes (FM) occur late in gestation, with spontaneous rupture of membranes (SROM), and during labor. METHODS FM were collected from a prospective cohort consisting of four groups of patients (term labor, term unlabored, preterm labor, and preterm unlabored). FM were subjected to immunohistochemical staining using antibodies specific for α- and β-DG subunits, and staining intensity was graded by a blinded pathologist. RESULTS α- and β-DG staining was significantly decreased at term and after SROM (p < 0.05), but not in the presence of labor. CONCLUSIONS Decreased DG intensity was seen in FM of patients at term and with SROM, but no change was observed with labor.
Collapse
Affiliation(s)
- Regan N Theiler
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Tex., USA
| | | | | |
Collapse
|
17
|
Characterization of human gene locus CYYR1: a complex multi-transcript system. Mol Biol Rep 2014; 41:6025-38. [PMID: 24981926 DOI: 10.1007/s11033-014-3480-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/17/2014] [Indexed: 01/19/2023]
Abstract
Cysteine/tyrosine-rich 1 (CYYR1) is a gene we previously identified on human chromosome 21 starting from an in-depth bioinformatics analysis of chromosome 21 segment 40/105 (21q21.3), where no coding region had previously been predicted. CYYR1 was initially characterized as a four-exon gene, whose brain-derived cDNA sequencing predicts a 154-amino acid product. In this study we provide, with in silico and in vitro analyses, the first detailed description of the human CYYR1 locus. The analysis of this locus revealed that it is composed of a multi-transcript system, which includes at least seven CYYR1 alternative spliced isoforms and a new CYYR1 antisense gene (named CYYR1-AS1). In particular, we cloned, for the first time, the following isoforms: CYYR1-1,2,3,4b and CYYR1-1,2,3b, which present a different 3' transcribed region, with a consequent different carboxy-terminus of the predicted proteins; CYYR1-1,2,4 lacks exon 3; CYYR1-1,2,2bis,3,4 presents an additional exon between exon 2 and exon 3; CYYR1-1b,2,3,4 presents a different 5' untranslated region when compared to CYYR1. The complexity of the locus is enriched by the presence of an antisense transcript. We have cloned a long transcript overlapping with CYYR1 as an antisense RNA, probably a non-coding RNA. Expression analysis performed in different normal tissues, tumour cell lines as well as in trisomy 21 and euploid fibroblasts has confirmed a quantitative and qualitative variability in the expression pattern of the multi-transcript locus, suggesting a possible role in complex diseases that should be further investigated.
Collapse
|
18
|
Luo X, Wang B, Tang F, Zhang J, Zhao Y, Li H, Jin Y. Wwp2 targets SRG3, a scaffold protein of the SWI/SNF-like BAF complex, for ubiquitination and degradation. Biochem Biophys Res Commun 2013; 443:1048-53. [PMID: 24365151 DOI: 10.1016/j.bbrc.2013.12.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 12/25/2022]
Abstract
SRG3 plays essential roles both in early mouse embryogenesis and in extra-embryonic vascular development. As one of the core components of the SWI/SNF-like BAF complex, SRG3 serves as the scaffold protein and its protein level controls the stability of the BAF complex, which controls diverse physiological processes through transcriptional regulation. However, little is known about how the protein level of SRG3 is regulated in mammalian cells. Previously, we identified a murine ubiquitin ligase (Wwp2) and demonstrated that it interacts with pluripotency-associated key transcription factor Oct4 and RNA polymerase II large subunit Rpb1, promoting their ubiquitination and degradation. Here, we report that Wwp2 acts as a ubiquitin ligase of SRG3. Our results show that Wwp2 and SRG3 form protein complexes and co-localize in the nucleus in mammalian cells. The interaction is mediated through the WW domain of Wwp2 and the PPPY motif of SRG3, respectively. Importantly, Wwp2 promotes ubiquitination and degradation of SRG3 through the ubiquitin-proteasome system. The expression of a catalytically inactive mutant of Wwp2 abolishes SRG3 ubiquitination. Collectively, our study opens up a new avenue to understand how the protein level of SRG3 is regulated in mammalian cells.
Collapse
Affiliation(s)
- Xinlong Luo
- Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Beibei Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fan Tang
- Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junmei Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yingming Zhao
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Li
- Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ying Jin
- Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
19
|
Goddeeris MM, Wu B, Venzke D, Yoshida-Moriguchi T, Saito F, Matsumura K, Moore SA, Campbell KP. LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature 2013; 503:136-40. [PMID: 24132234 DOI: 10.1038/nature12605] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/27/2013] [Indexed: 01/11/2023]
Abstract
The dense glycan coat that surrounds every cell is essential for cellular development and physiological function, and it is becoming appreciated that its composition is highly dynamic. Post-translational addition of the polysaccharide repeating unit [-3-xylose-α1,3-glucuronic acid-β1-]n by like-acetylglucosaminyltransferase (LARGE) is required for the glycoprotein dystroglycan to function as a receptor for proteins in the extracellular matrix. Reductions in the amount of [-3-xylose-α1,3-glucuronic acid-β1-]n (hereafter referred to as LARGE-glycan) on dystroglycan result in heterogeneous forms of muscular dystrophy. However, neither patient nor mouse studies has revealed a clear correlation between glycosylation status and phenotype. This disparity can be attributed to our lack of knowledge of the cellular function of the LARGE-glycan repeat. Here we show that coordinated upregulation of Large and dystroglycan in differentiating mouse muscle facilitates rapid extension of LARGE-glycan repeat chains. Using synthesized LARGE-glycan repeats we show a direct correlation between LARGE-glycan extension and its binding capacity for extracellular matrix ligands. Blocking Large upregulation during muscle regeneration results in the synthesis of dystroglycan with minimal LARGE-glycan repeats in association with a less compact basement membrane, immature neuromuscular junctions and dysfunctional muscle predisposed to dystrophy. This was consistent with the finding that patients with increased clinical severity of disease have fewer LARGE-glycan repeats. Our results reveal that the LARGE-glycan of dystroglycan serves as a tunable extracellular matrix protein scaffold, the extension of which is required for normal skeletal muscle function.
