1
|
Pérez-Aguilar B, Marquardt JU, Muñoz-Delgado E, López-Durán RM, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Gómez-Olivares JL. Changes in the Acetylcholinesterase Enzymatic Activity in Tumor Development and Progression. Cancers (Basel) 2023; 15:4629. [PMID: 37760598 PMCID: PMC10526250 DOI: 10.3390/cancers15184629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Acetylcholinesterase is a well-known protein because of the relevance of its enzymatic activity in the hydrolysis of acetylcholine in nerve transmission. In addition to the catalytic action, it exerts non-catalytic functions; one is associated with apoptosis, in which acetylcholinesterase could significantly impact the survival and aggressiveness observed in cancer. The participation of AChE as part of the apoptosome could explain the role in tumors, since a lower AChE content would increase cell survival due to poor apoptosome assembly. Likewise, the high Ach content caused by the reduction in enzymatic activity could induce cell survival mediated by the overactivation of acetylcholine receptors (AChR) that activate anti-apoptotic pathways. On the other hand, in tumors in which high enzymatic activity has been observed, AChE could be playing a different role in the aggressiveness of cancer; in this review, we propose that AChE could have a pro-inflammatory role, since the high enzyme content would cause a decrease in ACh, which has also been shown to have anti-inflammatory properties, as discussed in this review. In this review, we analyze the changes that the enzyme could display in different tumors and consider the different levels of regulation that the acetylcholinesterase undergoes in the control of epigenetic changes in the mRNA expression and changes in the enzymatic activity and its molecular forms. We focused on explaining the relationship between acetylcholinesterase expression and its activity in the biology of various tumors. We present up-to-date knowledge regarding this fascinating enzyme that is positioned as a remarkable target for cancer treatment.
Collapse
Affiliation(s)
- Benjamín Pérez-Aguilar
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | - Jens U. Marquardt
- Department of Medicine I, University of Lübeck, 23562 Lübeck, Germany;
| | | | - Rosa María López-Durán
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| | - María Concepción Gutiérrez-Ruiz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - Luis E. Gomez-Quiroz
- Area de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico; (B.P.-A.); (M.C.G.-R.)
| | - José Luis Gómez-Olivares
- Laboratorio de Biomembranas, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09310, Mexico;
| |
Collapse
|
2
|
Studzińska-Sroka E, Majchrzak-Celińska A, Zalewski P, Szwajgier D, Baranowska-Wójcik E, Kaproń B, Plech T, Żarowski M, Cielecka-Piontek J. Lichen-Derived Compounds and Extracts as Biologically Active Substances with Anticancer and Neuroprotective Properties. Pharmaceuticals (Basel) 2021; 14:ph14121293. [PMID: 34959693 PMCID: PMC8704315 DOI: 10.3390/ph14121293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023] Open
Abstract
Lichens are a source of chemical compounds with valuable biological properties, structurally predisposed to penetration into the central nervous system (CNS). Hence, our research aimed to examine the biological potential of lipophilic extracts of Parmelia sulcata, Evernia prunastri, Cladonia uncialis, and their major secondary metabolites, in the context of searching for new therapies for CNS diseases, mainly glioblastoma multiforme (GBM). The extracts selected for the study were standardized for their content of salazinic acid, evernic acid, and (−)-usnic acid, respectively. The extracts and lichen metabolites were evaluated in terms of their anti-tumor activity, i.e., cytotoxicity against A-172 and T98G cell lines and anti-IDO1, IDO2, TDO activity, their anti-inflammatory properties exerted by anti-COX-2 and anti-hyaluronidase activity, antioxidant activity, and anti-acetylcholinesterase and anti-butyrylcholinesterase activity. The results of this study indicate that lichen-derived compounds and extracts exert significant cytotoxicity against GBM cells, inhibit the kynurenine pathway enzymes, and have anti-inflammatory properties and weak antioxidant and anti-cholinesterase properties. Moreover, evernic acid and (−)-usnic acid were shown to be able to cross the blood-brain barrier. These results demonstrate that lichen-derived extracts and compounds, especially (−)-usnic acid, can be regarded as prototypes of pharmacologically active compounds within the CNS, especially suitable for the treatment of GBM.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
- Correspondence:
| | - Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49, 60-355 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcickiego 4, 60-781 Poznan, Poland; (P.Z.); (J.C.-P.)
