1
|
Khalil R, Farhat A, Dłotko P. Developmental Changes in Pyramidal Cell Morphology in Multiple Visual Cortical Areas Using Cluster Analysis. Front Comput Neurosci 2021; 15:667696. [PMID: 34135746 PMCID: PMC8200563 DOI: 10.3389/fncom.2021.667696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Neuronal morphology is characterized by salient features such as complex axonal and dendritic arbors. In the mammalian brain, variations in dendritic morphology among cell classes, brain regions, and animal species are thought to underlie known differences in neuronal function. In this work, we obtained a large dataset from http://neuromorpho.org/ comprising layer III pyramidal cells in different cortical areas of the ventral visual pathway (V1, V2, V4, TEO, and TE) of the macaque monkey at different developmental stages. We performed an in depth quantitative analysis of pyramidal cell morphology throughout development in an effort to determine which aspects mature early in development and which features require a protracted period of maturation. We were also interested in establishing if developmental changes in morphological features occur simultaneously or hierarchically in multiple visual cortical areas. We addressed these questions by performing principal component analysis (PCA) and hierarchical clustering analysis on relevant morphological features. Our analysis indicates that the maturation of pyramidal cell morphology is largely based on early development of topological features in most visual cortical areas. Moreover, the maturation of pyramidal cell morphology in V1, V2, V4, TEO, and TE is characterized by unique developmental trajectories.
Collapse
Affiliation(s)
- Reem Khalil
- Biology, Chemistry, and Environmental Sciences Department, American University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Dłotko
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Elston GN, Fujita I. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 2014; 8:78. [PMID: 25161611 PMCID: PMC4130200 DOI: 10.3389/fnana.2014.00078] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/22/2014] [Indexed: 01/12/2023] Open
Abstract
Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1) prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE) and granular prefrontal cortex (gPFC; Brodmann's area 12) grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the “use it or lose it” notion of synaptic reinforcement may speak to only part of the story, “use it but you still might lose it” may be just as prevalent in the cerebral cortex.
Collapse
Affiliation(s)
- Guy N Elston
- Centre for Cognitive Neuroscience Sunshine Coast, QLD, Australia
| | - Ichiro Fujita
- Graduate School of Frontier Biosciences and Center for Information and Neural Networks, Osaka University and National Institute of Communication Technology Suita, Japan
| |
Collapse
|
3
|
Elston GN, Manger P. Pyramidal cells in V1 of African rodents are bigger, more branched and more spiny than those in primates. Front Neuroanat 2014; 8:4. [PMID: 24574977 PMCID: PMC3918685 DOI: 10.3389/fnana.2014.00004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/20/2014] [Indexed: 01/21/2023] Open
Abstract
Pyramidal cells are characterized by markedly different sized dendritic trees, branching patterns, and spine density across the cortical mantle. Moreover, pyramidal cells have been shown to differ in structure among homologous cortical areas in different species; however, most of these studies have been conducted in primates. Whilst pyramidal cells have been quantified in a few cortical areas in some other species there are, as yet, no uniform comparative data on pyramidal cell structure in a homologous cortical area among species in different Orders. Here we studied layer III pyramidal cells in V1 of three species of rodents, the greater cane rat, highveld gerbil, and four-striped mouse, by the same methodology used to sample data from layer III pyramidal cells in primates. The data reveal markedly different trends between rodents and primates: there is an appreciable increase in the size, branching complexity, and number of spines in the dendritic trees of pyramidal cells with increasing size of V1 in the brain in rodents, whereas there is relatively little difference in primates. Moreover, pyramidal cells in rodents are larger, more branched and more spinous than those in primates. For example, the dendritic trees of pyramidal cells in V1 of the adult cane rat are nearly three times larger, and have more than 10 times the number of spines in their basal dendritic trees, than those in V1 of the adult macaque (7900 and 600, respectively), which has a V1 40 times the size that of the cane rat. It remains to be determined to what extent these differences may result from development or reflect evolutionary and/or processing specializations.