Collapse
Affiliation(s)
- Matthew M Goddeeris
- 1] Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Lam LT, Fuller HR, Morris GE. The gemin2-binding site on SMN protein: accessibility to antibody. Biochem Biophys Res Commun 2013; 438:624-7. [PMID: 23939045 DOI: 10.1016/j.bbrc.2013.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 01/15/2023]
Abstract
Reduced levels of SMN (survival-of-motor-neurons) protein are the cause of spinal muscular atrophy, an inherited disorder characterised by loss of motor neurons in early childhood. SMN associates with more than eight other proteins to form an RNA-binding complex involved in assembly of the spliceosome. Two monoclonal antibodies (mAbs), MANSMA1 and MANSMA12, have been widely-used in studies of SMN function and their precise binding sites on SMN have now been identified using a phage-displayed peptide library. The amino-acid residues in SMN required for antibody binding are the same as the five most important contact residues for interaction with gemin2. MANSMA12 immuno-precipitated SMN and gemin2 from HeLa cell extracts as efficiently as mAbs against other SMN epitopes or against gemin2. We explain this by showing that SMN exists as large multimeric complexes. This SMN epitope is highly-conserved and identical in human and mouse. To explain the vigorous immune response when mice are immunised with recombinant SMN alone, we suggest this region is masked by gemin2, or a related protein, throughout development, preventing its recognition as a "self-antigen". The epitope for a third mAb, MANSMA3, has been located to eight amino-acids in the proline-rich domain of SMN.
Collapse
Affiliation(s)
- Le Thanh Lam
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | | | | |
Collapse
|
21
|
Inamori KI, Hara Y, Willer T, Anderson ME, Zhu Z, Yoshida-Moriguchi T, Campbell KP. Xylosyl- and glucuronyltransferase functions of LARGE in α-dystroglycan modification are conserved in LARGE2. Glycobiology 2012; 23:295-302. [PMID: 23125099 PMCID: PMC3555503 DOI: 10.1093/glycob/cws152] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
LARGE-dependent modification enables α-dystroglycan (α-DG) to bind to its extracellular matrix ligands. Mutations in the LARGE gene and several others involved in O-mannosyl glycan synthesis have been identified in congenital and limb-girdle muscular dystrophies that are characterized by perturbed glycosylation and reduced ligand-binding affinity of α-DG. LARGE is a bifunctional glycosyltransferase that alternately transfers xylose and glucuronic acid, thereby generating the heteropolysaccharides on α-DG that confer its ligand binding. Although the LARGE paralog LARGE2 (also referred to as GYLTL1B) has likewise been shown to enhance the functional modification of α-DG in cultured cells, its enzymatic activities have not been identified. Here, we report that LARGE2 is also a bifunctional glycosyltransferase and compare its properties with those of LARGE. By means of a high-performance liquid chromatography-based enzymatic assay, we demonstrate that like LARGE, LARGE2 has xylosyltransferase (Xyl-T) and glucuronyltransferase (GlcA-T) activities, as well as polymerizing activity. Notably, however, the pH optima of the Xyl-T and GlcA-T of LARGE2 are distinct from one another and also from those of LARGE. Our results suggest that LARGE and LARGE2 catalyze the same glycosylation reactions for the functional modification of α-DG, but that they have different biochemical properties.
Collapse
Affiliation(s)
- Kei-ichiro Inamori
- Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242-1101, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Beedle AM, Turner AJ, Saito Y, Lueck JD, Foltz SJ, Fortunato MJ, Nienaber PM, Campbell KP. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy. J Clin Invest 2012; 122:3330-42. [PMID: 22922256 DOI: 10.1172/jci63004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022] Open
Abstract
Dystroglycan is a transmembrane glycoprotein that links the extracellular basement membrane to cytoplasmic dystrophin. Disruption of the extensive carbohydrate structure normally present on α-dystroglycan causes an array of congenital and limb girdle muscular dystrophies known as dystroglycanopathies. The essential role of dystroglycan in development has hampered elucidation of the mechanisms underlying dystroglycanopathies. Here, we developed a dystroglycanopathy mouse model using inducible or muscle-specific promoters to conditionally disrupt fukutin (Fktn), a gene required for dystroglycan processing. In conditional Fktn-KO mice, we observed a near absence of functionally glycosylated dystroglycan within 18 days of gene deletion. Twenty-week-old KO mice showed clear dystrophic histopathology and a defect in glycosylation near the dystroglycan O-mannose phosphate, whether onset of Fktn excision driven by muscle-specific promoters occurred at E8 or E17. However, the earlier gene deletion resulted in more severe phenotypes, with a faster onset of damage and weakness, reduced weight and viability, and regenerating fibers of smaller size. The dependence of phenotype severity on the developmental timing of muscle Fktn deletion supports a role for dystroglycan in muscle development or differentiation. Moreover, given that this conditional Fktn-KO mouse allows the generation of tissue- and timing-specific defects in dystroglycan glycosylation, avoids embryonic lethality, and produces a phenotype resembling patient pathology, it is a promising new model for the study of secondary dystroglycanopathy.
