1
|
Wellmeyer B, Böhringer AC, Rösner J, Merzendorfer H. Analyses of ecdysteroid transporters in the fat body of Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2023. [PMID: 36892191 DOI: 10.1111/imb.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The control of insect moulting and metamorphosis involves ecdysteroids that orchestrate the execution of developmental genetic programs by binding to dimeric hormone receptors consisting of the ecdysone receptor (EcR) and ultraspiracle (USP). In insects, the main ecdysteroids comprise ecdysone (E), which is synthesized in the prothoracic gland and secreted into the haemolymph, and 20-hydroxyecdysone (20E), which is considered the active form by binding to the nuclear receptor of the target cell. While biosynthesis of ecdysteroids has been studied in detail in different insects, the transport systems involved in guiding these steroid hormones across cellular membranes have just recently begun to be studied. By analysing RNAi phenotypes in the red flour beetle, Tribolium castaneum, we have identified three transporter genes, TcABCG-8A, TcABCG-4D and TcOATP4-C1, whose silencing results in phenotypes similar to that observed when the ecdysone receptor gene TcEcRA is silenced, that is, abortive moulting and abnormal development of adult compound eyes during the larval stage. The genes of all three transporters are expressed at higher levels in the larval fat body of T. castaneum. We analysed potential functions of these transporters by combining RNAi and mass spectrometry. However, the analysis of gene functions is challenged by mutual RNAi effects indicating interdependent gene regulation. Based on our findings, we propose that TcABCG-8A, TcABCG-4D and TcOATP4-C1 participate in the ecdysteroid transport in fat body cells, which are involved in E → 20E conversion catalysed by the P450 enzyme TcShade.
Collapse
Affiliation(s)
- Benedikt Wellmeyer
- Department of Chemistry-Biology, University of Siegen, Siegen, 57068, Germany
| | | | - Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Siegen, 57068, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Siegen, 57068, Germany
| |
Collapse
|
2
|
The POU factor ventral veins lacking/Drifter directs the timing of metamorphosis through ecdysteroid and juvenile hormone signaling. PLoS Genet 2014; 10:e1004425. [PMID: 24945490 PMCID: PMC4063743 DOI: 10.1371/journal.pgen.1004425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/20/2014] [Indexed: 12/22/2022] Open
Abstract
Although endocrine changes are known to modulate the timing of major developmental transitions, the genetic mechanisms underlying these changes remain poorly understood. In insects, two developmental hormones, juvenile hormone (JH) and ecdysteroids, are coordinated with each other to induce developmental changes associated with metamorphosis. However, the regulation underlying the coordination of JH and ecdysteroid synthesis remains elusive. Here, we examined the function of a homolog of the vertebrate POU domain protein, Ventral veins lacking (Vvl)/Drifter, in regulating both of these hormonal pathways in the red flour beetle, Tribolium castaneum (Tenebrionidae). RNA interference-mediated silencing of vvl expression led to both precocious metamorphosis and inhibition of molting in the larva. Ectopic application of a JH analog on vvl knockdown larvae delayed the onset of metamorphosis and led to a prolonged larval stage, indicating that Vvl acts upstream of JH signaling. Accordingly, vvl knockdown also reduced the expression of a JH biosynthesis gene, JH acid methyltransferase 3 (jhamt3). In addition, ecdysone titer and the expression of the ecdysone response gene, hormone receptor 3 (HR3), were reduced in vvl knockdown larvae. The expression of the ecdysone biosynthesis gene phantom (phm) and spook (spo) were reduced in vvl knockdown larvae in the anterior and posterior halves, respectively, indicating that Vvl might influence ecdysone biosynthesis in both the prothoracic gland and additional endocrine sources. Injection of 20-hydroxyecdysone (20E) into vvl knockdown larvae could restore the expression of HR3 although molting was never restored. These findings suggest that Vvl coordinates both JH and ecdysteroid biosynthesis as well as molting behavior to influence molting and the timing of metamorphosis. Thus, in both vertebrates and insects, POU factors modulate the production of major neuroendocrine regulators during sexual maturation. Hormones play major roles in initiating major developmental transitions, such as puberty and metamorphosis. However, how organisms coordinate changes across multiple hormones remains unclear. In this study, we show that silencing the POU domain transcription factor Ventral veins lacking (Vvl)/Drifter in the red flour beetle Tribolium castaneum leads to precocious metamorphosis and an inability to molt. We show that Vvl regulates the biosynthesis and signaling of two key insect developmental hormones, juvenile hormone (JH) and ecdysteroids. Vvl therefore appears to act as a potential central regulator of developmental timing by influencing two major hormones. Because POU factors are known as a major regulator of the onset of puberty, POU factors play a major role during sexual maturation in both vertebrates and insects.