Collapse
Affiliation(s)
- Guy N Elston
- Centre for Cognitive Neuroscience Sunshine Coast, QLD, Australia
| | - Paul Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand Johannesburg, South Africa
| |
Collapse
|
4
|
Manger PR, Spocter MA, Patzke N. The evolutions of large brain size in mammals: the 'over-700-gram club quartet'. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:68-78. [PMID: 23979457 DOI: 10.1159/000352056] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current paper details our developing understanding of the evolution of large brains in mammals. In order to do this, we first define brains that we consider to be large--those that have passed the apparent 700-gram ceiling on brain mass evolution in the class Mammalia. The over-700-gram club includes certain species within the genus Homo, order Cetacea, order Proboscidea, and suborder Pinnipedia. Our analysis suggests that selection for body size appears to be the most important factor in the evolution of large brain size, but there also appear to be internal morphophysiological constraints on large brain size evolution that need to be overcome in order for brains to break the 700-gram barrier. These two aspects appear to be common themes in the evolution of large brains. This significantly diminishes the explanatory value of selection for greater cognitive capacities as a principal factor in the evolution of enlarged brain sizes above the 700-gram threshold.
Collapse
Affiliation(s)
- Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa.
| | | | | |
Collapse
|
5
|
Elston GN, Benavides-Piccione R, Elston A, Manger PR, DeFelipe J. Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. Front Neuroanat 2011; 5:2. [PMID: 21347276 PMCID: PMC3039119 DOI: 10.3389/fnana.2011.00002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/11/2011] [Indexed: 11/16/2022] Open
Abstract
The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates.
Collapse
Affiliation(s)
- Guy N. Elston
- Centre for Cognitive NeuroscienceSunshine Coast, QLD, Australia
| | - Ruth Benavides-Piccione
- Laboratorio de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Instituto Cajal (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | | | - Paul R. Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburg, South Africa
| | - Javier DeFelipe
- Laboratorio de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Instituto Cajal (CSIC), Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
6
|
|
7
|
Freire MAM, Rocha EG, Oliveira JLF, Guimarães JS, Silveira LCL, Elston GN, Pereira A, Picanço-Diniz CW. Morphological variability of NADPH diaphorase neurons across areas V1, V2, and V3 of the common agouti. Brain Res 2009; 1318:52-63. [PMID: 20036219 DOI: 10.1016/j.brainres.2009.12.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 01/24/2023]
Abstract
Previous studies have shown a noticeable phenotypic diversity for pyramidal cells among cortical areas in the cerebral cortex. Both the extent and systematic nature of this variation suggests a correlation with particular aspects of cortical processing. Nevertheless, regional variations in the morphology of inhibitory cells have not been evaluated with the same detail. In the present study we performed a 3D morphometric analysis of 120 NADPH diaphorase (NADPH-d) type I neurons in the visual cortex of a South American Hystricomorph rodent, the diurnal agouti (Dasyprocta sp.). We found significant differences in morphology of NADPH-d type I neurons among visual cortical areas: cells became progressively larger and more branched from V1 to V2 and V3. Presumably, the specialized morphology of these cells is correlated with different sampling geometry and function. The data suggest that area-specific specializations of cortical inhibitory circuitry are also present in rodents.