| |
Collapse
|
3
|
Butyrylcholinesterase-Protein Interactions in Human Serum. Int J Mol Sci 2021; 22:ijms221910662. [PMID: 34639003 PMCID: PMC8508650 DOI: 10.3390/ijms221910662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Measuring various biochemical and cellular components in the blood is a routine procedure in clinical practice. Human serum contains hundreds of diverse proteins secreted from all cells and tissues in healthy and diseased states. Moreover, some serum proteins have specific strong interactions with other blood components, but most interactions are probably weak and transient. One of the serum proteins is butyrylcholinesterase (BChE), an enzyme existing mainly as a glycosylated soluble tetramer that plays an important role in the metabolism of many drugs. Our results suggest that BChE interacts with plasma proteins and forms much larger complexes than predicted from the molecular weight of the BChE tetramer. To investigate and isolate such complexes, we developed a two-step strategy to find specific protein–protein interactions by combining native size-exclusion chromatography (SEC) with affinity chromatography with the resin that specifically binds BChE. Second, to confirm protein complexes′ specificity, we fractionated blood serum proteins by density gradient ultracentrifugation followed by co-immunoprecipitation with anti-BChE monoclonal antibodies. The proteins coisolated in complexes with BChE were identified by mass spectroscopy. These binding studies revealed that BChE interacts with a number of proteins in the human serum. Some of these interactions seem to be more stable than transient. BChE copurification with ApoA-I and the density of some fractions containing BChE corresponding to high-density lipoprotein cholesterol (HDL) during ultracentrifugation suggest its interactions with HDL. Moreover, we observed lower BChE plasma activity in individuals with severely reduced HDL levels (≤20 mg/dL). The presented two-step methodology for determination of the BChE interactions can facilitate further analysis of such complexes, especially from the brain tissue, where BChE could be involved in the pathogenesis and progression of AD.
Collapse
|
4
|
Kochkina EG, Plesneva SA, Zhuravin IA, Turner AJ, Nalivaeva NN. Effect of hypoxia on cholinesterase activity in rat sensorimotor cortex. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015020039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Chen VP, Luk WKW, Chan WKB, Leung KW, Guo AJY, Chan GKL, Xu SL, Choi RCY, Tsim KWK. Molecular Assembly and Biosynthesis of Acetylcholinesterase in Brain and Muscle: the Roles of t-peptide, FHB Domain, and N-linked Glycosylation. Front Mol Neurosci 2011; 4:36. [PMID: 22046147 PMCID: PMC3200509 DOI: 10.3389/fnmol.2011.00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 10/10/2011] [Indexed: 11/13/2022] Open
Abstract
Acetylcholinesterase (AChE) is responsible for the hydrolysis of the neurotransmitter, acetylcholine, in the nervous system. The functional localization and oligomerization of AChE T variant are depending primarily on the association of their anchoring partners, either collagen tail (ColQ) or proline-rich membrane anchor (PRiMA). Complexes with ColQ represent the asymmetric forms (A(12)) in muscle, while complexes with PRiMA represent tetrameric globular forms (G(4)) mainly found in brain and muscle. Apart from these traditional molecular forms, a ColQ-linked asymmetric form and a PRiMA-linked globular form of hybrid cholinesterases (ChEs), having both AChE and BChE catalytic subunits, were revealed in chicken brain and muscle. The similarity of various molecular forms of AChE and BChE raises interesting question regarding to their possible relationship in enzyme assembly and localization. The focus of this review is to provide current findings about the biosynthesis of different forms of ChEs together with their anchoring proteins.
Collapse
Affiliation(s)
- Vicky P Chen
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen VP, Xie HQ, Chan WKB, Leung KW, Chan GKL, Choi RCY, Bon S, Massoulié J, Tsim KWK. The PRiMA-linked cholinesterase tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain. J Biol Chem 2010; 285:27265-27278. [PMID: 20566626 DOI: 10.1074/jbc.m110.113647] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acetylcholinesterase (AChE) is anchored onto cell membranes by the transmembrane protein PRiMA (proline-rich membrane anchor) as a tetrameric globular form that is prominently expressed in vertebrate brain. In parallel, the PRiMA-linked tetrameric butyrylcholinesterase (BChE) is also found in the brain. A single type of AChE-BChE hybrid tetramer was formed in cell cultures by co-transfection of cDNAs encoding AChE(T) and BChE(T) with proline-rich attachment domain-containing proteins, PRiMA I, PRiMA II, or a fragment of ColQ having a C-terminal GPI addition signal (Q(N-GPI)). Using AChE and BChE mutants, we showed that AChE-BChE hybrids linked with PRiMA or Q(N-GPI) always consist of AChE(T) and BChE(T) homodimers. The dimer formation of AChE(T) and BChE(T) depends on the catalytic domains, and the assembly of tetramers with a proline-rich attachment domain-containing protein requires the presence of C-terminal "t-peptides" in cholinesterase subunits. Our results indicate that PRiMA- or ColQ-linked cholinesterase tetramers are assembled from AChE(T) or BChE(T) homodimers. Moreover, the PRiMA-linked AChE-BChE hybrids occur naturally in chicken brain, and their expression increases during development, suggesting that they might play a role in cholinergic neurotransmission.