Collapse
Affiliation(s)
- Aaron M Beedle
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoon JH, Johnson E, Xu R, Martin LT, Martin PT, Montanaro F. Comparative proteomic profiling of dystroglycan-associated proteins in wild type, mdx, and Galgt2 transgenic mouse skeletal muscle. J Proteome Res 2012; 11:4413-24. [PMID: 22775139 DOI: 10.1021/pr300328r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dystroglycan is a major cell surface glycoprotein receptor for the extracellular matrix in skeletal muscle. Defects in dystroglycan glycosylation cause muscular dystrophy and alterations in dystroglycan glycosylation can impact extracellular matrix binding. Here we describe an immunoprecipitation technique that allows isolation of beta dystroglycan with members of the dystrophin-associated protein complex (DAPC) from detergent-solubilized skeletal muscle. Immunoprecipitation, coupled with shotgun proteomics, has allowed us to identify new dystroglycan-associated proteins and define changed associations that occur within the DAPC in dystrophic skeletal muscles. In addition, we describe changes that result from overexpression of Galgt2, a normally synaptic muscle glycosyltransferase that can modify alpha dystroglycan and inhibit the development of muscular dystrophy when it is overexpressed. These studies identify new dystroglycan-associated proteins that may participate in dystroglycan's roles, both positive and negative, in muscular dystrophy.
Collapse
Affiliation(s)
- Jung Hae Yoon
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio 43205, USA
| | | | | | | | | | | |
Collapse
|
24
|
Miller G, Moore CJ, Terry R, La Riviere T, Mitchell A, Piggott R, Dear TN, Wells DJ, Winder SJ. Preventing phosphorylation of dystroglycan ameliorates the dystrophic phenotype in mdx mouse. Hum Mol Genet 2012; 21:4508-20. [PMID: 22810924 DOI: 10.1093/hmg/dds293] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Loss of dystrophin protein due to mutations in the DMD gene causes Duchenne muscular dystrophy. Dystrophin loss also leads to the loss of the dystrophin glycoprotein complex (DGC) from the sarcolemma which contributes to the dystrophic phenotype. Tyrosine phosphorylation of dystroglycan has been identified as a possible signal to promote the proteasomal degradation of the DGC. In order to test the role of tyrosine phosphorylation of dystroglycan in the aetiology of DMD, we generated a knock-in mouse with a phenylalanine substitution at a key tyrosine phosphorylation site in dystroglycan, Y890. Dystroglycan knock-in mice (Dag1(Y890F/Y890F)) had no overt phenotype. In order to examine the consequence of blocking dystroglycan phosphorylation on the aetiology of dystrophin-deficient muscular dystrophy, the Y890F mice were crossed with mdx mice an established model of muscular dystrophy. Dag1(Y890F/Y890F)/mdx mice showed a significant improvement in several parameters of muscle pathophysiology associated with muscular dystrophy, including a reduction in centrally nucleated fibres, less Evans blue dye infiltration and lower serum creatine kinase levels. With the exception of dystrophin, other DGC components were restored to the sarcolemma including α-sarcoglycan, α-/β-dystroglycan and sarcospan. Furthermore, Dag1(Y890F/Y890F)/mdx showed a significant resistance to muscle damage and force loss following repeated eccentric contractions when compared with mdx mice. While the Y890F substitution may prevent dystroglycan from proteasomal degradation, an increase in sarcolemmal plectin appeared to confer protection on Dag1(Y890F/Y890F)/mdx mouse muscle. This new model confirms dystroglycan phosphorylation as an important pathway in the aetiology of DMD and provides novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Gaynor Miller
- Department of Cardiovascular Science, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bird NC, Windner SE, Devoto SH. Immunocytochemistry to study myogenesis in zebrafish. Methods Mol Biol 2012; 798:153-69. [PMID: 22130836 DOI: 10.1007/978-1-61779-343-1_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During myogenesis, cells gradually transition from mesodermal precursors to myoblasts, myocytes, and then to muscle fibers. The molecular characterization of this process requires the ability to identify each of these cell types and the factors that regulate the transitions between them. The most versatile technique for assaying cell identities in situ is immunocytochemistry, because multiple independent molecular markers of differentiation can be assayed simultaneously. The zebrafish has developed into a popular model for the study of myogenesis, and immunocytochemical techniques have been critical. We have adapted existing protocols to optimize immunocytochemistry in zebrafish, and have tested many antibodies developed against mouse, chick, and frog muscle antigens for their cross-reactivity in zebrafish. Here, we present protocols for whole mount immunocytochemistry on both formaldehyde and Carnoy's fixed embryos as well as on sectioned zebrafish tissue. We include a table of antibodies useful for experiments on the molecular biology of myogenesis in zebrafish.
