1
|
Totani Y, Aonuma H, Oike A, Watanabe T, Hatakeyama D, Sakakibara M, Lukowiak K, Ito E. Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails. Front Behav Neurosci 2019; 13:65. [PMID: 31001093 PMCID: PMC6454038 DOI: 10.3389/fnbeh.2019.00065] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Molluscan gastropods have long been used for studying the cellular and molecular mechanisms underlying learning and memory. One such gastropod, the pond snail Lymnaea stagnalis, exhibits long-term memory (LTM) following both classical and operant conditioning. Using Lymnaea, we have successfully elucidated cellular mechanisms of learning and memory utilizing an aversive classical conditioning procedure, conditioned taste aversion (CTA). Here, we present the behavioral changes following CTA training and show that the memory score depends on the duration of food deprivation. Then, we describe the relationship between the memory scores and the monoamine contents of the central nervous system (CNS). A comparison of learning capability in two different strains of Lymnaea, as well as the filial 1 (F1) cross from the two strains, presents how the memory scores are correlated in these populations with monoamine contents. Overall, when the memory scores are better, the monoamine contents of the CNS are lower. We also found that as the insulin content of the CNS decreases so does the monoamine contents which are correlated with higher memory scores. The present review deepens the relationship between monoamine and insulin contents with the memory score.
Collapse
Affiliation(s)
- Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Akira Oike
- Department of Biology, Waseda University, Tokyo, Japan
| | - Takayuki Watanabe
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Harris CA, Buckley CL, Nowotny T, Passaro PA, Seth AK, Kemenes G, O'Shea M. Multi-neuronal refractory period adapts centrally generated behaviour to reward. PLoS One 2012; 7:e42493. [PMID: 22860134 PMCID: PMC3409166 DOI: 10.1371/journal.pone.0042493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/06/2012] [Indexed: 11/18/2022] Open
Abstract
Oscillating neuronal circuits, known as central pattern generators (CPGs), are responsible for generating rhythmic behaviours such as walking, breathing and chewing. The CPG model alone however does not account for the ability of animals to adapt their future behaviour to changes in the sensory environment that signal reward. Here, using multi-electrode array (MEA) recording in an established experimental model of centrally generated rhythmic behaviour we show that the feeding CPG of Lymnaea stagnalis is itself associated with another, and hitherto unidentified, oscillating neuronal population. This extra-CPG oscillator is characterised by high population-wide activity alternating with population-wide quiescence. During the quiescent periods the CPG is refractory to activation by food-associated stimuli. Furthermore, the duration of the refractory period predicts the timing of the next activation of the CPG, which may be minutes into the future. Rewarding food stimuli and dopamine accelerate the frequency of the extra-CPG oscillator and reduce the duration of its quiescent periods. These findings indicate that dopamine adapts future feeding behaviour to the availability of food by significantly reducing the refractory period of the brain's feeding circuitry.
Collapse
Affiliation(s)
- Christopher A. Harris
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail: (CAH); (MOS)
| | | | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Peter A. Passaro
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Anil K. Seth
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| | - György Kemenes
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Michael O'Shea
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail: (CAH); (MOS)
| |
Collapse
|
3
|
Rószer T, Kiss-Tóth E, Rózsa D, Józsa T, Szentmiklósi AJ, Bánfalvi G. Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons. Cell Tissue Res 2010; 342:191-203. [PMID: 20953631 DOI: 10.1007/s00441-010-1063-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 09/15/2010] [Indexed: 01/28/2023]
Abstract
Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.
Collapse
Affiliation(s)
- Tamás Rószer
- Department of Microbial Biotechnology and Cell Biology (formerly Animal Anatomy and Physiology), Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
4
|
Hatakeyama D, Mita K, Kobayashi S, Sadamoto H, Fujito Y, Hiripi L, Elekes K, Ito E. Glutamate transporters in the central nervous system of a pond snail. J Neurosci Res 2010; 88:1374-86. [PMID: 19937812 DOI: 10.1002/jnr.22296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies on glutamate (GLU) and its receptors in the pond snail Lymnaea stagnalis have suggested that GLU functions as a neurotransmitter in various behaviors, particularly for generation of feeding rhythm. The uptake mechanism of GLU is not yet known in Lymnaea. In the present study, we characterized the GLU transporters and examined their functions in the feeding circuits of the central nervous system (CNS) in Lymnaea. First, measurement of the accumulation of (3)H-labeled GLU revealed the presence of GLU transport systems in the Lymnaea CNS. The highest accumulation rate was observed in the buccal ganglia, supporting the involvement of GLU transport systems in feeding behavior. Second, we cloned two types of GLU transporters from the Lymnaea CNS, the excitatory amino acid transporter (LymEAAT) and the vesicular GLU transporter (LymVGLUT). When we compared their amino acid sequences with those of mammalian EAATs and VGLUTs, we found that the functional domains of both types are well conserved. Third, in situ hybridization revealed that the mRNAs of LymEAAT and LymVGLUT are localized in large populations of nerve cells, including the major feeding motoneurons in the buccal ganglia. Finally, we inhibited LymEAAT and found that changes in the firing patterns of the feeding motoneurons that have GLUergic input were similar to those obtained following stimulation with GLU. Our results confirmed the presence of GLU uptake systems in the Lymnaea CNS and showed that LymEAAT is required for proper rhythm generation, particularly for generation of the feeding rhythm.