Collapse
Affiliation(s)
- Vicky P Chen
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Heidi Q Xie
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wallace K B Chan
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - K Wing Leung
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gallant K L Chan
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Roy C Y Choi
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Suzanne Bon
- CNRS-UMR 8197, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France
| | - Jean Massoulié
- CNRS-UMR 8197, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France
| | - Karl W K Tsim
- Department of Biology and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
7
|
García-Ayllón MS, Riba-Llena I, Serra-Basante C, Alom J, Boopathy R, Sáez-Valero J. Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS One 2010; 5:e8701. [PMID: 20090844 PMCID: PMC2806824 DOI: 10.1371/journal.pone.0008701] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/18/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE) in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE) pose a major problem. PRINCIPAL FINDINGS Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were approximately 20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G(1)+G(2) forms and not G(4) tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF) and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer's disease (AD) patients compared to age and gender-matched controls. This increase correlates with an increase in the G(1)+G(2) forms, the subset of AChE species which are increased in Alzheimer's brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer's plasma, attributed in part to AChE-T subunits common in brain and CSF. CONCLUSION Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.
Collapse
Affiliation(s)
- María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Iolanda Riba-Llena
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Servicio de Neurología, Hospital General Universitario de Elche, Alicante, Spain
| | - Carol Serra-Basante
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jordi Alom
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Servicio de Neurología, Hospital General Universitario de Elche, Alicante, Spain
| | - Rathnam Boopathy
- Department of Biotechnology, Bharathiar University, Tamil Nadu, India
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Fernández-Gómez FJ, Muñoz-Delgado E, Montenegro MF, Campoy FJ, Vidal CJ, Jordán J. Cholinesterase activity in brain of senescence-accelerated-resistant mouse SAMR1 and its variation in brain of senescence-accelerated-prone mouse SAMP8. J Neurosci Res 2009; 88:155-66. [DOI: 10.1002/jnr.22177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Syed M, Fenoglio-Preiser C, Skau KA, Weber GF. Acetylcholinesterase supports anchorage independence in colon cancer. Clin Exp Metastasis 2008; 25:787-98. [PMID: 18612832 DOI: 10.1007/s10585-008-9192-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 06/19/2008] [Indexed: 11/24/2022]
Abstract
Various roles have been attributed to Acetylcholinesterase (AChE) in cancer. Evidence exists for a pro-apoptotic function, consistent with a protective role of AChE. Because other reports suggested that upregulated AChE in some tumors may control cell adhesion, we tested the effects of AChE on anchorage independence (an essential component of metastasis) of colon tumor cells. Several AChE inhibitors dose-dependently suppressed colony formation of HTB-38 cells in soft agar. This effect of AChE was confirmed with HTB-38 cells stably overexpressing AChE. In contrast, cell proliferation was not altered by the effective doses of these chemical inhibitors or by transfected AChE. Protection from cell cycle arrest consecutive to cancer cell detachment may be conveyed by changes in cell-matrix interactions. Reflective of such changes, the AChE overexpressing cells adhered more strongly to Fibronectin than did the vector controls. The AChE-dependent adhesion was RGD-dependent and accompanied by increased c-Myb DNA-binding, suggesting that AChE upregulates an Integrin receptor via c-Myb. In support of these observations, we find AChE message and protein to be expressed in a large fraction of colon cancers and in all colon tumor cell lines analyzed, but only rarely in normal colon specimens. Our results imply a dual role for AChE in colon cancer. While the anti-apoptotic effects of AChE may be protective against early stages of tumorigenesis, this gene product may support the later stages of transformation by enhancing anchorage independent growth. The induction of Integrins could render the cells independent of microenvironmental cues and override cell cycle arrest after deadhesion.
