1
|
Gao G, Sumrall ES, Pitchiaya S, Bitzer M, Alberti S, Walter NG. Biomolecular condensates in kidney physiology and disease. Nat Rev Nephrol 2023; 19:756-770. [PMID: 37752323 DOI: 10.1038/s41581-023-00767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/28/2023]
Abstract
The regulation and preservation of distinct intracellular and extracellular solute microenvironments is crucial for the maintenance of cellular homeostasis. In mammals, the kidneys control bodily salt and water homeostasis. Specifically, the urine-concentrating mechanism within the renal medulla causes fluctuations in extracellular osmolarity, which enables cells of the kidney to either conserve or eliminate water and electrolytes, depending on the balance between intake and loss. However, relatively little is known about the subcellular and molecular changes caused by such osmotic stresses. Advances have shown that many cells, including those of the kidney, rapidly (within seconds) and reversibly (within minutes) assemble membraneless, nano-to-microscale subcellular assemblies termed biomolecular condensates via the biophysical process of hyperosmotic phase separation (HOPS). Mechanistically, osmotic cell compression mediates changes in intracellular hydration, concentration and molecular crowding, rendering HOPS one of many related phase-separation phenomena. Osmotic stress causes numerous homo-multimeric proteins to condense, thereby affecting gene expression and cell survival. HOPS rapidly regulates specific cellular biochemical processes before appropriate protective or corrective action by broader stress response mechanisms can be initiated. Here, we broadly survey emerging evidence for, and the impact of, biomolecular condensates in nephrology, where initial concentration buffering by HOPS and its subsequent cellular escalation mechanisms are expected to have important implications for kidney physiology and disease.
Collapse
Affiliation(s)
- Guoming Gao
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily S Sumrall
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Markus Bitzer
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Simon Alberti
- Technische Universität Dresden, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Engineering (CMCB), Dresden, Germany
| | - Nils G Walter
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Muñoz-Bacasehua C, Santacruz-Ortega H, Valenzuela-Soto EM. BADH-NAD +-K + Complex Interaction Studies Reveal a New Possible Mechanism between Potassium and Glutamic 254 at the Coenzyme Binding Site. Cell Biochem Biophys 2022; 80:39-44. [PMID: 34981410 DOI: 10.1007/s12013-021-01051-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022]
Abstract
Betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Incubation of porcine kidney BADH (pkBADH) with NAD+ decreases the catalytic cysteine (C288) reactivity. Potassium ion increases the pkBADH affinity by the coenzyme. This work aimed to analyze pkBADH and NAD+ interaction in the presence and absence of K+ using 1H NMR to identify the amino acids that interact with NAD+ and/or K+ to understand the regulation process of pkBADH-NAD+ complex formation mediated by the K+ ion and their impact on the substrate binding and catalysis. Nuclear magnetic resonance spectra of pkBADH were obtained in the presence and absence of NAD+ and K+. The results show a chemical shift of the signals corresponding to the catalytic glutamic that participates in the transfer of H+ in the reaction of the pkBADH-NAD+-K+ complex formation. Furthermore, there is a widening of the signal that belongs to the catalytic cysteine indicating higher rigidity or less grade of rotation of the structure, which is consistent with the possible conformations of C288 in the catalytic process; in addition, there is evidence of changes in the chemical environment that surrounds NAD+.
Collapse
Affiliation(s)
- César Muñoz-Bacasehua
- Centro de Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo, 83304, Sonora, México
| | - Hisila Santacruz-Ortega
- División de Ingeniería, Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, 83000, Sonora, México
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo, 83304, Sonora, México.
| |
Collapse
|
3
|
Rosas-Rodríguez JA, Valenzuela-Soto EM. The glycine betaine role in neurodegenerative, cardiovascular, hepatic, and renal diseases: Insights into disease and dysfunction networks. Life Sci 2021; 285:119943. [PMID: 34516992 DOI: 10.1016/j.lfs.2021.119943] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 12/15/2022]
Abstract
Glycine betaine (N, N, N-trimethyl amine) is an osmolyte accumulated in cells that is key for cell volume and turgor regulation, is the principal methyl donor in the methionine cycle and is a DNA and proteins stabilizer. In humans, glycine betaine is synthesized from choline and can be obtained from some foods. Glycine betaine (GB) roles are illustrated in chemical, metabolic, agriculture, and clinical medical studies due to its chemical and physiological properties. Several studies have extensively described GB role and accumulation related to specific pathologies, focusing mainly on analyzing its positive and negative role in these pathologies. However, it is necessary to explain the relationship between glycine betaine and different pathologies concerning its role as an antioxidant, ability to methylate DNA, interact with transcription factors and cell receptors, and participate in the control of homocysteine concentration in liver, kidney and brain. This review summarizes the most important findings and integrates GB role in neurodegenerative, cardiovascular, hepatic, and renal diseases. Furthermore, we discuss GB impact on other dysfunctions as inflammation, oxidative stress, and glucose metabolism, to understand their cross-talks and provide reliable data to establish a base for further investigations.
