Saruhashi Y, Young W, Sugimori M, Abrahams J, Sakuma J. GABA increases refractoriness of adult rat dorsal column axons.
Neuroscience 2000;
94:1207-12. [PMID:
10625060 DOI:
10.1016/s0306-4522(99)00363-2]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We applied randomized double pulse stimulation for assessing the effects of GABA and a GABAA antagonist on compound action potentials in dorsal column axons isolated from adult rat. We stimulated the axons with double pulses at 0.2 Hz and randomly varied interpulse intervals between 3, 4, 5, 8, 10, 20, 30, 50 and 80 ms. Action potentials were measured using glass micropipettes. The first pulse was used to condition the response activated by the second test pulse. Concentrations of GABA of 1 mM, 100 microM and 10 microM did not affect action potential amplitudes or latencies activated by conditioning pulses. In the control studies, before drug administration, test pulses induced response amplitudes that were significantly decreased at 3-, 4- and 5-ms interpulse intervals. The test action potential amplitudes were 84.6 +/- 2.5%, 89.0 +/- 3.9% and 93.3 +/- 3.6% (mean +/- S.E.M.) of conditioning pulse levels, respectively. At 3-ms interpulse intervals, test response latencies were prolonged to 104.3 +/- 1.0%, but were unchanged at the other interpulse intervals. The 10 microM, 100 microM and 1 mM concentrations of GABA affected test response amplitudes. Application of 100 microM GABA reduced the amplitudes of test responses at 3-, 4-, 5- and 8-ms interpulse intervals, to 59.2 +/- 3.0%, 70.0 +/- 3.0%, 80.2 +/- 1.1% and 88.6 +/- 3.6% of the conditioning pulse amplitudes, respectively. At both 100 microM and 1 mM concentrations, GABA significantly prolonged the latencies of test responses. Treatment with 100 microM GABA prolonged the latencies of test responses at 3-, 4- and 5-ms interpulse intervals, to 119.3 +/- 3.1%, 107.3 +/- 2.8% and 105.5 +/- 2.5% of conditioning pulse latencies, respectively. The addition of 100 microM bicuculline methochloride, a GABAA antagonist, eliminated the effects of 100 microM GABA. The combined application of GABA and bicuculline (both 100 microM) did not affect amplitudes or latencies of test responses. These results suggest that GABA(A) receptor subtypes are present on the spinal dorsal column axons of adult rat, and that they modulate the excitability of the axons. The randomized double pulse methods reveal that GABA increases refractoriness of adult rat dorsal column axons.
Collapse