Collapse
|
3
|
Marchal E, Badisco L, Verlinden H, Vandersmissen T, Van Soest S, Van Wielendaele P, Vanden Broeck J. Role of the Halloween genes, Spook and Phantom in ecdysteroidogenesis in the desert locust, Schistocerca gregaria. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1240-1248. [PMID: 21708158 DOI: 10.1016/j.jinsphys.2011.05.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/21/2011] [Accepted: 05/24/2011] [Indexed: 05/31/2023]
Abstract
The functional characterization of the Halloween genes represented a major breakthrough in the elucidation of the ecdysteroid biosynthetic pathway. These genes encode cytochrome P450 enzymes catalyzing the final steps of ecdysteroid biosynthesis in the dipteran Drosophila melanogaster and the Lepidoptera Manduca sexta and Bombyx mori. This is the first report on the identification of two Halloween genes, spook (spo) and phantom (phm), from a hemimetabolous orthopteran insect, the desert locust Schistocerca gregaria. Using q-RT-PCR, their spatial and temporal transcript profiles were analyzed in both final larval stage and adult locusts. The circulating ecdysteroid titers in the hemolymph were measured and found to correlate well with changes in the temporal transcript profiles of spo and phm. Moreover, an RNA interference (RNAi)-based approach was employed to study knockdown effects upon silencing of both transcripts in the fifth larval stage. Circulating ecdysteroid levels were found to be significantly reduced upon dsRNA treatment.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Naamsestraat 59, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
4
|
Barros MP, Bechara EJH. Luciferase and Urate may act as Antioxidant Defenses in Larval Pyrearinus termitilluminans (Elateridae: Coleoptera) During Natural Development and upon 20-Hydroxyecdysone Treatment. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710648laumaa2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Bialecki M, Shilton A, Fichtenberg C, Segraves WA, Thummel CS. Loss of the ecdysteroid-inducible E75A orphan nuclear receptor uncouples molting from metamorphosis in Drosophila. Dev Cell 2002; 3:209-20. [PMID: 12194852 DOI: 10.1016/s1534-5807(02)00204-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Isoform-specific null mutations were used to define the functions of three orphan members of the nuclear receptor superfamily, E75A, E75B, and E75C, encoded by the E75 early ecdysteroid-inducible gene. E75B mutants are viable and fertile, while E75C mutants die as adults. In contrast, E75A mutants have a reduced ecdysteroid titer during larval development, resulting in developmental delays, developmental arrests, and molting defects. Remarkably, some E75A mutant second instar larvae display a heterochronic phenotype in which they induce genes specific to the third instar and pupariate without undergoing a molt. We propose that ecdysteroid-induced E75A expression defines a feed-forward pathway that amplifies or maintains the ecdysteroid titer during larval development, ensuring proper temporal progression through the life cycle.