Collapse
Affiliation(s)
- Jesús A Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Navojoa, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Sonora, Mexico.
| |
Collapse
|
4
|
Cruz-Valencia R, Arvizu-Flores AA, Rosas-Rodríguez JA, Valenzuela-Soto EM. Effect of the drug cyclophosphamide on the activity of porcine kidney betaine aldehyde dehydrogenase. Mol Cell Biochem 2021; 476:1467-1475. [PMID: 33389495 DOI: 10.1007/s11010-020-04010-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/28/2020] [Indexed: 01/17/2023]
Abstract
The enzyme betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the synthesis of glycine betaine (GB), an osmolyte and osmoprotectant. Also, it participates in several metabolic pathways in humans. All BADHs known have cysteine in the active site involved in the aldehyde binding, whereas the porcine kidney enzyme (pkBADH) also has a neighborhood cysteine, both sensitive to oxidation. The antineoplastic and immuno-suppressant pre-drug cyclophosphamide (CTX), and its bioactivation products, have two highly oxidating chlorine atoms. This work aimed to analyze the effect of CTX in the activity of porcine kidney betaine aldehyde dehydrogenase. PkBADH was incubated with varying CTX concentration (0 to 2.0 mM) at 25 °C and lost 50 % of its activity with 2.0 mM CTX. The presence of the coenzyme NAD+ (0.5 mM) decreased 95% the activity in 2.0 mM CTX. The substrate betaine aldehyde (0.05 and 0.4 mM, and the products NADH (0.1-0.5 mM) and GB (1 and 10 mM) did not have an effect on the enzyme inactivation by CTX. The reducing agents, dithiothreitol and β-mercaptoethanol, reverted the pkBADH inactivation, but reduced glutathione (GSH) was unable to restore the enzyme activity. Molecular docking showed that CTX could enter at the enzyme active site, where its chlorine atoms may interact with the catalytic and the neighboring cysteines. The results obtained show that CTX inactivates the pkBADH due to oxidation of the catalytic cysteine or because it oxidizes catalytic and neighborhood cysteine, forming a disulfide bridge with a concomitant decrease in the activity of the enzyme.
Collapse
Affiliation(s)
- Ramses Cruz-Valencia
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, 83304, Sonora, México
| | - Aldo A Arvizu-Flores
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, 83000, Sonora, México
| | - Jesús A Rosas-Rodríguez
- Departamento de Ciencias, Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Navojoa, 85880, Sonora, México
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, 83304, Sonora, México.
| |
Collapse
|
5
|
Peng M, Li S, He Q, Zhao J, Li L, Ma H. Proteomics reveals changes in hepatic proteins during chicken embryonic development: an alternative model to study human obesity. BMC Genomics 2018; 19:29. [PMID: 29310583 PMCID: PMC5759888 DOI: 10.1186/s12864-017-4427-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/29/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chicken embryos are widely used as a model for studies of obesity; however, no detailed information is available about the dynamic changes of proteins during the regulation of adipose biology and metabolism. Thus, the present study used an isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic approach to identify the changes in protein abundance at different stages of chicken embryonic development. RESULTS In this study, the abundances of 293 hepatic proteins in 19-day old of chicken embryos compared with 14-day old and 160 hepatic proteins at hatching compared with 19-day old embryos were significantly changed. Pathway analysis showed that fatty acid degradation (upregulated ACAA2, CPT1A, and ACOX1), protein folding (upregulated PDIs, CALR3, LMAN1, and UBQLN1) and gluconeogenesis (upregulated ACSS1, AKR1A1, ALDH3A2, ALDH7A1, and FBP2) were enhanced from embryonic day 14 (E14) to E19 of chicken embryo development. Analysis of the differentially abundant proteins indicated that glycolysis was not the main way to produce energy from E19 to hatching day during chicken embryo development. In addition, purine metabolism was enhanced, as deduced from increased IMPDH2, NT5C, PGM2, and XDH abundances, and the decrease of growth rate could be overcome by increasing the abundance of ribosomal proteins from E19 to the hatching day. CONCLUSION The levels of certain proteins were coordinated with each other to regulate the changes in metabolic pathways to satisfy the requirement for growth and development at different stages of chicken embryo development. Importantly, ACAA2, CPT1A, and ACOX1 might be key factors to control fat deposition during chicken embryonic development. These results provided information showing that chicken is a useful model to further investigate the mechanism of obesity and insulin resistance in humans.
Collapse
Affiliation(s)
- Mengling Peng
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengnan Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianian He
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Ikeyama S, Amao Y. The effect of the functional ionic group of the viologen derivative on visible-light driven CO2 reduction to formic acid with the system consisting of water-soluble zinc porphyrin and formate dehydrogenase. Photochem Photobiol Sci 2018; 17:60-68. [DOI: 10.1039/c7pp00277g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The effect of the functional ionic group of 4,4′-bipyridinium salt on the visible-light driven CO2 conversion to formic acid with the system consisting of zinc porphyrin and formate dehydrogenase was investigated.
