1
|
Dent CL, Humby T, Lewis K, Plagge A, Fischer-Colbrie R, Wilkins JF, Wilkinson LS, Isles AR. Impulsive choices in mice lacking imprinted Nesp55. GENES BRAIN AND BEHAVIOR 2016; 15:693-701. [PMID: 27509352 DOI: 10.1111/gbb.12316] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Genomic imprinting is the process whereby germline epigenetic events lead to parent-of-origin specific monallelic expression of a number of key mammalian genes. The imprinted gene Nesp is expressed from the maternal allele only and encodes for Nesp55 protein. In the brain, Nesp55 is found predominately in discrete areas of the hypothalamus and midbrain. Previously, we have shown that loss of Nesp55 gives rise to alterations in novelty-related behaviour. Here, we extend these findings and demonstrate, using the Nespm/+ mouse model, that loss of Nesp55 leads to impulsive choices as measured by a delayed-reinforcement task, whereby Nespm/+ mice were less willing to wait for a delayed, larger reward, preferring instead to choose an immediate, smaller reward. These effects were highly specific as performance in another component of impulsive behaviour, the ability to stop a response once started as assayed in the stop-signal reaction time task, was equivalent to controls. We also showed changes in the serotonin system, a key neurotransmitter pathway mediating impulsive behaviour. First, we demonstrated that Nesp55 is co-localized with serotonin and then went on to show that in midbrain regions there were reductions in mRNA expression of the serotonin-specific genes Tph2 and Slc6a4, but not the dopamine-specific gene Th in Nespm/+ mice; suggesting an altered serotonergic system could contribute, in part, to the changes in impulsive behaviour. These data provide a novel mode of action for genomic imprinting in the brain and may have implications for pathological conditions characterized by maladaptive response control.
Collapse
Affiliation(s)
- C L Dent
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| | - T Humby
- Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - K Lewis
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| | - A Plagge
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - R Fischer-Colbrie
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | - L S Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute.,Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - A R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute
| |
Collapse
|
2
|
Gupta M, Lloyd RV, Fischer-Colbrie R, Tischler AS, Dayal Y. Immunohistochemical expression of neuroendocrine secretory protein-55 (NESP-55) in pituitary adenomas. Endocr Pathol 2011; 22:150-4. [PMID: 21584660 DOI: 10.1007/s12022-011-9162-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuroendocrine secretory protein-55 (NESP-55) is a recently described member of the chromogranin family and appears to be a marker of the constitutive secretory pathway in certain neural, neuroendocrine, and endocrine cell types. It has been shown to be selectively expressed in tumors differentiating towards the adrenal chromaffin and pancreatic islet cell phenotypes. The highest levels of NESP-55 expression, at least in animals, appear to be in the adrenal medulla and the pituitary gland. However, very little is known about the status of NESP-55 expression in pituitary adenomas. We therefore studied the immunohistochemical profile of NESP-55 expression in a series of 30 well-characterized pituitary adenomas (five each of FSH/LH and ACTH, four GH, three TSH, seven prolactin, and six null cells). All tumors were positive for one or more generic marker(s) (chromogranin A, synaptophysin, neuron-specific enolase) of neuroendocrine differentiation. All pituitary adenomas selected for study were stained for NESP-55 with appropriate positive and negative controls. NESP-55 immunoreactivity, seen as brown finely granular cytoplasmic staining of the tumor cells with prominent perinuclear accentuation, was graded as focal (<10% tumor cells staining), moderate (10-50% tumor cells staining), and diffuse (>50% tumor cell staining). Four of seven prolactinomas were positive for NESP-55 (one focal, two moderate, and one diffuse). Two of four GH adenomas were also positive (one focal and one diffuse) while only 1/5 FSH tumors showed a moderately intense immunoreactivity. All other pituitary adenomas were completely negative for NESP-55. Our results indicate that, in human pituitary adenomas, NESP-55 has a more restricted pattern of expression than that of chromogranins A and B. Since immunohistochemical expression of NESP-55 is largely confined to prolactinomas and GH adenomas, it raises the possibility that NESP-55 may somehow be involved in the secretory pathways of these specific cell types.