Collapse
Affiliation(s)
- Nathan C Bird
- Department of Biology, Wesleyan University, Hall-Atwater Laboratories, Middletown, CT, USA
| | | | | |
Collapse
|
26
|
Street RM, Mucowski SJ, Urrabaz-Garza R, O'Boyle K, Snyder RR, Theiler RN. Dystroglycan expression in human placenta: basement membrane localization and subunit distribution change between the first and third trimester. Reprod Sci 2011; 19:282-9. [PMID: 22138543 DOI: 10.1177/1933719111419247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study describes the distribution of dystroglycan (DG) in human placenta, membranes, and uterine decidua. STUDY DESIGN Dystroglycan expression was characterized by Western blotting, immunohistochemistry, and immunofluorescence microscopy using human tissues and cultured cells. RESULTS Both α-DG and β-DG are expressed in the term syncytiotrophoblast, and α-DG is localized to the basement membrane. In first-trimester chorionic villi, α-DG and β-DG are localized to the periphery of the cytotrophoblast. Expression varies in term fetal membranes. α-Dystroglycan is not detectable in choriocarcinoma cells or HTR cells, but β-DG is present in both normal and cleaved forms. CONCLUSION Dystroglycan is expressed at high levels in human trophoblasts, and localization of the α- and β-subunits varies with gestational age and trophoblast differentiation. Because DG expression inversely correlates with invasiveness in many cancers, its pattern of expression in trophoblasts suggests a possible function in inhibition of placental invasion.
Collapse
Affiliation(s)
- Reagan M Street
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Thompson O, Moore CJ, Hussain SA, Kleino I, Peckham M, Hohenester E, Ayscough KR, Saksela K, Winder SJ. Modulation of cell spreading and cell-substrate adhesion dynamics by dystroglycan. J Cell Sci 2010; 123:118-27. [PMID: 20016072 DOI: 10.1242/jcs.047902] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dystroglycan is a ubiquitously expressed cell adhesion protein. Its principal role has been determined as a component of the dystrophin-glycoprotein complex of muscle, where it constitutes a key component of the costameric cell adhesion system. To investigate more fundamental aspects of dystroglycan function in cell adhesion, we examined the role of dystroglycan in the dynamics and assembly of cellular adhesions in myoblasts. We show that beta-dystroglycan is recruited to adhesion structures and, based on staining for vinculin, that overexpression or depletion of dystroglycan affects both size and number of fibrillar adhesions. Knockdown of dystroglycan increases the size and number of adhesions, whereas overexpression decreases the number of adhesions. Dystroglycan knockdown or overexpression affects the ability of cells to adhere to different substrates, and has effects on cell migration that are consistent with effects on the formation of fibrillar adhesions. Using an SH3 domain proteomic screen, we identified vinexin as a binding partner for dystroglycan. Furthermore, we show that dystroglycan can interact indirectly with vinculin by binding to the vinculin-binding protein vinexin, and that this interaction has a role in dystroglycan-mediated cell adhesion and spreading. For the first time, we also demonstrate unequivocally that beta-dystroglycan is a resident of focal adhesions.
Collapse
Affiliation(s)
- Oliver Thompson
- Departments of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Anderson C, Thorsteinsdóttir S, Borycki AG. Sonic hedgehog-dependent synthesis of laminin alpha1 controls basement membrane assembly in the myotome. Development 2009; 136:3495-504. [PMID: 19783738 DOI: 10.1242/dev.036087] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Basement membranes have essential structural and signalling roles in tissue morphogenesis during embryonic development, but the mechanisms that control their formation are still poorly understood. Laminins are key components of basement membranes and are thought to be essential for initiation of basement membrane assembly. Here, we report that muscle progenitor cells populating the myotome migrate aberrantly in the ventral somite in the absence of sonic hedgehog (Shh) signalling, and we show that this defect is due to the failure to form a myotomal basement membrane. We reveal that expression of Lama1, which encodes laminin alpha1, a subunit of laminin-111, is not activated in Shh(-/-) embryos. Recovery of Lama1 expression or addition of exogenous laminin-111 to Shh(-/-);Gli3(-/-) embryos restores the myotomal basement membrane, demonstrating that laminin-111 is necessary and sufficient to initiate assembly of the myotomal basement membrane. This study uncovers an essential role for Shh signalling in the control of laminin-111 synthesis and in the initiation of basement membrane assembly in the myotome. Furthermore, our data indicate that laminin-111 function cannot be compensated by laminin-511.
Collapse
Affiliation(s)
- Claire Anderson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
29
|
Jarad G, Miner JH. The Pax3-Cre transgene exhibits a rostrocaudal gradient of expression in the skeletal muscle lineage. Genesis 2009; 47:1-6. [PMID: 18942111 DOI: 10.1002/dvg.20447] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pax3-Cre (P3Pro-Cre) transgenic mice have been used for conditional gene deletion and/or lineage tracing in derivatives of neural crest, neural tube, metanephric mesenchyme, and ureteric mesenchyme. However, the extent of its expression in skeletal muscle has not been reported. We investigated the expression of P3Pro-Cre in the skeletal muscle lineage using the R26R reporter and found an unexpected rostrocaudal gradient of expression. By X-gal staining, head, neck, forelimb, diaphragm, and most of the chest wall muscles did not show evidence of Cre expression, whereas all muscle groups posterior of the diaphragm stained blue. Intercostal muscles exhibited a rostrocaudal gradient of staining. The consistency of this expression pattern was demonstrated by using P3Pro-Cre to mutate a conditional dystroglycan allele. The result was loss of dystroglycan from caudal muscles, which exhibited the histological signs of muscle fiber injury and regeneration characteristic of muscular dystrophy. The lack of dystroglycan in regenerating myofibers suggests that the P3Pro-Cre transgene is active in satellite cells and/or in their precursors. In contrast, rostral muscles, including feeding and breathing muscles, maintained dystroglycan expression and were spared from disease. Accordingly, the mutants were viable for over a year. Its unique gradient of activity makes the P3Pro-Cre transgene a previously unappreciated yet powerful tool for manipulating gene expression in skeletal muscle and its precursors.