Collapse
Affiliation(s)
- S. Ikeyama
- The Advanced Research Institute for Natural Science and Technology
- Osaka City University
- Osaka 558-8585
- Japan
| | - Y. Amao
- The Advanced Research Institute for Natural Science and Technology
- Osaka City University
- Osaka 558-8585
- Japan
- Research Centre for Artificial Photosynthesis (ReCAP)
| |
Collapse
|
7
|
Rosas-Rodríguez JA, Soñanez-Organis JG, Godoy-Lugo JA, Espinoza-Salazar JA, López-Jacobo CJ, Stephens-Camacho NA, González-Ochoa G. Betaine Aldehyde Dehydrogenase expression during physiological cardiac hypertrophy induced by pregnancy. Biochem Biophys Res Commun 2017. [PMID: 28630000 DOI: 10.1016/j.bbrc.2017.06.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Betaine Aldehyde Dehydrogenase (betaine aldehyde: NAD(P)+ oxidoreductase, (E.C. 1.2.1.8; BADH) catalyze the irreversible oxidation of betaine aldehyde (BA) to glycine betaine (GB) and is essential for polyamine catabolism, γ-aminobutyric acid synthesis, and carnitine biosynthesis. GB is an important osmolyte that regulates the homocysteine levels, contributing to a vascular risk factor reduction. In this sense, distinct investigations describe the physiological roles of GB, but there is a lack of information about the GB novo synthesis process and regulation during cardiac hypertrophy induced by pregnancy. In this work, the BADH mRNA expression, protein level, and activity were quantified in the left ventricle before, during, and after pregnancy. The mRNA expression, protein content and enzyme activity along with GB content of BADH increased 2.41, 1.95 and 1.65-fold respectively during late pregnancy compared to not pregnancy, and returned to basal levels at postpartum. Besides, the GB levels increased 1.53-fold during pregnancy and remain at postpartum. Our results demonstrate that physiological cardiac hypertrophy induced BADH mRNA expression and activity along with GB production, suggesting that BADH participates in the adaptation process of physiological cardiac hypertrophy during pregnancy, according to the described GB role in cellular osmoregulation, osmoprotection and reduction of vascular risk.
Collapse
Affiliation(s)
- Jesús Alfredo Rosas-Rodríguez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico.
| | - José Guadalupe Soñanez-Organis
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - José Arquimides Godoy-Lugo
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Juan Alberto Espinoza-Salazar
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Cesar Jeravy López-Jacobo
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| | - Norma Aurora Stephens-Camacho
- Universidad Estatal de Sonora (UES), Licenciatura en Nutrición Humana, Periférico Sur y carretera Internacional a Huatabampo km 5, S/N, Colonia Juárez, Navojoa, Sonora, Mexico
| | - Guadalupe González-Ochoa
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora Unidad Regional Sur, Apartado Postal 85390, Navojoa, Sonora, Mexico
| |
Collapse
|
8
|
Liu PF, Du Y, Meng L, Li X, Liu Y. Proteomic analysis in kidneys of Atlantic salmon infected with Aeromonas salmonicida by iTRAQ. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:140-153. [PMID: 28235584 DOI: 10.1016/j.dci.2017.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/18/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Aeromonas salmonicida is a major etiologic agent which induces furunculosis and is globally harmful in salmonid and turbot cultures, especially in Atlantic salmon (Salmo salar) farming. In order to improve knowledge of its poorly understood pathogenesis, we utilized high-throughput proteomics to display differentially expressed proteins in the kidney of Atlantic salmon challenged with high and low infection dose of A. salmonicida at 7 and 14 days. In quantitative proteomic assays, isobaric tags for relative and absolute quantitation (iTRAQ) combined with 2D LC-MS/MS is emerging as a powerful methodology in the search for disease-specific targets and biomarkers. In this study, 4009 distinct proteins (unused ≥ 1.3, which is a confidence ≥ 95%) were identified in three two-dimensional LC/MS/MS analyses. Then we chose 140 proteins (fold change ratio ≥ 1.5 and P < 0.01) combined with protein-protein interaction analysis to ultimately obtain 39 proteins in network which could be considered as potential biomarkers for Atlantic salmon immune responses. Nine significant differentially expressed proteins were consistent with those at the proteomic level used to validate genes at the transcriptomic level by qPCR. Collectively, these data was first reported using an iTRAQ approach to provide additional elements for consideration in the pathophysiology of A. salmonicida and pave the way to resolve the influence of this disease in Atlantic salmon.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Yishuai Du
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingjie Meng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xian Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ying Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Dalian Ocean University, Dalian, China.