Collapse
Affiliation(s)
- Mamta Gupta
- Department of Pathology, Johns Hopkins Medical Center, Weinberg 2268 East Baltimore Campus 401 N Broadway, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
3
|
Bastepe M. The GNAS Locus: Quintessential Complex Gene Encoding Gsalpha, XLalphas, and other Imprinted Transcripts. Curr Genomics 2011; 8:398-414. [PMID: 19412439 PMCID: PMC2671723 DOI: 10.2174/138920207783406488] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 09/22/2007] [Accepted: 09/28/2007] [Indexed: 12/14/2022] Open
Abstract
The currently estimated number of genes in the human genome is much smaller than previously predicted. As an explanation for this disparity, most individual genes have multiple transcriptional units that represent a variety of biologically important gene products. GNAS exemplifies a gene of such complexity. One of its products is the alpha-subunit of the stimulatory heterotrimeric G protein (Gsalpha), a ubiquitous signaling protein essential for numerous different cellular responses. Loss-of-function and gain-of-function mutations within Gsalpha-coding GNAS exons are found in various human disorders, including Albright's hereditary osteodystrophy, pseudohypoparathyroidism, fibrous dysplasia of bone, and some tumors of different origin. While Gsalpha expression in most tissues is biallelic, paternal Gsalpha expression is silenced in a small number of tissues, playing an important role in the development of phenotypes associated with GNAS mutations. Additional products derived exclusively from the paternal GNAS allele include XLalphas, a protein partially identical to Gsalpha, and two non-coding RNA molecules, the A/B transcript and the antisense transcript. The maternal GNAS allele leads to NESP55, a chromogranin-like neuroendocrine secretory protein. In vivo animal models have demonstrated the importance of each of the exclusively imprinted GNAS products in normal mammalian physiology. However, although one or more of these products are also disrupted by most naturally occurring GNAS mutations, their roles in disease pathogenesis remain unknown. To further our understanding of the significance of this gene in physiology and pathophysiology, it will be important to elucidate the cellular roles and the mechanisms regulating the expression of each GNAS product.
Collapse
Affiliation(s)
- Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Hedborg F, Fischer-Colbrie R, Ostlin N, Sandstedt B, Tran MGB, Maxwell PH. Differentiation in neuroblastoma: diffusion-limited hypoxia induces neuro-endocrine secretory protein 55 and other markers of a chromaffin phenotype. PLoS One 2010; 5. [PMID: 20862257 PMCID: PMC2941466 DOI: 10.1371/journal.pone.0012825] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 08/23/2010] [Indexed: 01/07/2023] Open
Abstract
Background Neuroblastoma is a childhood malignancy of sympathetic embryonal origin. A high potential for differentiation is a hallmark of neuroblastoma cells. We have previously presented data to suggest that in situ differentiation in tumors frequently proceeds along the chromaffin lineage and that decreased oxygen (hypoxia) plays a role in this. Here we explore the utility of Neuro-Endocrine Secretory Protein 55 (NESP55), a novel member of the chromogranin family, as a marker for this process. Methodology/Principal Findings Immunohistochemical analyses and in situ hybridizations were performed on human fetal tissues, mouse xenografts of human neuroblastoma cell lines, and on specimens of human neuroblastoma/ganglioneuroma. Effects of anaerobic exposure on gene expression by cultured neuroblastoma cells was analyzed with quantitative real-time PCR. Fetal sympathetic nervous system expression of NESP55 was shown to be specific for chromaffin cell types. In experimental and clinical neuroblastoma NESP55 immunoreactivity was specific for regions of chronic hypoxia. NESP55 expression also correlated strikingly with morphological evidence of differentiation and with other chromaffin-specific patterns of gene expression, including IGF2 and HIF2α. Anaerobic culture of five neuroblastoma cell lines resulted in an 18.9-fold mean up-regulation of NESP55. Conclusions/Significance The data confirms that chronic tumor hypoxia is a key microenvironmental factor for neuroblastoma cell differentiation, causing induction of chromaffin features and NESP55 provides a reliable marker for this neuronal to neuroendocrine transition. The hypoxia-induced phenotype is the predominant form of differentiation in stroma-poor tumors, while in stroma-rich tumors the chromaffin phenotype coexists with ganglion cell-like differentiation. The findings provide new insights into the biological diversity which is a striking feature of this group of tumors.