Collapse
|
30
|
Thompson O, Kleino I, Crimaldi L, Gimona M, Saksela K, Winder SJ. Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS One 2008; 3:e3638. [PMID: 18982058 PMCID: PMC2572840 DOI: 10.1371/journal.pone.0003638] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/17/2008] [Indexed: 01/07/2023] Open
Abstract
Background Dystroglycan is a ubiquitously expressed cell adhesion receptor best understood in its role as part of the dystrophin glycoprotein complex of mature skeletal muscle. Less is known of the role of dystroglycan in more fundamental aspects of cell adhesion in other cell types, nor of its role in myoblast cell adhesion. Principal Findings We have examined the role of dystroglycan in the early stages of myoblast adhesion and spreading and found that dystroglycan initially associates with other adhesion proteins in large puncta morphologically similar to podosomes. Using a human SH3 domain phage display library we identified Tks5, a key regulator of podosomes, as interacting with β-dystroglycan. We verified the interaction by immunoprecipitation, GST-pulldown and immunfluorescence localisation. Both proteins localise to puncta during early phases of spreading, but importantly following stimulation with phorbol ester, also localise to structures indistinguishable from podosomes. Dystroglycan overexpression inhibited podosome formation by sequestering Tks5 and Src. Mutation of dystroglycan tyrosine 890, previously identified as a Src substrate, restored podosome formation. Conclusions We propose therefore, that Src-dependent phosphorylation of β-dystroglycan results in the formation of a Src/dystroglycan complex that drives the SH3-mediated association between dystroglycan and Tks5 which together regulate podosome formation in myoblasts.
Collapse
Affiliation(s)
- Oliver Thompson
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Iivari Kleino
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Luca Crimaldi
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Mario Gimona
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Kalle Saksela
- Department of Virology, Haartman Institute, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Steve J. Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Oppizzi ML, Akhavan A, Singh M, Fata JE, Muschler JL. Nuclear translocation of beta-dystroglycan reveals a distinctive trafficking pattern of autoproteolyzed mucins. Traffic 2008; 9:2063-72. [PMID: 18764929 DOI: 10.1111/j.1600-0854.2008.00822.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dystroglycan (DG) is an extracellular matrix receptor implicated in muscular dystrophies and cancers. DG belongs to the membrane-tethered mucin family and is composed of extracellular (alpha-DG) and transmembrane (beta-DG) subunits stably coupled at the cell surface. These two subunits are generated by autoproteolysis of a monomeric precursor within a distinctive protein motif called sea urchin-enterokinase-agrin (SEA) domain, yet the purpose of this cleavage and heterodimer creation is uncertain. In this study, we identify a functional nuclear localization signal within beta-DG and show that, in addition to associating with alpha-DG at the cell surface, the full-length and glycosylated beta-DG autonomously traffics to the cytoplasm and nucleoplasm in a process that occurs independent of alpha-DG ligand binding. The trafficking pattern of beta-DG mirrors that of MUC1-C, the transmembrane subunit of the related MUC1 oncoprotein, also a heterodimeric membrane-tethered mucin created by SEA autoproteolysis. We show that the transmembrane subunits of both MUC1 and DG transit the secretory pathway prior to nuclear targeting and that their monomeric precursors maintain the capacity for nuclear trafficking. A screen of breast carcinoma cell lines of distinct pathophysiological origins revealed considerable variability in the nuclear partitioning of beta-DG, indicating that nuclear localization of beta-DG is regulated, albeit independent of extracellular ligand binding. These findings point to novel intracellular functions for beta-DG, with possible disease implications. They also reveal an evolutionarily conserved role for SEA autoproteolysis, serving to enable independent functions of mucin transmembrane subunits, enacted by a shared and poorly understood pathway of segregated subunit trafficking.
Collapse
Affiliation(s)
- Maria Luisa Oppizzi
- California Pacific Medical Center Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | | | | | | | | |
Collapse
|
32
|
Akhavan A, Crivelli SN, Singh M, Lingappa VR, Muschler JL. SEA domain proteolysis determines the functional composition of dystroglycan. FASEB J 2007; 22:612-21. [PMID: 17905726 DOI: 10.1096/fj.07-8354com] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Post-translational modifications of the extracellular matrix receptor dystroglycan (DG) determine its functional state, and defects in these modifications are linked to muscular dystrophies and cancers. A prominent feature of DG biosynthesis is a precursor cleavage that segregates the ligand-binding and transmembrane domains into the noncovalently attached alpha- and beta-subunits. We investigate here the structural determinants and functional significance of this cleavage. We show that cleavage of DG elicits a conspicuous change in its ligand-binding activity. Mutations that obstruct this cleavage result in increased capacity to bind laminin, in part, due to enhanced glycosylation of alpha-DG. Reconstitution of DG cleavage in a cell-free expression system demonstrates that cleavage takes place in the endoplasmic reticulum, providing a suitable regulatory point for later processing events. Sequence and mutational analyses reveal that the cleavage occurs within a full SEA (sea urchin, enterokinase, agrin) module with traits matching those ascribed to autoproteolysis. Thus, cleavage of DG constitutes a control point for the modulation of its ligand-binding properties, with therapeutic implications for muscular dystrophies. We provide a structural model for the cleavage domain that is validated by experimental analysis and discuss this cleavage in the context of mucin protein and SEA domain evolution.