| |
Collapse
|
9
|
Henrion MYR, Purdue MP, Scelo G, Broderick P, Frampton M, Ritchie A, Meade A, Li P, McKay J, Johansson M, Lathrop M, Larkin J, Rothman N, Wang Z, Chow WH, Stevens VL, Diver WR, Albanes D, Virtamo J, Brennan P, Eisen T, Chanock S, Houlston RS. Common variation at 1q24.1 (ALDH9A1) is a potential risk factor for renal cancer. PLoS One 2015; 10:e0122589. [PMID: 25826619 PMCID: PMC4380462 DOI: 10.1371/journal.pone.0122589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/11/2015] [Indexed: 01/08/2023] Open
Abstract
So far six susceptibility loci for renal cell carcinoma (RCC) have been discovered by genome-wide association studies (GWAS). To identify additional RCC common risk loci, we performed a meta-analysis of published GWAS (totalling 2,215 cases and 8,566 controls of Western-European background) with imputation using 1000 Genomes Project and UK10K Project data as reference panels and followed up the most significant association signals [22 single nucleotide polymorphisms (SNPs) and 3 indels in eight genomic regions] in 383 cases and 2,189 controls from The Cancer Genome Atlas (TCGA). A combined analysis identified a promising susceptibility locus mapping to 1q24.1 marked by the imputed SNP rs3845536 (Pcombined =2.30x10-8). Specifically, the signal maps to intron 4 of the ALDH9A1 gene (aldehyde dehydrogenase 9 family, member A1). We further evaluated this potential signal in 2,461 cases and 5,081 controls from the International Agency for Research on Cancer (IARC) GWAS of RCC cases and controls from multiple European regions. In contrast to earlier findings no association was shown in the IARC series (P=0.94; Pcombined =2.73x10-5). While variation at 1q24.1 represents a potential risk locus for RCC, future replication analyses are required to substantiate our observation.
Collapse
Affiliation(s)
- Marc Y. R. Henrion
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, Department Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Matthew Frampton
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Alastair Ritchie
- MRC Clinical Trials Unit at University College London, Aviation House, London, United Kingdom
| | - Angela Meade
- MRC Clinical Trials Unit at University College London, Aviation House, London, United Kingdom
| | - Peng Li
- International Agency for Research on Cancer, Lyon, France
| | - James McKay
- International Agency for Research on Cancer, Lyon, France
| | | | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - James Larkin
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Department Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, Department Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Gaithersburg, Maryland, United States of America
| | - Wong-Ho Chow
- Division of Cancer Epidemiology and Genetics, Department Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Victoria L. Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, United States of America
| | - W. Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, United States of America
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, Department Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Timothy Eisen
- Cambridge University Health Partners, Cambridge, United Kingdom
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, Department Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
10
|
Minguez L, Di Poi C, Farcy E, Ballandonne C, Benchouala A, Bojic C, Cossu-Leguille C, Costil K, Serpentini A, Lebel JM, Halm-Lemeille MP. Comparison of the sensitivity of seven marine and freshwater bioassays as regards antidepressant toxicity assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1744-1754. [PMID: 25185786 DOI: 10.1007/s10646-014-1339-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 06/03/2023]
Abstract
The hazards linked to pharmaceutical residues like antidepressants are currently a major concern of ecotoxicology because they may have adverse effects on non-target aquatic organisms. Our study assesses the ecotoxicity of three antidepressants (fluoxetine, sertraline and clomipramine) using a battery of marine and freshwater species representing different trophic levels, and compares the bioassay sensitivity levels. We selected the following bioassays: the algal growth inhibition test (Skeletonema marinoi and Pseudokirchneriella subcapitata), the microcrustacean immobilization test (Artemia salina and Daphnia magna), development and adult survival tests on Hydra attenuata, embryotoxicity and metamorphosis tests on Crassostrea gigas, and in vitro assays on primary cultures of Haliotis tuberculata hemocytes. The results showed high inter-species variability in EC50-values ranging from 43 to 15,600 µg/L for fluoxetine, from 67 to 4,400 µg/L for sertraline, and from 4.70 µg/L to more than 100,000 µg/L for clomipramine. Algae (S. marinoi and P. subcapitata) and the embryo-larval stages of the oyster C. gigas were the most sensitive taxa. This raises an issue due to their ecological and/or economic importance. The marine crustacean A. salina was the least sensitive species. This difference in sensitivity between bioassays highlights the importance of using a test battery.
Collapse
Affiliation(s)
- Laetitia Minguez
- UMR BOREA (Biologie des ORganismes et Ecosystèmes Aquatiques), CNRS-7208/MNHN/UPMC/IRD-207/UCBN, Esplanade de la Paix, 14032, Caen Cedex, France,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Brocker C, Lassen N, Estey T, Pappa A, Cantore M, Orlova VV, Chavakis T, Kavanagh KL, Oppermann U, Vasiliou V. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J Biol Chem 2010; 285:18452-63. [PMID: 20207735 DOI: 10.1074/jbc.m109.077925] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mammalian ALDH7A1 is homologous to plant ALDH7B1, an enzyme that protects against various forms of stress, such as salinity, dehydration, and osmotic stress. It is known that mutations in the human ALDH7A1 gene cause pyridoxine-dependent and folic acid-responsive seizures. Herein, we show for the first time that human ALDH7A1 protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes. Human ALDH7A1 expression in Chinese hamster ovary cells attenuated osmotic stress-induced apoptosis caused by increased extracellular concentrations of sucrose or sodium chloride. Purified recombinant ALDH7A1 efficiently metabolized a number of aldehyde substrates, including the osmolyte precursor, betaine aldehyde, lipid peroxidation-derived aldehydes, and the intermediate lysine degradation product, alpha-aminoadipic semialdehyde. The crystal structure for ALDH7A1 supports the enzyme's substrate specificities. Tissue distribution studies in mice showed the highest expression of ALDH7A1 protein in liver, kidney, and brain, followed by pancreas and testes. ALDH7A1 protein was found in the cytosol, nucleus, and mitochondria, making it unique among the aldehyde dehydrogenase enzymes. Analysis of human and mouse cDNA sequences revealed mitochondrial and cytosolic transcripts that are differentially expressed in a tissue-specific manner in mice. In conclusion, ALDH7A1 is a novel aldehyde dehydrogenase expressed in multiple subcellular compartments that protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes.