Collapse
Affiliation(s)
- Fredrik Hedborg
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
5
|
Dahlstrom AB. Fast intra-axonal transport: Beginning, development and post-genome advances. Prog Neurobiol 2010; 90:119-45. [DOI: 10.1016/j.pneurobio.2009.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 01/02/2023]
|
6
|
Li Y, Dahlström A. Peripheral projections of NESP55 containing neurons in the rat sympathetic ganglia. Auton Neurosci 2008; 141:1-9. [PMID: 18539096 DOI: 10.1016/j.autneu.2008.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/07/2008] [Accepted: 03/20/2008] [Indexed: 12/26/2022]
Abstract
The peripheral projections of neurons expressing neuroendocrine secretory protein 55 (NESP55), a novel member of the chromogranin family, were studied by retrograde tracing technique. It was found that NESP55 positive neurons in the rat superior cervical ganglion projected to a number of targets including the submandibular gland, the cervical lymph nodes, the forehead skin, the iris, but not to the thyroid. Among these NESP55 positive target-projecting neurons, a subpopulation contained neuropeptide Y (NPY), a vasoconstrictor. Forepaw pad projecting neurons were found exclusively in the stellate ganglion, almost all of which (approximately 90%) were immunoreactive to NESP55. Colocalization of NESP55 and calcitonin gene-related peptide (CGRP), a peptide involved in sudomotor effects, was observed in a subpopulation of these paw pad projecting neurons, as was colocalization of NESP55 and NPY. The data suggest that NESP55 may have a functional role in some populations of sympathetic neurons.
Collapse
Affiliation(s)
- Yongling Li
- Department of Anatomy and Cell Biology, Institute of Biomedicine, Göteborg University, Box 420, SE-405 30 Göteborg, Sweden.
| | - Annica Dahlström
- Department of Anatomy and Cell Biology, Institute of Biomedicine, Göteborg University, Box 420, SE-405 30 Göteborg, Sweden
| |
Collapse
|
7
|
Li Y, Wang Z, Dahlström A. Neuroendocrine secretory protein 55 (NESP55) immunoreactivity in male and female rat superior cervical ganglion and other sympathetic ganglia. Auton Neurosci 2007; 132:52-62. [PMID: 17185044 DOI: 10.1016/j.autneu.2006.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 10/19/2006] [Accepted: 10/19/2006] [Indexed: 11/29/2022]
Abstract
Neuroendocrine secretory protein 55 (NESP55) is a soluble, acidic and heat-stable protein, belonging to the class of chromogranins. It is expressed specifically in endocrine cells and the nervous system, and is probably involved in both constitutive and regulated secretion. In the present study, we investigated the distribution of NESP55 in various rat sympathetic ganglia by immunohistochemistry. The expression of NESP55-IR was detected in a subpopulation of principal neurons in the rat SCG, which was also TH positive, and, thus, adrenergic. In the rat stellate ganglion, more than two thirds of NESP55 positive neurons were adrenergic. Colocalization of NESP55 and calcitonin gene-related peptide (CGRP) in cholinergic neurons was also observed. In the rat thoracic chain, however, the majority of NESP55 positive neurons appeared to lack TH. No detectable NESP55-IR was found in the mouse SCG. Furthermore, in the sexually dimorphic SCG, it was demonstrated that, 80% of the NESP55 positive principal neurons were also NPY positive in the male rat, while a slightly higher, but statistically significant proportion, 87%, was found in the female. Whether or not this small difference is physiologically significant is unknown. The present data provide basic knowledge about the expression of NESP55 in the sympathetic autonomic nervous system of rat, which may further our understanding of the functional significance of NESP55.