Collapse
Affiliation(s)
- Moyeenuddin Syed
- College of Pharmacy, University of Cincinnati Academic Health Center, 3225 Eden Avenue, Cincinnati, OH 45267-0004, USA
| | | | | | | |
Collapse
|
10
|
Muñoz-Delgado E, Montenegro MF, Morote-García JC, Campoy FJ, Cabezas-Herrera J, Kovacs G, Vidal CJ. The expression of cholinesterases in human renal tumours varies according to their histological types. Chem Biol Interact 2008; 175:340-2. [PMID: 18482720 DOI: 10.1016/j.cbi.2008.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 11/29/2022]
Abstract
The change in the expression of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities in neoplastic colon and lung prompted us to study the possible effect of cancer on the expression of cholinesterases (ChEs) in kidney. Samples of papillary renal cell carcinoma (pRCC), conventional RCC (cRCC), chromophobe RCC (chRCC) and renal oncocytoma (RON), beside adjacent non-cancerous tissues, were analyzed. In pRCC both AChE and BuChE activities were statistically increased; in cRCC and chRCC only AChE activity increased and in RON neither AChE nor BuChE activities were affected. Abundant amphiphilic AChE dimers (G(2)(A)) and fewer monomers (G(1)(A)) were identified in healthy kidney as well as in all tumour classes. Incubation with PIPLC revealed glycosylphosphatidylinositol in AChE forms. BuChE is distributed between principal G(4)(H), fewer G(1)(H), and much fewer G(4)(A) and G(1)(A) species. RT-PCR showed similar amounts of AChE-H, AChE-T and BuChE mRNAs in healthy kidney. Their levels increased in pRCC but not in the other tumour types. The data support the idea that, as in lung tumours, in renal carcinomas expression of ChE mRNAs, biosynthesis of molecular components and level of enzyme activity change according to the specific kind of cell from which tumours arise.
Collapse
Affiliation(s)
- Encarnación Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Although the involvement of cholinesterases (ChEs) in the removal of acetylcholine (ACh) at cholinergic synapses is firmly established, there is evidence to suggest that acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) take part in several cellular processes. The early expression of ChE genes during embryonic development and their role in morphogenesis and apoptosis have been explained on the basis of the non-cholinergic actions of ChEs. In addition, the effects of AChE and BuChE, their inhibitors and antisense oligonucleotides in proliferating cellular systems, together with the mitogenic actions of ACh, support a role for ChEs in cell cycle control. The anomalous expression of ChEs may increase cell proliferation and contribute to cancer growth or development. The aim of this report is to compile the available information on ChEs in cancerous tissues in order to stimulating the research to clarify the molecular mechanisms by which ChEs may participate in cancer. Future investigations may throw light into this intriguing issue which will be of benefit to humankind.
Collapse
Affiliation(s)
- Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Apdo. 4021, E-30071 Murcia, Spain.
| |
Collapse
|
12
|
Ruiz-Espejo F, Cabezas-Herrera J, Illana J, Campoy FJ, Muñoz-Delgado E, Vidal CJ. Breast cancer metastasis alters acetylcholinesterase activity and the composition of enzyme forms in axillary lymph nodes. Breast Cancer Res Treat 2003; 80:105-14. [PMID: 12889604 DOI: 10.1023/a:1024461108704] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Because of the probable involvement of cholinesterases (ChEs) in tumorigenesis, this research was addressed to ascertaining whether breast cancer metastasis alters the content of acetylcholinesterase (AChE) and/or butyrylcholinesterase (BuChE) in axillary lymph nodes (LN). ChE activity was assayed in nine normal (NLN) and seven metastasis-bearing nodes (MLN) from women. AChE and BuChE forms were characterised by sedimentation analyses, hydrophobic chromatography and western blotting. The origin of ChEs in LN was studied by lectin interaction. AChE activity dropped from 21.6 mU/mg (nmol of the substrate hydrolysed per minute and per milligram protein) in NLN to 3.8 mU/mg in MLN (p < 0.001), while BuChE activity (3.6 mU/mg) was little affected. NLN contained globular amphiphilic AChE dimers (G2A, 35%), monomers (G1A, 30%), hydrophilic tetramers (G4H, 8%), and asymmetric species (A4, 23%, and A8, 4%); MLN displayed only G2A (65%) and G1A (35%) AChE forms. NLN and MLN contained G4H (79%), G4A (7%), and G1H (14%) BuChE components. Neither the binding of ChE forms with lectins and antibodies nor the subunit size were altered by metastasis. The higher level of AChE in NLN than in brain and the specific pattern of AChE forms in NLN support its role in immunity. The different profile of AChE forms in NLN and MLN may be useful for diagnosis.
Collapse
Affiliation(s)
- Francisco Ruiz-Espejo
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | |
Collapse
|