Collapse
Affiliation(s)
- Chad Brocker
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kwasiborski A, Rocha D, Terlouw C. Gene expression in Large White or Duroc-sired female and castrated male pigs and relationships with pork quality. Anim Genet 2009; 40:852-62. [DOI: 10.1111/j.1365-2052.2009.01925.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Alnouti Y, Klaassen CD. Tissue distribution, ontogeny, and regulation of aldehyde dehydrogenase (Aldh) enzymes mRNA by prototypical microsomal enzyme inducers in mice. Toxicol Sci 2007; 101:51-64. [PMID: 17998271 DOI: 10.1093/toxsci/kfm280] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases (Aldhs) are a group of nicotinamide adenine dinucleotide phosphate-dependent enzymes that catalyze the oxidation of a wide spectrum of aldehydes to carboxylic acids. Tissue distribution and developmental changes in the expression of the messenger RNA (mRNA) of 15 Aldh enzymes were quantified in male and female mice tissues using the branched DNA signal amplification assay. Furthermore, the regulation of the mRNA expression of Aldhs by 15 typical microsomal enzyme inducers (MEIs) was studied. Aldh1a1 mRNA expression was highest in ovary; 1a2 in testis; 1a3 in placenta; 1a7 in lung; 1b1 in small intestine; 2 in liver; 3a1 in stomach; 3a2 and 3b1 expression was ubiquitous; 4a1, 6a1, 7a1, and 8a1 in liver and kidney; 9a1 in liver, kidney, and small intestine; and 18a1 in ovary and small intestine. mRNAs of different Aldh enzymes were detected at lower levels in fetuses than adult mice and gradually increased after birth to reach adult levels between 15 and 45 days of age, when the gender difference began to appear. Aromatic hydrocarbon receptor (AhR) ligands induced the liver mRNA expression of Aldh1a7, 1b1, and 3a1, constitutive androstane receptor (CAR) activators induced Aldh1a1 and 1a7, whereas pregnane X receptor (PXR) ligands and NF-E2 related factor 2 (Nrf2) activators induced Aldh1a1, 1a7, and 1b1. Peroxisome proliferator activator receptor alpha (PPAR alpha) ligands induced the mRNA expression in liver of almost all Aldhs. The Aldh organ-specific distribution may be important in elucidating their role in metabolism, elimination, and organ-specific toxicity of xenobiotics. Finally, in contrast to other phase-I metabolic enzymes such as CYP450 enzymes, Aldh mRNA expression seems to be generally insensitive to typical microsomal inducers except PPAR alpha ligands.
Collapse
Affiliation(s)
- Yazen Alnouti
- Kansas Life Sciences Innovation Center, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
14
|
Nishimura M, Naito S. Tissue-specific mRNA expression profiles of human phase I metabolizing enzymes except for cytochrome P450 and phase II metabolizing enzymes. Drug Metab Pharmacokinet 2006; 21:357-74. [PMID: 17072089 DOI: 10.2133/dmpk.21.357] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pairs of forward and reverse primers and TaqMan probes specific to each of 52 human phase I metabolizing enzymes (alcohol dehydrogenase, aldehyde dehydrogenase, aldehyde oxidase, dihydropyrimidine dehydrogenase, epoxide hydrolase, esterase, flavin-containing monooxygenase, monoamine oxidase, prostaglandin endoperoxide synthase, quinone oxidoreductase, and xanthene dehydrogenase) and 48 human phase II metabolizing enzymes (acetyltransferase, acyl-CoA:amino acid N-acyltransferase, UDP-glucuronosyltransferase, glutathione S-transferase, methyltransferase, and sulfotransferase) were prepared. The mRNA expression level of each target enzyme was analyzed in total RNA from single and pooled specimens of various human tissues (adrenal gland, bone marrow, brain, colon, heart, kidney, liver, lung, pancreas, peripheral leukocytes, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thymus, thyroid gland, trachea, and uterus) by real-time reverse transcription PCR using an ABI PRISM 7700 Sequence Detection System. Further, individual differences in the mRNA expression of representative human phase I and II metabolizing enzymes in the liver were also evaluated. The mRNA expression profiles of the above phase I and phase II metabolizing enzymes in 23 different human tissues were used to identify the tissues exhibiting high transcriptional activity for these enzymes. These results are expected to be valuable in establishing drug metabolism-mediated screening systems for new chemical entities in new drug development and in research concerning the clinical diagnosis of disease.