Collapse
Affiliation(s)
- Yongling Li
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Göteborg, Box 420, SE-405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
8
|
Li Y, Fischer-Colbrie R, Dahlström A. Neuroendocrine secretory protein 55 (NESP55) in the spinal cord of rat: An immunocytochemical study. J Comp Neurol 2007; 506:733-44. [DOI: 10.1002/cne.21562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Plagge A, Kelsey G. Imprinting the Gnas locus. Cytogenet Genome Res 2006; 113:178-87. [PMID: 16575178 DOI: 10.1159/000090830] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 11/14/2005] [Indexed: 12/14/2022] Open
Abstract
Gnas is an enigmatic and rather complex imprinted gene locus. A single transcription unit encodes three, and possibly more, distinct proteins. These are determined by overlapping transcripts from alternative promoters with different patterns of imprinting. The canonical Gnas transcript codes for Gsalpha, a highly conserved signalling protein and an essential intermediate in growth, differentiation and homeostatic pathways. Monoallelic expression of Gnas is highly tissue-restricted. The alternative transcripts encode XLalphas, an unusual variant of Gsalpha, and the chromogranin-like protein Nesp55. These transcripts are expressed specifically from the paternal and maternal chromosomes, respectively. Their existence in the Gnas locus might imply functional connections amongst them or with Gsalpha. In this review, we consider how imprinting of Gnas was discovered, the phenotypic consequences of mutations in each of the gene products, both in the mouse and human, and provide some conjectures to explain why this elaborate imprinted locus has evolved in this manner in mammals.
Collapse
Affiliation(s)
- A Plagge
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| | | |
Collapse
|
10
|
Helle KB. The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 2005; 79:769-94. [PMID: 15682870 DOI: 10.1017/s146479310400644x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The chromogranins A (CgA) and B (CgB) and secretogranin II (SgII) constitute the main members of a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These genetically distinct proteins, CgA, CgB, SgII and the less well known secretogranins III-VII are collectively referred to as 'granins' and characterised by numerous pairs of basic amino acids as potential cleavage sites for processing by the co-stored prohormone converting enzymes PC 1/3 and PC2. This review is directed towards comparative and functional aspects of the granins with emphasis on their phylogenetically conserved sequences. Recent developments provide ample evidence of widely different effects and targets for the intact granins and their derived peptides, intracellularly in the directed trafficking of storage components during granule maturation and extracellularly in autocrine, paracrine and endocrine interactions. Most of the effects assigned to the granin derived peptides fit into patterns of direct or indirect inhibitory modulations of major functions. So far, peptides derived from CgA (vasostatins, chromacin, pancreastatin, WE-14, catestatin and parastatin), CgB (secretolytin) and SgII (secretoneurin) are the most likely candidates for granin-derived regulatory peptides, of postulated relevance not only for homeostatic processes, but also for tissue assembly and repair, inflammatory responses and the first line of defence against invading microorganisms.
Collapse
Affiliation(s)
- Karen B Helle
- Department of Biomedicine, Division of Physiology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
11
|
Plagge A, Isles AR, Gordon E, Humby T, Dean W, Gritsch S, Fischer-Colbrie R, Wilkinson LS, Kelsey G. Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol 2005; 25:3019-26. [PMID: 15798190 PMCID: PMC1069615 DOI: 10.1128/mcb.25.8.3019-3026.2005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 12/07/2004] [Accepted: 01/18/2005] [Indexed: 12/20/2022] Open
Abstract
Genomic imprinting results in parent-of-origin-dependent monoallelic expression of selected genes. Although their importance in development and physiology is recognized, few imprinted genes have been investigated for their effects on brain function. Gnas is a complex imprinted locus whose gene products are involved in early postnatal adaptations and neuroendocrine functions. Gnas encodes the stimulatory G-protein subunit Gsalpha and two other imprinted protein-coding transcripts. Of these, the Nesp transcript, expressed exclusively from the maternal allele, codes for neuroendocrine secretory protein 55 (Nesp55), a chromogranin-like polypeptide associated with the constitutive secretory pathway but with an unknown function. Nesp is expressed in restricted brain nuclei, suggesting an involvement in specific behaviors. We have generated a knockout of Nesp55 in mice. Nesp55-deficient mice develop normally, excluding a role of this protein in the severe postnatal effects associated with imprinting of the Gnas cluster. Behavioral analysis of adult Nesp55 mutants revealed, in three separate tasks, abnormal reactivity to novel environments independent of general locomotor activity and anxiety. This phenotype may be related to prominent Nesp55 expression in the noradrenergic locus coeruleus. These results indicate a role of maternally expressed Nesp55 in controlling exploratory behavior and are the first demonstration that imprinted genes affect such a fundamental behavior.
