1
|
Chen SF, Jou SB, Chen NC, Chuang HY, Huang CR, Tsai MH, Tan TY, Tsai WC, Chang CC, Chuang YC. Serum Levels of Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor 1 Are Associated With Autonomic Dysfunction and Impaired Cerebral Autoregulation in Patients With Epilepsy. Front Neurol 2018; 9:969. [PMID: 30524358 PMCID: PMC6256185 DOI: 10.3389/fneur.2018.00969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) may regulate the autonomic nervous system (ANS) in epilepsy. The present study investigated the role of IGF-1 and BDNF in the regulation of autonomic functions and cerebral autoregulation in patients with epilepsy. Methods: A total of 57 patients with focal epilepsy and 35 healthy controls were evaluated and their sudomotor, cardiovagal, and adrenergic functions were assessed using a battery of ANS function tests, including the deep breathing, Valsalva maneuver, head-up tilting, and Q-sweat tests. Cerebral autoregulation was measured by transcranial doppler during the breath-holding test and the Valsalva maneuver. Interictal serum levels of BDNF and IGF-1 were measured with enzyme-linked immunosorbent assay kits. Results: During interictal period, reduced serum levels of BDNF and IGF-1, impaired autonomic functions, and decreased cerebral autoregulation were noted in patients with epilepsy compared with healthy controls. Reduced serum levels of BDNF correlated with age, adrenergic and sudomotor function, overall autonomic dysfunction, and the autoregulation index calculated in Phase II of the Valsalva maneuver, and showed associations with focal to bilateral tonic-clonic seizures. Reduced serum levels of IGF-1 were found to correlate with age and cardiovagal function, a parameter of cerebral autoregulation (the breath-hold index). Patients with a longer history of epilepsy, higher seizure frequency, and temporal lobe epilepsy had lower serum levels of IGF-1. Conclusions: Long-term epilepsy and severe epilepsy, particularly temporal lobe epilepsy, may perturb BDNF and IGF-1 signaling in the central autonomic system, contributing to the autonomic dysfunction and impaired cerebral autoregulation observed in patients with focal epilepsy.
Collapse
Affiliation(s)
- Shu-Fang Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shuo-Bin Jou
- Department of Neurology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital and School of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Teng-Yeow Tan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Chen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Kadiyala SB, Ferland RJ. Dissociation of spontaneous seizures and brainstem seizure thresholds in mice exposed to eight flurothyl-induced generalized seizures. Epilepsia Open 2016; 2:48-58. [PMID: 28825051 PMCID: PMC5560332 DOI: 10.1002/epi4.12031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective C57BL/6J mice exposed to eight flurothyl‐induced generalized clonic seizures exhibit a change in seizure phenotype following a 28‐day incubation period and subsequent flurothyl rechallenge. Mice now develop a complex seizure semiology originating in the forebrain and propagating into the brainstem seizure network (a forebrain→brainstem seizure). In contrast, this phenotype change does not occur in seizure‐sensitive DBA/2J mice. The underlying mechanism was the focus of this study. Methods DBA/2J mice were exposed to eight flurothyl‐induced seizures (1/day) followed by 24‐h video‐electroencephalographic recordings for 28 days. Forebrain and brainstem seizure thresholds were determined in C57BL/6J and DBA/2J mice following one or eight flurothyl‐induced seizures, or after eight flurothyl‐induced seizures, a 28‐day incubation period, and final flurothyl rechallenge. Results Similar to C57BL/6J mice, DBA/2J mice expressed spontaneous seizures. However, unlike C57BL/6J mice, DBA/2J mice continued to have spontaneous seizures without remission. Because DBA/2J mice did not express forebrain→brainstem seizures following flurothyl rechallenge after a 28‐day incubation period, this indicated that spontaneous seizures were not sufficient for the evolution of forebrain→brainstem seizures. Therefore, we determined whether brainstem seizure thresholds were changing during this repeated‐flurothyl model and whether this could account for the expression of forebrain→brainstem seizures. Brainstem seizure thresholds were not different between C57BL/6J and DBA/2J mice on day 1 or on the last induction seizure trial (day 8). However, brainstem seizure thresholds did differ significantly on flurothyl rechallenge (day 28), with DBA/2J mice showing no lowering of their brainstem seizure thresholds. Significance These results demonstrate that DBA/2J mice exposed to the repeated‐flurothyl model develop spontaneous seizures without evidence of seizure remission and provide a new model of epileptogenesis. Moreover, these findings indicated that the transition of forebrain ictal discharge into the brainstem seizure network occurs as a result of changes in brainstem seizure thresholds that are independent of spontaneous seizure expression.