Collapse
Affiliation(s)
- Masuhiro Nishimura
- Division of Pharmacology, Drug Safety and Metabolism, Otsuka Pharmaceutical Factory Inc, Naruto, Tokushima, Japan.
| | | |
Collapse
|
15
|
Misamore MJ, Stein KK, Lynn JW. Sperm incorporation and pronuclear development during fertilization in the freshwater bivalveDreissena polymorpha. Mol Reprod Dev 2006; 73:1140-8. [PMID: 16736529 DOI: 10.1002/mrd.20415] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The invasive zebra mussel, Dreissena polymorpha (D. polymorpha), is proving to be a valuable model for understanding general mechanisms of fertilization, particularly regarding sperm incorporation. In the present study, we tracked the various components of the fertilizing sperm of D. polymorpha during sperm incorporation. During fertilization the sperm membrane remains associated with the egg surface as a distinct patch that disperses over time. This patch marked the site of sperm entry that occurs predominately on the CD blastomere. Taking advantage of the relatively unpigmented cytoplasm, real-time observations were made of the incorporated sperm nucleus as it decondensed and reformed as a developing pronucleus. Pronuclear enlargement occurred progressively and at rates comparable with previously reported fixed-time point observations. Sperm mitochondria were incorporated and separated from the sperm along the leading edge of the decondensing nucleus. Sperm mitochondria labeled with Mitotracker Green remained predominately associated with the CD blastomere following first cleavage and could be tracked to the 16-cell stage before the fluorescence was too faint to detect. Additionally, the demembranated sperm axoneme was incorporated, separated during nuclear decondensation, and remained visible in the egg cytoplasm up to 30 min postinsemination (PI). The present study provides one of the most complete descriptions of incorporation on multiple sperm components into the egg and coordinates fixed-time point observations with real-time observations of sperm within the remarkably transparent egg cytoplasm of zebra mussels.
Collapse
Affiliation(s)
- Michael J Misamore
- Department of Biology, Texas Christian University, Fort Worth, 76129, USA.
| | | | | |
Collapse
|
16
|
Sládek NE. Human aldehyde dehydrogenases: potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol 2003; 17:7-23. [PMID: 12616643 DOI: 10.1002/jbt.10057] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aldehyde dehydrogenases catalyze the pyridine nucleotide-dependent oxidation of aldehydes to acids. Seventeen enzymes are currently viewed as belonging to the human aldehyde dehydrogenase superfamily. Summarized herein, insofar as the information is available, are the structural composition, physical properties, tissue distribution, subcellular location, substrate specificity, and cofactor preference of each member of this superfamily. Also summarized are the chromosomal locations and organization of the genes that encode these enzymes and the biological consequences when enzyme activity is lost or substantially diminished. Broadly, aldehyde dehydrogenases can be categorized as critical for normal development and/or physiological homeostasis (1). even when the organism is in a friendly environment or (2). only when the organism finds itself in a hostile environment. The primary, if not sole, evolved raison d'être of first category aldehyde dehydrogenases appears to be to catalyze the biotransformation of a single endobiotic for which they are relatively specific and of which the resultant metabolite is essential to the organism. Most of the human aldehyde dehydrogenases for which the relevant information is available fall into this category. Second category aldehyde dehydrogenases are relatively substrate nonspecific and their evolved raison d'être seems to be to protect the organism from potentially harmful xenobiotics, specifically aldehydes or xenobiotics that give rise to aldehydes, by catalyzing their detoxification. Thus, the lack of a fully functional first category aldehyde dehydrogenase results in a gross pathological phenotype in the absence of any insult, whereas the lack of a functional second category aldehyde dehydrogenase is ordinarily of no consequence with respect to gross phenotype, but is of consequence in that regard when the organism is subjected to a relevant insult.