Collapse
Affiliation(s)
- Armin Akhavan
- California Pacific Medical Center Research Institute, 475 Brannan St., Ste. 220, San Francisco, CA 94107, USA
| | | | | | | | | |
Collapse
|
33
|
Wolstencroft EC, Simic G, thi Man N, Holt I, Lam LT, Buckland PR, Morris GE. Endosomal location of dopamine receptors in neuronal cell cytoplasm. J Mol Histol 2007; 38:333-40. [PMID: 17593530 DOI: 10.1007/s10735-007-9106-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Five subtypes of dopamine receptor exist in two subfamilies: two D(1)-like (D(1) and D(5)) and three D(2)-like (D(2), D(3) and D(4)). We produced novel monoclonal antibodies against all three D(2)-like receptors and used them to localize receptors in Ntera-2 (NT-2) cells, the human neuronal precursor cell line. Most of the immunostaining for all three receptors colocalized with mannose-6-phosphate receptor, a marker for late endosomes formed by internalization of the plasma membrane. This result was obtained with antibodies against three different epitopes on the D(3) receptor, to rule out the possibility of cross-reaction with another protein, and controls without primary antibody or in the presence of competitor antigen were completely negative. In rat cerebral cortex and hippocampus, some of the dopamine receptor staining was found in similar structures in neuronal cell cytoplasm. Only some of the neurons were positive for dopamine receptors and the pattern was consistent with previously-reported patterns of innervation by dopamine-producing neurons. Endosomal dopamine receptors may provide a useful method for identifying cell bodies of dopamine-responsive neurons to complement methods that detect only active receptors in the neuronal cell membrane.
Collapse
Affiliation(s)
- Elizabeth C Wolstencroft
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, LMARC Building, Oswestry SY10 7AG, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Duplication of the dystroglycan gene in most branches of teleost fish. BMC Mol Biol 2007; 8:34. [PMID: 17509131 PMCID: PMC1885269 DOI: 10.1186/1471-2199-8-34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/17/2007] [Indexed: 11/24/2022] Open
Abstract
Background The dystroglycan (DG) complex is a major non-integrin cell adhesion system whose multiple biological roles involve, among others, skeletal muscle stability, embryonic development and synapse maturation. DG is composed of two subunits: α-DG, extracellular and highly glycosylated, and the transmembrane β-DG, linking the cytoskeleton to the surrounding basement membrane in a wide variety of tissues. A single copy of the DG gene (DAG1) has been identified so far in humans and other mammals, encoding for a precursor protein which is post-translationally cleaved to liberate the two DG subunits. Similarly, D. rerio (zebrafish) seems to have a single copy of DAG1, whose removal was shown to cause a severe dystrophic phenotype in adult animals, although it is known that during evolution, due to a whole genome duplication (WGD) event, many teleost fish acquired multiple copies of several genes (paralogues). Results Data mining of pufferfish (T. nigroviridis and T. rubripes) and other teleost fish (O. latipes and G. aculeatus) available nucleotide sequences revealed the presence of two functional paralogous DG sequences. RT-PCR analysis proved that both the DG sequences are transcribed in T. nigroviridis. One of the two DG sequences harbours an additional mini-intronic sequence, 137 bp long, interrupting the uncomplicated exon-intron-exon pattern displayed by DAG1 in mammals and D. rerio. A similar scenario emerged also in D. labrax (sea bass), from whose genome we have cloned and sequenced a new DG sequence that also harbours a shorter additional intronic sequence of 116 bp. Western blot analysis confirmed the presence of DG protein products in all the species analysed including two teleost Antarctic species (T. bernacchii and C. hamatus). Conclusion Our evolutionary analysis has shown that the whole-genome duplication event in the Class Actinopterygii (ray-finned fish) involved also DAG1. We unravelled new important molecular genetic details about fish orthologous DGs, which might help to increase the current knowledge on DG expression, maturation and targeting and on its physiopathological role in higher organisms.
Collapse
|
35
|
Sequence, "subtle" alternative splicing and expression of the CYYR1 (cysteine/tyrosine-rich 1) mRNA in human neuroendocrine tumors. BMC Cancer 2007; 7:66. [PMID: 17442112 PMCID: PMC1863428 DOI: 10.1186/1471-2407-7-66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 04/18/2007] [Indexed: 11/23/2022] Open
Abstract
Background CYYR1 is a recently identified gene located on human chromosome 21 whose product has no similarity to any known protein and is of unknown function. Analysis of expressed sequence tags (ESTs) have revealed high human CYYR1 expression in cells belonging to the diffuse neuroendocrine system (DNES). These cells may be the origin of neuroendocrine (NE) tumors. The aim of this study was to conduct an initial analysis of sequence, splicing and expression of the CYYR1 mRNA in human NE tumors. Methods The CYYR1 mRNA coding sequence (CDS) was studied in 32 NE tumors by RT-PCR and sequence analysis. A subtle alternative splicing was identified generating two isoforms of CYYR1 mRNA differing in terms of the absence (CAG- isoform, the first described mRNA for CYYR1 locus) or the presence (CAG+ isoform) of a CAG codon. When present, this specific codon determines the presence of an alanine residue, at the exon 3/exon 4 junction of the CYYR1 mRNA. The two mRNA isoform amounts were determined by quantitative relative RT-PCR in 29 NE tumors, 2 non-neuroendocrine tumors and 10 normal tissues. A bioinformatic analysis was performed to search for the existence of the two CYYR1 isoforms in other species. Results The CYYR1 CDS did not show differences compared to the reference sequence in any of the samples, with the exception of an NE tumor arising in the neck region. Sequence analysis of this tumor identified a change in the CDS 333 position (T instead of C), leading to the amino acid mutation P111S. NE tumor samples showed no significant difference in either CYYR1 CAG- or CAG+ isoform expression compared to control tissues. CYYR1 CAG- isoform was significantly more expressed than CAG+ isoform in NE tumors as well as in control samples investigated. Bioinformatic analysis revealed that only the genomic sequence of Pan troglodytes CYYR1 is consistent with the possible existence of the two described mRNA isoforms. Conclusion A new "subtle" splicing isoform (CAG+) of CYYR1 mRNA, the sequence and the expression of this gene were defined in a large series of NE tumors.