Collapse
Affiliation(s)
- Michael Bialecki
- Howard Hughes Medical Institute, Department of Human Genetics, 15 North 2030 East, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | |
Collapse
|
6
|
Manière G, Vanhems E, Delbecque J. Cyclic AMP-dependent and independent stimulations of ovarian steroidogenesis by brain factors in the blowfly, Phormia regina. Mol Cell Endocrinol 2000; 168:31-40. [PMID: 11064150 DOI: 10.1016/s0303-7207(00)00312-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The involvement of cyclic-AMP (cAMP) as a potential second messenger in the neurohormonal control of ovarian steroidogenesis was investigated in the adult female blowfly Phormia regina. Individual measurements of ovarian cAMP concentrations and of ovarian biosynthesis of ecdysteroids, stimulated after a protein meal, demonstrated that steroidogenesis is preceded by a peak of cAMP in the ovaries. In vitro, ovarian steroidogenesis was stimulated by cell-permeable analogues of cAMP and by forskolin. Crude brain extracts were also able to elicit a rise of cAMP in the ovaries in vitro and the secretion of ecdysteroids into the medium: such extracts were more active before than after the protein meal, suggesting a rapid release of neuroendocrine material after feeding. Extracts were then prepared from the dorso-medial part of the brain, containing the neurosecretory cells of the pars intercerebralis (PI): these extracts were again found to stimulate the ovarian ecdysteroid secretion, but surprisingly, they failed to trigger a rise of cAMP in the ovaries in vitro. However, extracts from the rest of the cephalic nervous mass, deprived of PI, were also steroidogenic and they increased ovarian cAMP. Experiments with Rp-cAMPS, a cAMP antagonist, were not able to prevent the ecdysteroid stimulation by PI extracts, but did so partly for the extracts deprived of PI. This study thus indicates that at least two different cephalic factors are able to stimulate ovarian steroidogenesis in the blowfly, one elaborated by PI and acting via a cAMP-independent mechanism, and the other elaborated outside PI and using cAMP as a second messenger.
Collapse
Affiliation(s)
- G Manière
- Laboratoire de Neuroendocrinologie des Insectes, Université Bordeaux 1, Avenue des Facultés, F-33405 Cedex, Talence, France
| | | | | |
Collapse
|
7
|
Chávez VM, Marqués G, Delbecque JP, Kobayashi K, Hollingsworth M, Burr J, Natzle JE, O'Connor MB. The Drosophila disembodied gene controls late embryonic morphogenesis and codes for a cytochrome P450 enzyme that regulates embryonic ecdysone levels. Development 2000; 127:4115-26. [PMID: 10976044 DOI: 10.1242/dev.127.19.4115] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ecdysteroids regulate a wide variety of cellular processes during arthropod development, yet little is known about the genes involved in the biosynthesis of these hormones. Previous studies have suggested that production of 20-hydroxyecdysone in Drosophila and other arthropods involves a series of cytochrome P450 catalyzed hydroxylations of cholesterol. In this report, we show that the disembodied (dib) locus of Drosophila codes for a P450-like sequence. In addition, we find that dib mutant embryos have very low titers of ecdysone and 20-hydroxyecdysone (20E) and fail to express IMP-E1 and L1, two 20E-inducible genes, in certain tissues of the embryo. In situ hybridization studies reveal that dib is expressed in a complex pattern in the early embryo, which eventually gives way to restricted expression in the prothoracic portion of the ring gland. In larval and adult tissues, dib expression is observed in the prothoracic gland and follicle cells of the ovaries respectively, two tissues known to synthesize ecdysteroids. Phenotypic analysis reveals that dib mutant embryos produce little or no cuticle and exhibit severe defects in many late morphogenetic processes such as head involution, dorsal closure and gut development. In addition, we examined the phenotypes of several other mutants that produce defective embryonic cuticles. Like dib, mutations in the spook (spo) locus result in low embryonic ecdysteroid titers, severe late embryonic morphological defects, and a failure to induce IMP-E1. From these data, we conclude that dib and spo likely code for essential components in the ecdysone biosynthetic pathway and that ecdysteroids regulate many late embryonic morphogenetic processes such as cell movement and cuticle deposition.