Collapse
Affiliation(s)
- Norman E Sládek
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Vaz FM, Melegh B, Bene J, Cuebas D, Gage DA, Bootsma A, Vreken P, van Gennip AH, Bieber LL, Wanders RJA. Analysis of Carnitine Biosynthesis Metabolites in Urine by HPLC–Electrospray Tandem Mass Spectrometry. Clin Chem 2002. [DOI: 10.1093/clinchem/48.6.826] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AbstractBackground: We developed a method to determine the urinary concentrations of metabolites in the synthetic pathway for carnitine from N6-trimethyllysine and applied this method to determine their excretion in control individuals. In addition, we investigated whether newborns are capable of carnitine synthesis from deuterium-labeled N6-trimethyllysine.Methods: Urine samples were first derivatized with methyl chloroformate. Subsequently, the analytes were separated by ion-pair, reversed-phase HPLC and detected online by electrospray tandem mass spectrometry. Stable-isotope-labeled reference compounds were used as internal standards.Results: The method quantified all carnitine biosynthesis metabolites except 4-N-trimethylaminobutyraldehyde. Detection limits were 0.05–0.1 μmol/L. The interassay imprecision (CV) for urine samples with added compounds was 6–12%. The intraassay imprecision (CV) was 1–5% (3–10 μmol/L). Recoveries were 94–106% at 10–20 μmol/L and 98–103% at 100–200 μmol/L. The mean (SD) excretions of N6-trimethyllysine and 3-hydroxy-N6-trimethyllysine were 2.8 (0.8) and 0.45 (0.15) mmol/mol creatinine, respectively. γ-Butyrobetaine and carnitine excretions were more variable with values of 0.27 (0.21) and 15 (12) mmol/mol creatinine, respectively. After oral administration of deuterium-labeled N6-trimethyllysine, all urines of newborns contained deuterium-labeled N6-trimethyllysine, 3-hydroxy-N6-trimethyllysine, γ-butyrobetaine, and carnitine.Conclusions: HPLC in combination with electrospray ionization tandem mass spectrometry allows rapid determination of urinary carnitine biosynthesis metabolites. Newborns can synthesize carnitine from exogenous N6-trimethyllysine, albeit at a low rate.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children’s Hospital, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Bela Melegh
- Clinical Genetics Working Group of Hungarian Academy of Sciences at University of Pécs, Department of Medical Genetics and Child Development, H-7623 Pécs, Hungary
| | - Judit Bene
- Clinical Genetics Working Group of Hungarian Academy of Sciences at University of Pécs, Department of Medical Genetics and Child Development, H-7623 Pécs, Hungary
| | - Dean Cuebas
- Department of Chemistry, Southwest Missouri State University, Springfield, MO 65804
| | | | - Albert Bootsma
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children’s Hospital, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Peter Vreken
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children’s Hospital, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Albert H van Gennip
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children’s Hospital, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| | - Loran L Bieber
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824
| | - Ronald JA Wanders
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children’s Hospital, PO Box 22700, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
18
|
Abstract
Carnitine is indispensable for energy metabolism, since it enables activated fatty acids to enter the mitochondria, where they are broken down via beta-oxidation. Carnitine is probably present in all animal species, and in numerous micro-organisms and plants. In mammals, carnitine homoeostasis is maintained by endogenous synthesis, absorption from dietary sources and efficient tubular reabsorption by the kidney. This review aims to cover the current knowledge of the enzymological, molecular, metabolic and regulatory aspects of mammalian carnitine biosynthesis, with an emphasis on the human and rat.
Collapse
|
19
|
Abstract
Carnitine is indispensable for energy metabolism, since it enables activated fatty acids to enter the mitochondria, where they are broken down via beta-oxidation. Carnitine is probably present in all animal species, and in numerous micro-organisms and plants. In mammals, carnitine homoeostasis is maintained by endogenous synthesis, absorption from dietary sources and efficient tubular reabsorption by the kidney. This review aims to cover the current knowledge of the enzymological, molecular, metabolic and regulatory aspects of mammalian carnitine biosynthesis, with an emphasis on the human and rat.
Collapse
Affiliation(s)
- Frédéric M Vaz
- Laboratory for Genetic Metabolic Diseases, Departments of Clinical Chemistry and Paediatrics, Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
| | | |
Collapse
|
20
|
Vasiliou V, Pappa A, Petersen DR. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact 2000; 129:1-19. [PMID: 11154732 DOI: 10.1016/s0009-2797(00)00211-8] [Citation(s) in RCA: 290] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aldehydes are highly reactive molecules that are intermediates or products involved in a broad spectrum of physiologic, biologic and pharmacologic processes. Aldehydes are generated from chemically diverse endogenous and exogenous precursors and aldehyde-mediated effects vary from homeostatic and therapeutic to cytotoxic, and genotoxic. One of the most important pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs). Oxidation of the carbonyl functional group is considered a general detoxification process in that polymorphisms of several human ALDHs are associated a disease phenotypes or pathophysiologies. However, a number of ALDH-mediated oxidation form products that are known to possess significant biologic, therapeutic and/or toxic activities. These include the retinoic acid, an important element for vertebrate development, gamma-aminobutyric acid (GABA), an important neurotransmitter, and trichloroacetic acid, a potential toxicant. This review summarizes the ALDHs with an emphasis on catalytic properties and xenobiotic substrates of these enzymes.