Collapse
Affiliation(s)
- Marco Aurélio M Freire
- Lab. Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, 66073-000 Belém, PA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sherwood CC, Raghanti MA, Stimpson CD, Bonar CJ, de Sousa AA, Preuss TM, Hof PR. Scaling of inhibitory interneurons in areas v1 and v2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. BRAIN, BEHAVIOR AND EVOLUTION 2006; 69:176-95. [PMID: 17106195 DOI: 10.1159/000096986] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 04/25/2006] [Indexed: 11/19/2022]
Abstract
Inhibitory GABAergic interneurons are important for shaping patterns of activity in neocortical networks. We examined the distributions of inhibitory interneuron subtypes in layer II/III of areas V1 and V2 in 18 genera of anthropoid primates including New World monkeys, Old World monkeys, and hominoids (apes and humans). Interneuron subtypes were identified by immunohistochemical staining for calbindin, calretinin, and parvalbumin and densities were quantified using the optical disector method. In both V1 and V2, calbindin-immunoreactive neuron density decreased disproportionately with decreasing total neuronal density. Thus, V1 and V2 of hominoids were occupied by a smaller percentage of calbindin-immunoreactive interneurons compared to monkeys who have greater overall neuronal densities. At the transition from V1 to V2 across all individuals, we found a tendency for increased percentages of calbindin-immunoreactive multipolar cells and calretinin-immunoreactive interneurons. In addition, parvalbumin-immunoreactive cell soma volumes increased from V1 to V2. These findings suggest that modifications of specific aspects of inhibition might be critical to establishing the receptive field properties that distinguish visual areas. Furthermore, these results show that phylogenetic variation exists in the microcircuitry of visual cortex that could have general implications for sensory processing.
Collapse
Affiliation(s)
- Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC 20052, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Elston GN, Elston A, Freire MAM, Gomes Leal W, Dias IA, Pereira A, Silveira LCL, Picanço Diniz CW. Specialization of pyramidal cell structure in the visual areas V1, V2 and V3 of the South American rodent, Dasyprocta primnolopha. Brain Res 2006; 1106:99-110. [PMID: 16854386 DOI: 10.1016/j.brainres.2006.05.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 05/16/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Marked phenotypic variation has been reported in pyramidal cells in the primate cerebral cortex. These extent and systematic nature of these specializations suggest that they are important for specialized aspects of cortical processing. However, it remains unknown as to whether regional variations in the pyramidal cell phenotype are unique to primates or if they are widespread amongst mammalian species. In the present study we determined the receptive fields of neurons in striate and extrastriate visual cortex, and quantified pyramidal cell structure in these cortical regions, in the diurnal, large-brained, South American rodent Dasyprocta primnolopha. We found evidence for a first, second and third visual area (V1, V2 and V3, respectively) forming a lateral progression from the occipital pole to the temporal pole. Pyramidal cell structure became increasingly more complex through these areas, suggesting that regional specialization in pyramidal cell phenotype is not restricted to primates. However, cells in V1, V2 and V3 of the agouti were considerably more spinous than their counterparts in primates, suggesting different evolutionary and developmental influences may act on cortical microcircuitry in rodents and primates.
Collapse
Affiliation(s)
- Guy N Elston
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, The University of Queensland, Queensland, 4072, Australia.
| | - Alejandra Elston
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, The University of Queensland, Queensland, 4072, Australia
| | - Marco Aurelio M Freire
- Laboratório de Neuroanatomia Funcional, Departamento de Morfologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Wallace Gomes Leal
- Laboratório de Neuroanatomia Funcional, Departamento de Morfologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Ivanira Amaral Dias
- Laboratório de Neuroanatomia Funcional, Departamento de Morfologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Antonio Pereira
- Departamento de Fisiologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Luiz Carlos L Silveira
- Departamento de Fisiologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| | - Cristovam W Picanço Diniz
- Laboratório de Neuroanatomia Funcional, Departamento de Morfologia, Centro de Ciências Biológicas, Universidade Federal do Pará, 66075-900 Belém, Pará, Brazil
| |
Collapse
|
10
|
Elston GN, Benavides-Piccione R, Elston A, Zietsch B, Defelipe J, Manger P, Casagrande V, Kaas JH. Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. ACTA ACUST UNITED AC 2006; 288:26-35. [PMID: 16342214 DOI: 10.1002/ar.a.20278] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The biological underpinnings of human intelligence remain enigmatic. There remains the greatest confusion and controversy regarding mechanisms that enable humans to conceptualize, plan, and prioritize, and why they are set apart from other animals in their cognitive abilities. Here we demonstrate that the basic neuronal building block of the cerebral cortex, the pyramidal cell, is characterized by marked differences in structure among primate species. Moreover, comparison of the complexity of neuron structure with the size of the cortical area/region in which the cells are located revealed that trends in the granular prefrontal cortex (gPFC) were dramatically different to those in visual cortex. More specifically, pyramidal cells in the gPFC of humans had a disproportionately high number of spines. As neuron structure determines both its biophysical properties and connectivity, differences in the complexity in dendritic structure observed here endow neurons with different computational abilities. Furthermore, cortical circuits composed of neurons with distinguishable morphologies will likely be characterized by different functional capabilities. We propose that 1. circuitry in V1, V2, and gPFC within any given species differs in its functional capabilities and 2. there are dramatic differences in the functional capabilities of gPFC circuitry in different species, which are central to the different cognitive styles of primates. In particular, the highly branched, spinous neurons in the human gPFC may be a key component of human intelligence.