Collapse
|
36
|
Anderson C, Winder SJ, Borycki AG. Dystroglycan protein distribution coincides with basement membranes and muscle differentiation during mouse embryogenesis. Dev Dyn 2007; 236:2627-35. [PMID: 17676646 DOI: 10.1002/dvdy.21259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Using immunohistochemistry, we have examined beta-Dystroglycan protein distribution in the mouse embryo at embryonic stages E9.5 to E11.5. Our data show that Dystroglycan expression correlates with basement membranes in many tissues, such as the notochord, neural tube, promesonephros, and myotome. In the myotome, we describe the timing of Dystroglycan protein re-distribution at the surface of myogenic precursor cells as basement membrane assembles into a continuous sheet. We also report on non-basement-membrane-associated Dystroglycan expression in the floor plate and the myocardium. This distribution often corresponds to sites of expression previously reported in adults, suggesting that Dystroglycan is continuously produced during development.
Collapse
Affiliation(s)
- Claire Anderson
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | | |
Collapse
|
37
|
Tremblay MR, Carbonetto S. An Extracellular Pathway for Dystroglycan Function in Acetylcholine Receptor Aggregation and Laminin Deposition in Skeletal Myotubes. J Biol Chem 2006; 281:13365-13373. [PMID: 16531403 DOI: 10.1074/jbc.m600912200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dystroglycan (DG) complex is involved in agrin-induced acetylcholine receptor clustering downstream of muscle-specific kinase where it regulates the stability of acetylcholine receptor aggregates as well as assembly of the synaptic basement membrane. We have previously proposed that this entails coordinate extracellular and intracellular interactions of its two subunits, alpha- and beta-DG. To assess the contribution of the extracellular and intracellular portions of DG, we have used adenoviruses to express full-length and deletion mutants of beta-DG in myotubes derived from wild-type embryonic stem cells or from cells null for DG. We show that alpha-DG is properly glycosylated and targeted to the myotube surface in the absence of beta-DG. Extracellular interactions of DG modulate the size and the microcluster density of agrin-induced acetylcholine receptor aggregates and are responsible for targeting laminin to these clusters. Thus, the association of alpha- and beta-DG in skeletal muscle may coordinate independent roles in signaling. We discuss how DG may regulate synapses through extracellular signaling functions of its alpha subunit.
Collapse
Affiliation(s)
- Mathieu R Tremblay
- Department of Biology, McGill University, Montréal General Hospital Research Institute, Montréal, Québec H3G 1A4, Canada
| | - Salvatore Carbonetto
- Department of Biology, McGill University, Montréal General Hospital Research Institute, Montréal, Québec H3G 1A4, Canada; Center for Research in Neuroscience, McGill University, Montréal General Hospital Research Institute, Montréal, Québec H3G 1A4, Canada.
| |
Collapse
|
38
|
Suminaga R, Takeshima Y, Wada H, Yagi M, Matsuo M. C-terminal truncated dystrophin identified in skeletal muscle of an asymptomatic boy with a novel nonsense mutation of the dystrophin gene. Pediatr Res 2004; 56:739-43. [PMID: 15371569 DOI: 10.1203/01.pdr.0000142734.46609.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mutations that cause premature stop codons in the dystrophin gene lead to a complete loss of dystrophin from skeletal muscle, resulting in severe Duchenne muscular dystrophy. Here, a C-terminally truncated dystrophin resulting from a novel nonsense mutation is shown for the first time to be localized to the muscle plasma membrane. An asymptomatic 8-y-old boy was examined for dystrophin in skeletal muscle because of high serum creatine kinase activity. Remarkably, no dystrophin labeling was seen with an MAb against the C-terminal domain, suggesting the presence of an early stop codon in the dystrophin gene. Labeling with an antibody specific to the N-terminal domain, however, revealed weak, patchy, and discontinuous staining, suggesting limited production of a truncated form of the protein. Molecular analysis revealed a novel nonsense mutation (Q3625X) as a result of a single nucleotide change in the patient's genomic DNA (C10873T), leaving 1.6% of dystrophin gene product unsynthesized at the C terminus. Dystrophin mRNA analysis did not show rescue of the nonsense mutation as a result of exon-skipping by an alternative splicing mechanism. This is the first report of an asymptomatic dystrophinopathy with a nonsense mutation in the dystrophin gene.