Collapse
Affiliation(s)
- V Vasiliou
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | |
Collapse
|
21
|
Vaz FM, Fouchier SW, Ofman R, Sommer M, Wanders RJ. Molecular and biochemical characterization of rat gamma-trimethylaminobutyraldehyde dehydrogenase and evidence for the involvement of human aldehyde dehydrogenase 9 in carnitine biosynthesis. J Biol Chem 2000; 275:7390-4. [PMID: 10702312 DOI: 10.1074/jbc.275.10.7390] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The penultimate step in carnitine biosynthesis is mediated by gamma-trimethylaminobutyraldehyde dehydrogenase (EC 1.2.1.47), a cytosolic NAD(+)-dependent aldehyde dehydrogenase that converts gamma-trimethylaminobutyraldehyde into gamma-butyrobetaine. This enzyme was purified from rat liver, and two internal peptide fragments were sequenced by Edman degradation. The peptide sequences were used to search the Expressed Sequence Tag data base, which led to the identification of a rat cDNA containing an open reading frame of 1485 base pairs encoding a polypeptide of 494 amino acids with a calculated molecular mass of 55 kDa. Expression of the coding sequence in Escherichia coli confirmed that the cDNA encodes gamma-trimethylaminobutyraldehyde dehydrogenase. The previously identified human aldehyde dehydrogenase 9 (EC 1.2.1.19) has 92% identity with rat trimethylaminobutyraldehyde dehydrogenase and has been reported to convert substrates that resemble gamma-trimethylaminobutyraldehyde. When aldehyde dehydrogenase 9 was expressed in E. coli, it exhibited high trimethylaminobutyraldehyde dehydrogenase activity. Furthermore, comparison of the enzymatic characteristics of the heterologously expressed human and rat dehydrogenases with those of purified rat liver trimethylaminobutyraldehyde dehydrogenase revealed that the three enzymes have highly similar substrate specificities. In addition, the highest V(max)/K(m) values were obtained with gamma-trimethylaminobutyraldehyde as substrate. This indicates that human aldehyde dehydrogenase 9 is the gamma-trimethylaminobutyraldehyde dehydrogenase, which functions in carnitine biosynthesis.
Collapse
Affiliation(s)
- F M Vaz
- Laboratory for Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, P. O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Chern MK, Pietruszko R. Evidence for mitochondrial localization of betaine aldehyde dehydrogenase in rat liver: purification, characterization, and comparison with human cytoplasmic E3 isozyme. Biochem Cell Biol 1999. [DOI: 10.1139/o99-030] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Betaine aldehyde dehydrogenase has been purified to homogeneity from rat liver mitochondria. The properties of betaine aldehyde dehydrogenase were similar to those of human cytoplasmic E3 isozyme in substrate specificity and kinetic constants for substrates. The primary structure of four tryptic peptides was also similar; only two substitutions, at most, per peptide were observed. Thus, betaine aldehyde dehydrogenase is not a specific enzyme, as formerly believed; activity with betaine aldehyde is a property of aldehyde dehydrogenase (EC 1.2.1.3), which has broad substrate specificity. Up to the present time the enzyme was thought to be cytoplasmic in mammals. This report establishes, for the first time, mitochondrial subcellular localization for aldehyde dehydrogenase, which dehydrogenates betaine aldehyde, and its colocalization with choline dehydrogenase. Betaine aldehyde dehydrogenation is an important function in the metabolism of choline to betaine, a major osmolyte. Betaine is also important in mammalian organisms as a major methyl group donor and nitrogen source. This is the first purification and characterization of mitochondrial betaine aldehyde dehydrogenase from any mammalian species.Key words: betaine, aldehyde, dehydrogenase, mitochondria, rat liver.
Collapse
|
23
|
Izaguirre G, Kikonyogo A, Pietruszko R. Methylglyoxal as substrate and inhibitor of human aldehyde dehydrogenase: comparison of kinetic properties among the three isozymes. Comp Biochem Physiol B Biochem Mol Biol 1998; 119:747-54. [PMID: 9787766 DOI: 10.1016/s0305-0491(98)00051-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Methylglyoxal was demonstrated to be a substrate for the isozymes E1, E2 and E3 of human aldehyde dehydrogenase. Pyruvate was the product from the oxidation of methylglyoxal by the three isozymes. At pH 7.4 and 25 degrees C, the major and minor components of the E3 isozyme catalyzed the reaction with Vmax of 1.1 and 0.8 mumol NADH min-1 mg-1 protein, respectively, compared to 0.067 and 0.060 mumol NADH min-1 mg-1 protein for the E1 and E2 isozymes, respectively. The E2 isozyme had a K(m) for methylglyoxal of 8.6 microM, the lowest compared to 46 microM for E1 and 586 and 552 microM for the major and minor components of the E3 isozyme, respectively. Both components of the E3 isozyme showed substrate inhibition by methylglyoxal, with Ki values of 2.0 mM for the major component and 12 mM for the minor component at pH 9.0. Substrate inhibition by methylglyoxal was not observed with the E1 and E2 isozymes. Methylglyoxal strongly inhibited the glycolaldehyde activity of the E1 and E2 isozymes. Mixed-type models of inhibition were employed as an approach to calculate the inhibition constants, 44 and 10.6 microM for E1 and E2 isozymes, respectively.
Collapse
Affiliation(s)
- G Izaguirre
- Center of Alcohol Studies, Rutgers University, Piscataway, NJ 08854-8001, USA
| | | | | |
Collapse
|