Collapse
Affiliation(s)
- Guy N Elston
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences and Queensland Brain Institute, University of Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Elston GN, Elston A, Kaas JH, Casagrande V. Regional specialization in pyramidal cell structure in the visual cortex of the galago: an intracellular injection study of striate and extrastriate areas with comparative notes on new world and old world monkeys. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:10-21. [PMID: 15821345 DOI: 10.1159/000085044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 12/20/2004] [Indexed: 11/19/2022]
Abstract
Recent studies have revealed marked differences in the basal dendritic structure of layer III pyramidal cells in the cerebral cortex of adult simian primates. In particular, there is a consistent trend for pyramidal cells of increasing complexity with anterior progression through occipitotemporal cortical visual areas. These differences in pyramidal cell structure, and their systematic nature, are believed to be important for specialized aspects of visual processing within, and between, cortical areas. However, it remains unknown whether this regional specialization in the pyramidal cell phenotype is unique to simians, is unique to primates in general or is widespread amongst mammalian species. In the present study we investigated pyramidal cell structure in the prosimian galago (Otolemur garnetti). We found, as in simians, that the basal dendritic arbors of pyramidal cells differed between cortical areas. More specifically, pyramidal cells became progressively more spinous through the primary (V1), second (V2), dorsolateral (DL) and inferotemporal (IT) visual areas. Moreover, pyramidal neurons in V1 of the galago are remarkably similar to those in other primate species, in spite of large differences in the sizes of this area. In contrast, pyramidal cells in inferotemporal cortex are quite variable among primate species. These data suggest that regional specialization in pyramidal cell phenotype was a likely feature of cortex in a common ancestor of simian and prosimian primates, but the degree of specialization varies between species.
Collapse
Affiliation(s)
- Guy N Elston
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, The University of Queensland, Queensland, Australia.
| | | | | | | |
Collapse
|
12
|
Elston GN, Elston A, Casagrande V, Kaas JH. Areal specialization of pyramidal cell structure in the visual cortex of the tree shrew: a new twist revealed in the evolution of cortical circuitry. Exp Brain Res 2005; 163:13-20. [PMID: 15660232 DOI: 10.1007/s00221-004-2131-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 10/03/2004] [Indexed: 10/25/2022]
Abstract
Cortical pyramidal cells, while having a characteristic morphology, show marked phenotypic variation in primates. Differences have been reported in their size, branching structure and spine density between cortical areas. In particular, there is a systematic increase in the complexity of the structure of pyramidal cells with anterior progression through occipito-temporal cortical visual areas. These differences reflect area-specific specializations in cortical circuitry, which are believed to be important for visual processing. However, it remains unknown as to whether these regional specializations in pyramidal cell structure are restricted to primates. Here we investigated pyramidal cell structure in the visual cortex of the tree shrew, including the primary (V1), second (V2) and temporal dorsal (TD) areas. As in primates, there was a trend for more complex branching structure with anterior progression through visual areas in the tree shrew. However, contrary to the trend reported in primates, cells in the tree shrew tended to become smaller with anterior progression through V1, V2 and TD. In addition, pyramidal cells in V1 of the tree shrew are more than twice as spinous as those in primates. These data suggest that variables that shape the structure of adult cortical pyramidal cells differ among species.