Collapse
Affiliation(s)
- Ryo Suminaga
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo, Kobe 650-0017, Japan
| | | | | | | | | |
Collapse
|
39
|
Royuela M, Chazalette D, Hugon G, Paniagua R, Guerlavais V, Fehrentz JA, Martinez J, Labbe JP, Rivier F, Mornet D. Formation of multiple complexes between beta-dystroglycan and dystrophin family products. J Muscle Res Cell Motil 2004; 24:387-97. [PMID: 14677641 DOI: 10.1023/a:1027309822007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Beta-dystroglycan is expressed in a wide variety of tissues and has generally been reported with an Mr of 43 kDa, sometimes accompanied with a 31 kDa protein assumed to be a truncated product. This molecule was recently identified as the anomalous beta-dystroglycan expressed in various carcinoma cell lines. We produced and characterized a G5 polyclonal antibody specific to beta-dystroglycan that is directed against the C-terminal portion of the molecule. We provide evidence that beta-dystroglycan may vary in size and properties by studying different Xenopus tissues. Besides normal beta-dystroglycan with an Mr of 43 kDa in smooth and cardiac muscle and sciatic nerve extracts, we found it in skeletal muscle and brain proteins with an Mr of 38 and 65 kDa, respectively. Glycosylation properties and proteolytic susceptibilities of these different beta-dystroglycans are analysed and compared in this work. Crosslinking experiments with various beta-dystroglycan preparations obtained from skeletal and cardiac muscles and brain gave rise to specific new covalent products with Mr of 125 kDa (doublet band), or 120 and 130 kDa, or 140 and 240 kDa, respectively. We provide evidence, using various similar beta-dystroglycan preparations, that the immunoprecipitation procedure with G5 specific polyclonal antibody allows consistent pelleting of various dystrophin-family isoforms. Skeletal muscles from Xenopus reveals the presence of two distinct beta-dystroglycan complexes, one with dystrophin and another one which involves alpha-dystrobrevin. Cardiac muscle and brain from Xenopus are shown to contain three beta-dystroglycan complexes related to various dystrophin-family isoforms. Dystrophin or alpha-dystrobrevin or Dp71 were found in cardiac muscle and dystrophin or Dp180 or Up71 in brain. This variability in the relationship between beta-dystroglycan and dystrophin-family isoforms suggests that each protein--currently known as dystrophin associated protein--could not be present in each of these complexes.
Collapse
Affiliation(s)
- M Royuela
- Department of Cell Biology and Genetics, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Manilal S, Randles KN, Aunac C, Nguyen MT, Morris GE. A lamin A/C beta-strand containing the site of lipodystrophy mutations is a major surface epitope for a new panel of monoclonal antibodies. Biochim Biophys Acta Gen Subj 2004; 1671:87-92. [PMID: 15026149 DOI: 10.1016/j.bbagen.2004.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 01/28/2004] [Accepted: 01/29/2004] [Indexed: 11/24/2022]
Abstract
Using a phage-displayed peptide library, we have identified the epitope recognized by a new panel of five monoclonal antibodies (mAbs) raised against full-length recombinant human lamin A. The mAbs were found to recognize both lamin A and C by Western blotting and immunolocalization at the nuclear rim. A nine-amino acid consensus sequence PLLTYRFPP in the common immunoglobulin-like (Ig-like) domain of lamin A/C contains the binding site for all five mAbs. Three-dimensional structure of the Ig-like domain of lamin A/C shows this sequence is a complete beta-strand. This sequence includes arginine-482 (R482) which is mutated in most cases of Dunnigan-type familial partial lipodystrophy (FPLD). R482 may be part of an interaction site on the surface of lamin A/C for lamin-binding proteins associated with lipodystrophy.
Collapse
Affiliation(s)
- Sushila Manilal
- MRIC Biochemistry Group, North East Wales Institute, Mold Road, Wrexham, LL11 2AW, UK
| | | | | | | | | |
Collapse
|
41
|
Furling D, Lam LT, Agbulut O, Butler-Browne GS, Morris GE. Changes in myotonic dystrophy protein kinase levels and muscle development in congenital myotonic dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1001-9. [PMID: 12598332 PMCID: PMC1868110 DOI: 10.1016/s0002-9440(10)63894-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Myotonic dystrophy (DM1) is caused by the expansion of a CTG repeat in the noncoding region of a protein kinase, DMPK, expressed in skeletal and cardiac muscles. The aim of the present study was to determine the effects of very large CTG expansions on DMPK expression and skeletal muscle development. In fetuses suffering from the severe congenital form of DM1 with large CTG expansions (1800 to 3700 repeats), the skeletal muscle level of DMPK was reduced to 57% of control levels and a similar reduction was observed in cultured DM1 muscle cells relative to control cultures. These results are consistent with greatly reduced DMPK expression from the mutant allele and normal expression from the unaffected allele in this autosomal dominant disorder. In normal fetuses, DMPK protein levels increased dramatically between 9 and 16 weeks and remained high throughout the remaining gestation period. DM1 fetuses showed impaired skeletal muscle development, characterized by a persistence of embryonic and fetal myosin heavy chains and almost total absence of slow myosin heavy chains at the end of gestation. DMPK expression, however, was similar in both fast and slow fibers from normal adult muscle. The reduced DMPK and the delayed slow fiber maturation in congenital DM1 may be two separate consequences of nuclear retention of DMPK RNA transcripts with expanded CUG repeats.
Collapse
Affiliation(s)
- Denis Furling
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7000, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|