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sugai R, Azami S, Shiga H, Watanabe T, Sadamoto H, Kobayashi S, Hatakeyama D, Fujito Y, Lukowiak K, Ito E. One-trial conditioned taste aversion in Lymnaea: good and poor performers in long-term memory acquisition. ACTA ACUST UNITED AC 2007; 210:1225-37. [PMID: 17371921 DOI: 10.1242/jeb.02735] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the majority of studies designed to elucidate the causal mechanisms of memory formation, certain members of the experimental cohort, even though subjected to exactly the same conditioning procedures, remember significantly better than others, whereas others show little or no long-term memory (LTM) formation. To begin to address the question of why this phenomenon occurs and thereby help clarify the causal mechanism of LTM formation, we used a conditioned taste aversion (CTA) procedure on individuals of the pond snail Lymnaea stagnalis and analyzed their subsequent behavior. Using sucrose as an appetitive stimulus and KCl as an aversive stimulus, we obtained a constant ratio of ;poor' to ;good' performers for CTA-LTM. We found that approximately 40% of trained snails possessed LTM following a one-trial conditioning procedure. When we examined the time-window necessary for the memory consolidation, we found that if we cooled snails to 4 degrees C for 30 min within 10 min after the one-trial conditioning, LTM was blocked. However, with delayed cooling (i.e. longer than 10 min), LTM was present. We could further interfere with LTM formation by inducing inhibitory learning (i.e. backward conditioning) after the one-trial conditioning. Finally, we examined whether we could motivate snails to acquire LTM by depriving them of food for 5 days before the one-trial conditioning. Food-deprived snails, however, failed to exhibit LTM following the one-trial conditioning. These results will help us begin to clarify why some individuals are better at learning and forming memory for specific tasks at the neuronal level.
Collapse
Affiliation(s)
- Rio Sugai
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Background Recent work has indicated an increasingly complex role for astrocytes in the central nervous system. Astrocytes are now known to exchange information with neurons at synaptic junctions and to alter the information processing capabilities of the neurons. As an extension of this trend a hypothesis was proposed that astrocytes function to store information. To explore this idea the ion channels in biological membranes were compared to models known as cellular automata. These comparisons were made to test the hypothesis that ion channels in the membranes of astrocytes form a dynamic information storage device. Results Two dimensional cellular automata were found to behave similarly to ion channels in a membrane when they function at the boundary between order and chaos. The length of time information is stored in this class of cellular automata is exponentially related to the number of units. Therefore the length of time biological ion channels store information was plotted versus the estimated number of ion channels in the tissue. This analysis indicates that there is an exponential relationship between memory and the number of ion channels. Extrapolation of this relationship to the estimated number of ion channels in the astrocytes of a human brain indicates that memory can be stored in this system for an entire life span. Interestingly, this information is not affixed to any physical structure, but is stored as an organization of the activity of the ion channels. Further analysis of two dimensional cellular automata also demonstrates that these systems have both associative and temporal memory capabilities. Conclusion It is concluded that astrocytes may serve as a dynamic information sink for neurons. The memory in the astrocytes is stored by organizing the activity of ion channels and is not associated with a physical location such as a synapse. In order for this form of memory to be of significant duration it is necessary that the ion channels in the astrocyte syncytium be electrically in contact with each other. This function may be served by astrocyte gap junctions and suggests that agents that selectively block these gap junctions should disrupt memory.
Collapse
Affiliation(s)
- Robert M Caudle
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, Florida 32610, USA.
| |
Collapse
|
7
|
Hatakeyama D, Fujito Y, Sakakibara M, Ito E. Expression and distribution of transcription factor CCAAT/enhancer-binding protein in the central nervous system of Lymnaea stagnalis. Cell Tissue Res 2004; 318:631-41. [PMID: 15578275 DOI: 10.1007/s00441-004-0965-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/28/2004] [Indexed: 11/30/2022]
Abstract
The transcription factor, CCAAT/enhancer-binding protein (C/EBP), is involved in important physiological processes, such as cellular proliferation and differentiation, homeostasis, and higher-order functions of the brain. In the present study, we investigated the distribution of mRNA and protein of C/EBP in the central nervous system of the pond snail, Lymnaea stagnalis, by in situ hybridization and immunohistochemistry. Specificity of the anti-mammalian C/EBP antibody against Lymnaea C/EBP (LymC/EBP) was confirmed by combination of sodium dodecyl sulfate polyacrylamide gel electrophoresis or isoelectric focusing and immunoblotting. Cells positive for in situ hybridization were immunoreactive for LymC/EBP in all 11 ganglia. The motoneurons (B1, B2, B4, and B4 clusters) in the buccal ganglia and interneurons (cerebral giant cell, CGC) in the cerebral ganglia were positive for in situ hybridization and were immunopositive. In the pedal ganglion, the right pedal dorsal 1 (RPeD1), pedal A, and pedal C clusters exhibited positive signals of in situ hybridization and immunohistochemistry for LymC/EBP. CGC and RPeD1 are key neurons for associative learning. In addition, the neuropeptidergic cells in the cerebral, pleural, parietal, and visceral ganglia were positive for in situ hybridization and immunoreactive. Interestingly, although the cytoplasm of almost all immunopositive cells was stained, some neuropeptidergic cells located in the light parietal and visceral ganglia exhibited immunoreactivity in nuclei. Our results suggest that LymC/EBP is involved in learning and memory and in the expression and/or secretion of neuropeptides in Lymnaea.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, 060-0810, Sapporo, Hokkaido, Japan.