Collapse
Affiliation(s)
- Antonius Plagge
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Eder S, Leierer J, Klimaschewski L, Wilhelm A, Volknandt W, Laslop A, Fischer-Colbrie R. Secretion and molecular forms of NESP55, a novel genomically imprinted neuroendocrine-specific protein from AtT-20 cells. Neurosignals 2005; 13:298-307. [PMID: 15627817 DOI: 10.1159/000081965] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 08/18/2004] [Indexed: 11/19/2022] Open
Abstract
NESP55 (neuroendocrine secretory protein of M(r) 55,000) is a paternally imprinted proteoglycan, expressed specifically in endocrine cells and the nervous system. We investigated the subcellular localization and secretion of NESP55 in AtT-20 cells. NESP55 accumulated in the medium linearly over 24 h exceeding its intracellular content 3.7-fold by that time. Incubation of cells at 16 degrees C, to block protein export, inhibited basal secretion by 79%. Stimulation of AtT-20 cells with 8-Br-cAMP increased secretion of NESP55 by only 45%. The NESP55 secretory vesicles sedimented at a density of 1.2-1.4 M, which is slightly lighter than that of the large dense core vesicles. Immunofluorescence studies revealed immunoreactivity in the Golgi apparatus and a punctuate staining of processes or neurites. Our data demonstrate that NESP55 is mainly sorted to and released from a population of constitutive secretory vesicles, which are transported out of the perikarya into processes or axons. In addition, some NESP55 is also routed to the regulated pathway. The signal peptide of NESP55, as determined with peptide antisera, is 46 amino acids long and represents the best conserved region of this molecule suggesting that the signal peptide may have a function of its own. The subcellular localization and export of NESP55 from cells are reminiscent of neuronal proteoglycans forming the extracellular matrix, which are implicated in the development and maintenance of neuronal circuits and mechanisms of axonal guidance.
Collapse
Affiliation(s)
- Susanne Eder
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
13
|
Fischer-Colbrie R, Eder S, Lovisetti-Scamihorn P, Becker A, Laslop A. Neuroendocrine secretory protein 55: a novel marker for the constitutive secretory pathway. Ann N Y Acad Sci 2002; 971:317-22. [PMID: 12438142 DOI: 10.1111/j.1749-6632.2002.tb04486.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The chromogranins constitute a class of acidic proteins comprising the structurally related chromogranins A and B and secretogranin II. These proteins are widely distributed in endocrine and nervous tissues; they are localized to the large dense core vesicles and released from them after stimulation of cells. In all the tissues examined chromogranins are proteolytically processed into small peptides, some of which have defined physiological activities. Chromogranin A plays a key role in large dense core vesicle biogenesis and can induce the formation of the regulated pathway. We have recently cloned neuroendocrine secretory protein 55 (NESP55), a protein that shares several features with the class of chromogranins. NESP55 is a soluble, acidic, heat-stable secretory protein that is expressed exclusively in endocrine and nervous tissues, although less widely than chromogranins. NESP55 is genomically imprinted and transcribed only from the maternal allele. It is proteolytically processed in some tissues into the small octapeptide GAIPIRRH located at the C terminus of NESP55. In the brain NESP55 is found in cell bodies and axons but not in terminals. At the subcellular level NESP55 is localized to a large vesicle, which is anterogradely transported by the fast axonal flow in neurons. From this vesicle NESP55 is constitutively released. However, in some tissues like the adrenal, medulla, and bovine splenic nerve, NESP55 is also found in the large dense transmitter storage organelles. Thus, NESP55 represents a novel peptidergic marker for a large constitutively secreting vesicle pool found in the central and peripheral nervous system.
Collapse
|