Collapse
Affiliation(s)
- Sridhar B Kadiyala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.,Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
3
|
Kadiyala SB, Papandrea D, Herron BJ, Ferland RJ. Segregation of seizure traits in C57 black mouse substrains using the repeated-flurothyl model. PLoS One 2014; 9:e90506. [PMID: 24594686 PMCID: PMC3940897 DOI: 10.1371/journal.pone.0090506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/03/2014] [Indexed: 11/18/2022] Open
Abstract
Identifying the genetic basis of epilepsy in humans is difficult due to its complexity, thereby underlying the need for preclinical models with specific aspects of seizure susceptibility that are tractable to genetic analyses. In the repeated-flurothyl model, mice are given 8 flurothyl-induced seizures, once per day (the induction phase), followed by a 28-day rest period (incubation phase) and final flurothyl challenge. This paradigm allows for the tracking of multiple phenotypes including: initial generalized seizure threshold, decreases in generalized seizure threshold with repeated flurothyl exposures, and changes in the complexity of seizures over time. Given the responses we previously reported in C57BL/6J mice, we analyzed substrains of the C57BL lineage to determine if any of these phenotypes segregated in these substrains. We found that the generalized seizure thresholds of C57BL/10SNJ and C57BL/10J mice were similar to C57BL/6J mice, whereas C57BL/6NJ and C57BLKS/J mice showed lower generalized seizure thresholds. In addition, C57BL/6J mice had the largest decreases in generalized seizure thresholds over the induction phase, while the other substrains were less pronounced. Notably, we observed only clonic seizures during the induction phase in all substrains, but when rechallenged with flurothyl after a 28-day incubation phase, ∼80% of C57BL/6J and 25% of C57BL/10SNJ and C57BL/10J mice expressed more complex seizures with tonic manifestations with none of the C57BL/6NJ and C57BLKS/J mice having complex seizures with tonic manifestations. These data indicate that while closely related, the C57BL lineage has significant diversity in aspects of epilepsy that are genetically controlled. Such differences further highlight the importance of genetic background in assessing the effects of targeted deletions of genes in preclinical epilepsy models.
Collapse
Affiliation(s)
- Sridhar B. Kadiyala
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Dominick Papandrea
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
| | - Bruce J. Herron
- Wadsworth Center, Albany, New York, United States of America
- Department of Biomedical Sciences, School of Public Health, University at Albany - State University of New York, Albany, New York, United States of America
| | - Russell J. Ferland
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, United States of America
- Department of Neurology, Albany Medical College, Albany, New York, United States of America
| |
Collapse
|
4
|
Modulation of c-Fos and BDNF protein expression in pentylenetetrazole-kindled mice following the treatment with novel antiepileptic compound HHL-6. BIOMED RESEARCH INTERNATIONAL 2014; 2014:876712. [PMID: 24605339 PMCID: PMC3925558 DOI: 10.1155/2014/876712] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/22/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and c-Fos are shown to promote epileptogenesis and are taken as a marker of neuronal activity. The present study investigated the expression of BDNF and c-Fos in mice brain with pentylenetetrazol- (PTZ-) induced generalized seizure and evaluated the effect of novel tryptamine derivative HHL-6 on the expression of these two markers. The subconvulsive dose of PTZ (50 mg/kg) was administered on alternate days in the experimental groups until the seizure scores 4-5 developed in the PTZ-control group. At the end of each experiment, animals were sacrificed, brain samples were collected and cryosectioned, and immunohistochemical analysis of BDNF and c-Fos protein was performed. Data obtained from two sections per mouse (n = 12 animals/group) is presented as means ± S.E.M. The test compound HHL-6 demonstrated a potent anticonvulsant activity in the PTZ-induced seizure in mice. Significant reduction in the BDNF (P < 0.003) and c-Fos (P < 0.01) protein expression was observed in the HHL-6 treated group. Based on these results we suggest that one of the possible mechanisms of HHL-6 to inhibit epileptogenesis might be due to its controlling effect on the cellular and molecular expression of the factors that contribute to the development of epileptogenic plasticity in the CNS.