Collapse
Affiliation(s)
- Guy N Elston
- Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, 4072 Queensland, Australia.
| | | | | | | |
Collapse
|
13
|
Elston GN, Benavides-Piccione R, Elston A, Defelipe J, Manger PR. Specialization in pyramidal cell structure in the sensory-motor cortex of the vervet monkey (Cercopethicus pygerythrus). Neuroscience 2005; 134:1057-68. [PMID: 15979808 DOI: 10.1016/j.neuroscience.2005.04.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 04/03/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
Recent studies have revealed systematic differences in the pyramidal cell structure between functionally related cortical areas of primates. Trends for a parallel in pyramidal cell structure and functional complexity have been reported in visual, somatosensory, motor, cingulate and prefrontal cortex in the macaque monkey cortex. These specializations in structure have been interpreted as being fundamental in determining cellular and systems function, endowing circuits in these different cortical areas with different computational power. In the present study we extend our initial finding of systematic specialization of pyramidal cell structure in sensory-motor cortex in the macaque monkey [Cereb Cortex 12 (2002) 1071] to the vervet monkey. More specifically, we investigated pyramidal cell structure in somatosensory and motor areas 1/2, 5, 7, 4 and 6. Neurones in fixed, flat-mounted, cortical slices were injected intracellularly with Lucifer Yellow and processed for a light-stable 3,3'-diaminobenzidine reaction product. The size of, number of branches in, and spine density of the basal dendritic arbors varied systematically such that there was a trend for increasing complexity in arbor structure with progression through 1/2, 5 and 7. In addition, cells in area 6 were larger, more branched, and more spinous than those in area 4.
Collapse
Affiliation(s)
- G N Elston
- Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, School of Biomedical Sciences and Queensland Brain Institute, the University of Queensland, Queensland, 4072, Australia.
| | | | | | | | | |
Collapse
|
14
|
Travis K, Ford K, Jacobs B. Regional Dendritic Variation in Neonatal Human Cortex: A Quantitative Golgi Study. Dev Neurosci 2005; 27:277-87. [PMID: 16137985 DOI: 10.1159/000086707] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 11/17/2004] [Indexed: 11/19/2022] Open
Abstract
The present study quantitatively compared the basilar dendritic/spine systems of lamina V pyramidal neurons across four hierarchically arranged regions of neonatal human neocortex. Tissue blocks were removed from four Brodmann's areas (BAs) in the left hemisphere of four neurologically normal neonates (mean age=41+/- 40 days): primary (BA4 and BA3-1-2), unimodal (BA18), and supramodal cortices (BA10). Tissue was stained with a modified rapid Golgi technique. Ten cells per region (N=160) were quantified. Despite the small sample size, significant differences in dendritic/spine extent obtained across cortical regions. Most apparent were substantial differences between BA4 and BA10: total dendritic length was 52% greater in BA4 than BA10, and dendritic spine number was 67% greater in BA4 than BA10. Neonatal patterns were compared to adult patterns, revealing that the relative regional pattern of dendritic complexity in the neonate was roughly the inverse of that established in the adult, with BA10 rather than BA4 being the most complex area in the adult. Overall, regional dendritic patterns suggest that the developmental time course of basilar dendritic systems is heterochronous and is more protracted for supramodal BA10 than for primary or unimodal regions (BA4, BA3-1-2, BA18).
Collapse
Affiliation(s)
- Katie Travis
- Laboratory of Quantitative Neuromorphology, Department of Psychology, The Colorado College, Colorado Springs, CO 80903, USA
| | | | | |
Collapse
|