Collapse
Affiliation(s)
- V M Chávez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Barros MP, Bechara EJ. Luciferase and urate may act as antioxidant defenses in larval Pyrearinus termitilluminans (Elateridae: Coleoptera) during natural development and upon 20-hydroxyecdysone treatment. Photochem Photobiol 2000; 71:648-54. [PMID: 10818797 DOI: 10.1562/0031-8655(2000)071<0648:laumaa>2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insects show unique adaptations to cope with oxidative challenges during larval development, metamorphosis and adulthood. Our previous findings suggested that bioluminescence may act as an auxiliary oxygen-detoxifying mechanism in larvae of Pyrearinus termitilluminans (Elateridae: Coleoptera). We now study the antioxidant status in larval P. termitilluminans, evaluated in terms of levels of chemical and enzymatic antioxidant defenses, as compared to luciferase activity in the prothorax (intensely bright) and abdomen (dim) of the larvae, during natural- and 20-hydroxyecdysone (20-HE)-induced development. In the prothorax, relative total SOD activities in small (< 1 cm), medium (1-2 cm) and large (> 2 cm) larvae were 1.00:0.53:0.32. Catalase activity also decreased with development (1.00:0.69:0.55). In contrast, prothorax luciferase activities and urate content increased with ratios of 1.0:2.2:2.5 and 1:15:97, respectively. No increases were found in the level of prothorax lipid and protein oxidation. In the abdomen, luciferase activity decreased markedly with development (1.00:0.33:0.17), as did other antioxidant enzymes, including dehydroascorbate reductase (1.00:0.59:0.17) and levels of lipid peroxidation products and protein carbonyls. Similar variations were observed in antioxidant enzyme activities when the larvae were treated with 20-HE, except for prothorax catalase. As observed in natural larval growth, luciferase activity was augmented (two-fold in prothorax) upon steroid treatment, and the levels of thiobarbituric acid-reactive substances were magnified in both segments. The increase of luciferase activity and a higher urate content in the prothorax during larval development may reflect metabolic adaptations to keep levels of oxyradicals low in order to compensate for decreased antioxidant enzyme activities.
Collapse
Affiliation(s)
- M P Barros
- Departamento de Bioquímica, Universidade de São Paulo, Brasil
| | | |
Collapse
|
9
|
Mesnier M, Partiaoglou N, Oberlander H, Porcheron P. Rhythmic autocrine activity in cultured insect epidermal cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2000; 44:7-16. [PMID: 10790181 DOI: 10.1002/(sici)1520-6327(200005)44:1<7::aid-arch2>3.0.co;2-s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is now well established that ecdysteroids can be produced in insects in the absence of prothoracic glands. In this respect, it has been shown that cells in culture can produce ecdysteroids. Our aims were: (1) to determine whether ecdysteroid target cells of epidermal origin could also be the source of ecdysteroids; (2) to monitor more accurately the kinetics of ecdysteroid production; and (3) to check for possible relationships between this synthetic activity and dynamics of cell division. An insect cell line (IAL-PID2) established from imaginal discs of the Indian meal moth, Plodia interpunctella, with wild-type sensitivity to ecdysteroids was used in our study. Our results showed that the Plodia cell line exhibited autocrine activity. When division of IAL-PID2 cells was synchronized, a rhythmic production of ecdysteroids was observed. However, further experiments indicated that this rhythmicity could be cell autonomous. This led us to anticipate the existence of two cell subpopulations that would be able to produce ecdysteroids rhythmically, a minor one that would be cell cycle serum-independent population, and a major population that would need serum growth factors to proliferate and produce ecdysteroids. Qualitative study of the ecdysteroid content of the media clearly showed that ecdysone was the major immunoreactive product. Taken together, our findings clearly show that an insect cell line of epidermal origin is capable of rhythmic autocrine production of ecdysteroids. These results support the hypothesis that alternate sites for ecdysteroid production in vivo may exist and could play a role in local regulation of development. We now plan to determine the cellular basis of this rhythmic autocrine activity and to confirm the existence of growth factor-autonomous cells in the culture as well as the potent role played by ecdysteroids in the cross-talk between various cell subpopulations.