Collapse
|
5
|
Ashraf MN, Gavrilovici C, Shah SUA, Shaheen F, Choudhary MI, Rahman AU, Fahnestock M, Simjee SU, Poulter MO. A novel anticonvulsant modulates voltage-gated sodium channel inactivation and prevents kindling-induced seizures. J Neurochem 2013; 126:651-61. [PMID: 23796540 DOI: 10.1111/jnc.12352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
Abstract
Here, we explore the mechanism of action of isoxylitone (ISOX), a molecule discovered in the plant Delphinium denudatum, which has been shown to have anticonvulsant properties. Patch-clamp electrophysiology assayed the activity of ISOX on voltage-gated sodium channels (VGSCs) in both cultured neurons and brain slices isolated from controls and rats with experimental epilepsy(kindling model). Quantitative transcription polymerase chain reaction (qRT-PCR) (QPCR) assessed brain-derived neurotrophic factor (BDNF) mRNA expression in kindled rats, and kindled rats treated with ISOX. ISOX suppressed sodium current (I(Na)) showing an IC50 value of 185 nM in cultured neurons. ISOX significantly slowed the recovery from inactivation (ISOX τ = 18.7 ms; Control τ = 9.4 ms; p < 0.001). ISOX also enhanced the development of inactivation by shifting the Boltzmann curve to more hyperpolarized potentials by -11.2 mV (p < 0.05). In naive and electrically kindled cortical neurons, the IC50 for sodium current block was identical to that found in cultured neurons. ISOX prevented kindled stage 5 seizures and decreased the enhanced BDNF mRNA expression that is normally associated with kindling (p < 0.05). Overall, our data show that ISOX is a potent inhibitor of VGSCs that stabilizes steady-state inactivation while slowing recovery and enhancing inactivation development. Like many other sodium channel blocker anti-epileptic drugs, the suppression of BDNF mRNA expression that usually occurs with kindling is likely a secondary outcome that nevertheless would suppress epileptogenesis. These data show a new class of anti-seizure compound that inhibits sodium channel function and prevents the development of epileptic seizures.
Collapse
Affiliation(s)
- Muhammad N Ashraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
It has been suggested that long-term modifications of synaptic transmission constitute the foundation of the processes by which information is stored in the central nervous system. A group of proteins called neurotrophins are considered powerful molecular mediators in central synaptic plasticity. Among these, brain-derived neurotrophic factor (BDNF) as well as neurotrophin-3 (NT-3) have emerged as having key roles in the neurobiological mechanisms related to learning and memory. In this chapter, we review the studies that have represented a significant step forward in understanding the role played by BDNF and NT-3 in long-term synaptic plasticity. The effects of BDNF and NT-3 on synaptic plasticity can be of a permissive nature, establishing the conditions under which plastic changes can take place, or it may be instructive, directly modifying the communication and morphology of synapses. The actions carried out by BDNF include its capacity to contribute to the stabilization and maturation of already-existing synapses, as well as to generate new synaptic contacts. One important finding that highlights the participation of these neurotrophins in synaptic plasticity is the observation that adding BDNF or NT-3 gives rise to drastic long-term increases in synaptic transmission, similar to the long-term potentiation in the hippocampus and neocortex of mammals. Because neurotrophins modulate both the electrical properties and the structural organization of the synapse, these proteins have been considered important biological markers of learning and memory processes.