| | | | | | | |
Collapse
|
8
|
Wagatsuma A, Sugai R, Chono K, Azami S, Hatakeyama D, Sadamoto H, Itoi E. The early snail acquires the learning. Comparison of scores for conditioned taste aversion between morning and afternoon. ACTA BIOLOGICA HUNGARICA 2004; 55:149-55. [PMID: 15270229 DOI: 10.1556/abiol.55.2004.1-4.18] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The pond snail Lymnaea stagnalis acquires conditioned taste aversion (CTA) and maintains its memory for more than a month. Snails in our laboratory were cultured at 20 degrees C on a 12:12 light-dark cycle (light from 7 am to 7 pm). To examine the hours during which snails acquire CTA effectively, we trained some snails in the morning and others in the afternoon, and then compared their scores. CTA developed in both cases, but scores were significantly better in the morning than in the afternoon. To elucidate the cause of this difference in scores, we observed the voluntary activity of snails and found the circadian rhythm reflected in the snails' free-movement distances; distances at the circadian time 0-12 (daytime) were significantly longer than those at the circadian time 12-24 (nighttime). This rhythm was kept up for at least 3 days, even in constant darkness. In conclusion, L. stagnalis should be trained in the morning to acquire associative learning, possibly because of its greater propensity to roam about at that time as opposed to the afternoon.
Collapse
Affiliation(s)
- Akiko Wagatsuma
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Kinoshita M, Ueda R, Kojima S, Sato K, Watanabe M, Urano A, Ito E. Multiple-site optical recording for characterization of functional synaptic organization of the optic tectum of rainbow trout. Eur J Neurosci 2002; 16:868-76. [PMID: 12372023 DOI: 10.1046/j.1460-9568.2002.02160.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To map the functional synaptic organization over a wide area in the optic tectum, we directly monitored two-dimensional propagation of postsynaptic depolarization evoked by firing of retinotectal afferents in optic tectum slices prepared from rainbow trout (Oncorhynchus mykiss), using a voltage-sensitive dye and a photodiode array system. The postsynaptic responses to afferent stimulation first propagated in the stratum opticum and stratum fibrosum et griseum superficiale in an anterograde fashion in the afferents and then expanded vertically into the deep layers. This vertical propagation appeared to occur along a bundle-like structure that corresponded well with a cluster of neurons whose somata are located in the stratum periventriculare. Pharmacological studies showed that these postsynaptic responses were mediated by ionotropic glutamate receptors. On the other hand, the optical signals appeared to consist of at least two components (a transient signal and a slow signal). The second transient signal summated with the first slow signal by paired stimulation, suggesting that the transient and slow signals originated from different cell types. Taken together, these results showed that the functional synaptic organization of the teleost optic tectum comprises of two depolarization-signal propagating paths along a horizontal layer structure and a vertical bundle-like structure and that these synaptic responses occur via glutamatergic transmission.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Kojima S, Hosono T, Fujito Y, Ito E. Optical detection of neuromodulatory effects of conditioned taste aversion in the pond snail Lymnaea stagnalis. JOURNAL OF NEUROBIOLOGY 2001; 49:118-28. [PMID: 11598919 DOI: 10.1002/neu.1069] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple site optical recording was used to analyze the neural activity changes caused by conditioned taste aversion (CTA) training in the pond snail Lymnaea stagnalis. In response to electrical stimulation of the median lip nerve, which transmits chemosensory signals of appetitive taste to the central nervous system, we optically detected large numbers of spikes in several parts of the buccal ganglion. The effects of CTA training on the spike responses were examined in two areas of the ganglion where the most active neural responses occurred. In one area (termed Area I) that included the N1 medial (N1M) cells, a class of central pattern generator interneurons involved in feeding behavior, the number of spikes in a period 1500-2000 ms after median lip nerve stimulation was significantly reduced in conditioned animals compared to control animals. In another area (termed Area II) positioned between buccal motoneurons, the B3 and B4CL (cluster) cells, the evoked spike responses were unaffected by CTA training. These results, taken together with our previous results indicating an enhancement of an inhibitory input to the N1M cells during CTA, suggest that an appetitive taste signal transmitted to the N1M cells through the median lip nerves is suppressed during CTA, resulting in a decrease of the feeding response.
Collapse
Affiliation(s)
- S Kojima
- Laboratory of Animal Behavior and Intelligence, Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|