Collapse
Affiliation(s)
- M Mesnier
- Laboratoire de Physiologie Cellulaire des Invertébrés, Université Pierre et Marie Curie, Paris 6, France
| | | | | | | |
Collapse
|
10
|
Stuurman N, Delbecque JP, Callaerts P, Aebi U. Ectopic overexpression of Drosophila lamin C is stage-specific lethal. Exp Cell Res 1999; 248:350-7. [PMID: 10222127 DOI: 10.1006/excr.1999.4396] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To gain insight into the function of the developmentally regulated A-type lamins we transformed Drosophila melanogaster with a construct containing the hsp70 promoter followed by the Drosophila lamin C (an analog of vertebrate A-type lamins) cDNA. Lamin C was expressed ectopically after heat shock of embryos and localized to the nucleus. No phenotypic change was observed after lamin C expression in embryos that normally do not contain lamin C. However, ectopic expression of lamin C during most larval (but not pupal) stages stalled growth, inhibited ecdysteroid signaling (in particular during the larval-prepupal transition), resulted in development of melanotic tumors, and finally caused death. During pupation in control animals, when massive apoptosis of larval tissues takes place, lamin C is proteolyzed into a fragment with a size similar to that predicted by caspase cleavage. The ectopically expressed lamin C is identically cleaved, resulting in a large increase of the steady-state level of the lamin C fragment. A null mutation of the dcp-1 gene, one of the two known Drosophila caspase genes, also results in development of melanotic tumors and larval death, suggesting that the ectopically expressed lamin C inhibits apoptosis through competitive inhibition of caspase activity.
Collapse
Affiliation(s)
- N Stuurman
- Maurice E. Müller Institut am Biozentrum, Universität Basel, Klingelbergstrasse 70, Basel, CH-4055, Switzerland.
| | | | | | | |
Collapse
|
11
|
Hoffmann KH, Lorenz MW, Oeh U. Ecdysteroid release by the prothoracic gland of Gryllus bimaculatus (Ensifera: Gryllidae) during larval-adult development. JOURNAL OF INSECT PHYSIOLOGY 1998; 44:941-946. [PMID: 12770430 DOI: 10.1016/s0022-1910(98)00057-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The in vitro secretion of ecdysteroids from the prothoracic glands of larvae of Gryllus bimaculatus was analysed by HPLC-RIA. The primary product was identified as 3-dehydroecdysone (65-93%), with lesser amounts of ecdysone (7-35%). Production and release of ecdysteroids from the prothoracic glands are calcium-dependent. The rate of ecdysteroid release was low during the beginning and the end of the last two larval stages and high in between. Prothoracic glands from young adult females produced only minor amounts of ecdysteroids and ceased hormone production around day 4 after the moult.
Collapse
Affiliation(s)
- K H. Hoffmann
- Tierökologie I, Universität Bayreuth, D-95440, Bayreuth, Germany
| | | | | |
Collapse
|
12
|
Delbecque JP, Pitoizet N, Quennedey A, Aribi N. Ecdysteroid titres in a tenebrionid beetle, Zophobas atratus: effects of grouping and isolation. JOURNAL OF INSECT PHYSIOLOGY 1997; 43:815-821. [PMID: 12770493 DOI: 10.1016/s0022-1910(97)00029-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Metamorphosis in Zophobas atratus is dependent on isolation: when kept in grouped conditions, larvae undergo numerous supernumerary moults, growing in size, without pupating. This beetle thus represents an interesting model for the analysis of possible differences in the endocrine regulation of normal vs. supernumerary larval moults. In this study, the ecdysteroid titres have been analysed in this species, using enzyme immunoassay. The hormonal variations of larvae undergoing normal or supernumerary larval cycles were particularly examined, in either grouped or isolated conditions. Normal larval cycles presented very similar ecdysteroid variations in grouped as well as isolated conditions, showing a single hormonal peak (at about 1000pg/&mgr;l). Supplementary larval cycles, occurring in grouped conditions, also showed a similar single ecdysteroid peak, but after a longer period of basal levels. Isolation of such larvae triggered their larval-pupal transformation, which was characterized by more complex hormonal fluctuations, including a small ecdysteroid peak before the main one. Interestingly, the isolation of big larvae during a large part of their cycle induced this peculiar hormonal pattern synchronously, confirming the involvement of a complex neuroendocrine control between external conditions and ecdysteroid titres.
Collapse
Affiliation(s)
- J -P. Delbecque
- CNRS UMR 5548, Laboratoire de Zoologie, Faculté des Sciences, Université de Bourgogne, Bd. Gabriel, F-21000, Dijon, France
| | | | | | | |
Collapse
|