Collapse
Affiliation(s)
- Andrea Gómez-Palacio-Schjetnan
- División de Investigación y Estudios de Posgrado, Facultad de Psicologia, Universidad Nacional Autónoma de México, 04510, México, D.F., Mexico
| | | |
Collapse
|
7
|
Sugata S, Hanaya R, Kumafuji K, Tokudome M, Serikawa T, Kurisu K, Arita K, Sasa M. Neuroprotective effect of levetiracetam on hippocampal sclerosis-like change in spontaneously epileptic rats. Brain Res Bull 2011; 86:36-41. [DOI: 10.1016/j.brainresbull.2011.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/16/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
|
8
|
Giblin KA, Blumenfeld H. Is epilepsy a preventable disorder? New evidence from animal models. Neuroscientist 2010; 16:253-75. [PMID: 20479472 DOI: 10.1177/1073858409354385] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epilepsy accounts for 0.5% of the global burden of disease, and primary prevention of epilepsy represents one of the three 2007 NINDS Epilepsy Research Benchmarks. In the past decade, efforts to understand and intervene in the process of epileptogenesis have yielded fruitful preventative strategies in animal models.This article reviews the current understanding of epileptogenesis, introduces the concept of a "critical period" for epileptogenesis, and examines strategies for epilepsy prevention in animal models of both acquired and genetic epilepsies. We discuss specific animal models, which may yield important insights into epilepsy prevention including kindling, poststatus epilepticus, prolonged febrile seizures, traumatic brain injury, hypoxia, the tuberous sclerosis mouse model, and the WAG/Rij rat model of primary generalized epilepsy. Hopefully, further investigation of antiepileptogenesis in animal models will soon enable human therapeutic trials to be initiated, leading to long-term epilepsy prevention and improved patient quality of life.
Collapse
Affiliation(s)
- Kathryn A Giblin
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520-8018, USA
| | | |
Collapse
|
9
|
Dissociation of seizure traits in inbred strains of mice using the flurothyl kindling model of epileptogenesis. Exp Neurol 2008; 215:60-8. [PMID: 18950623 DOI: 10.1016/j.expneurol.2008.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 11/23/2022]
Abstract
Previous seizure models have demonstrated genetic differences in generalized seizure threshold (GST) in inbred mice, but the genetic control of epileptogenesis is relatively unexplored. The present study examined, through analysis of inbred strains of mice, whether the seizure characteristics observed in the flurothyl kindling model are under genetic control. Eight consecutive, daily generalized seizures were induced by flurothyl in mice from five inbred strains. Following a 28-day rest period, mice were retested with flurothyl. The five strains of mice demonstrated inter-strain differences in GST, decreases in GST across seizure trials, and differences in the behavioral seizure phenotypes expressed. Since many of the seizure characteristics that we examined in the flurothyl kindling model were dissociable between C57BL/6J and DBA/2J mice, we analyzed these strains in detail. Unlike C57BL/6J mice, DBA/2J mice had a lower GST on trial 1, did not demonstrate a decrease in GST across trials, nor did they show an alteration in seizure phenotype upon flurothyl retest. Surprisingly, [C57BL/6JxDBA/2J] F1-hybrids had initial GST on trial 1 and GST decreases across trials similar to what was found for C57BL/6J, but they did not undergo the alteration in behavioral seizure phenotype that had been observed for C57BL/6J mice. Our data establish the significance of the genetic background in flurothyl-induced epileptogenesis. The [C57BL/6JxDBA/2J] F1-hybrid data demonstrate that initial GST, the decrease in GST across trials, and the change in seizure phenotype differ from the characteristics of the parental strains, suggesting that these phenotypes are controlled by independent genetic loci.
Collapse
|