1
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
2
|
Pantic B, Borgia D, Giunco S, Malena A, Kiyono T, Salvatori S, De Rossi A, Giardina E, Sangiuolo F, Pegoraro E, Vergani L, Botta A. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts. Exp Cell Res 2016; 342:39-51. [PMID: 26905645 DOI: 10.1016/j.yexcr.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022]
Abstract
Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro.
Collapse
Affiliation(s)
- Boris Pantic
- Department of Neurosciences, University of Padua, Italy.
| | - Doriana Borgia
- Department of Neurosciences, University of Padua, Italy.
| | - Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padua, Padua, Italy.
| | - Adriana Malena
- Department of Neurosciences, University of Padua, Italy.
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan.
| | | | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padua, Padua, Italy; Unit of Viral Oncology, Istituto Oncologico Veneto (IOV)-IRCCS, Padua, Italy.
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy.
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Italy.
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Italy.
| | | | - Annalisa Botta
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Italy.
| |
Collapse
|
3
|
Normal myogenesis and increased apoptosis in myotonic dystrophy type-1 muscle cells. Cell Death Differ 2010; 17:1315-24. [PMID: 20431600 DOI: 10.1038/cdd.2010.33] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by a (CTG)(n) expansion in the 3'-untranslated region of DMPK gene. Mutant transcripts are retained in nuclear RNA foci, which sequester RNA binding proteins thereby misregulating the alternative splicing. Controversy still surrounds the pathogenesis of the DM1 muscle distress, characterized by myotonia, weakness and wasting with distal muscle atrophy. Eight primary human cell lines from adult-onset (DM1) and congenital (cDM1) patients, (CTG)(n) range 90-1800, were successfully differentiated into aneural-immature and contracting-innervated-mature myotubes. Morphological, immunohistochemical, RT-PCR and western blotting analyses of several markers of myogenesis indicated that in vitro differentiation-maturation of DM1 myotubes was comparable to age-matched controls. In all pathological muscle cells, (CTG)(n) expansions were confirmed by long PCR and RNA fluorescence in situ hybridization. Moreover, the DM1 myotubes showed the splicing alteration of insulin receptor and muscleblind-like 1 (MBNL1) genes associated with the DM1 phenotype. Considerable myotube loss and atrophy of 15-day-differentiated DM1 myotubes indicated activated catabolic pathways, as confirmed by the presence of apoptotic (caspase-3 activation, cytochrome c release, chromatin fragmentation) and autophagic (P62/LC3) markers. Z-VAD treatment significantly reduced the decrease in myonuclei number and in average width in 15-day-differentiated DM1 myotubes. We thus propose that the muscle wasting typical in DM1 is due to impairment of muscle mass maintenance-regeneration, through premature apoptotic-autophagic activation, rather than altered myogenesis.
Collapse
|
4
|
Ueda H, Ohno S, Kobayashi T. Myotonic dystrophy and myotonic dystrophy protein kinase. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2001; 35:187-251. [PMID: 11064921 DOI: 10.1016/s0079-6336(00)80002-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myotonic dystrophy protein kinase (DMPK) was designated as a gene responsible for myotonic dystrophy (DM) on chromosome 19, because the gene product has extensive homology to protein kinase catalytic domains. DM is the most common disease with multisystem disorders among muscular dystrophies. The genetic basis of DM is now known to include mutational expansion of a repetitive trinucleotide sequence (CTG)n in the 3'-untranslated region (UTR) of DMPK. Full-length DMPK was detected and various isoforms of DMPK have been reported in skeletal and cardiac muscles, central nervous tissues, etc. DMPK is localized predominantly in type I muscle fibers, muscle spindles, neuromuscular junctions and myotendinous tissues in skeletal muscle. In cardiac muscle it is localized in intercalated dises and Purkinje fibers. Electron microscopically it is detected in the terminal cisternae of SR in skeletal muscle and the junctional and corbular SR in cardia muscle. In central nervous system, it is located in many neurons, especially in the cytoplasm of cerebellar Purkinje cells, hippocampal interneurons and spinal motoneurons. Electron microscopically it is detected in rough endoplasmic reticulum. The functional role of DMPK is not fully understood, however, it may play an important role in Ca2+ homeostasis and signal transduction system. Diseased amount of DMPK may play an important role in the degeneration of skeletal muscle in adult type DM. However, other molecular pathogenetical mechanisms such as dysfunction of surrounding genes by structural change of the chromosome by long trinucleotide repeats, and the trans-gain of function of CUG-binding proteins might be responsible to induce multisystemic disorders of DM such as myotonia, endocrine dysfunction, etc.
Collapse
Affiliation(s)
- H Ueda
- Department of Anatomy, Yamanashi Medical University, Japan
| | | | | |
Collapse
|
5
|
Tanaka H, Furuya T, Kameda N, Kobayashi T, Mizusawa H. Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures. J Muscle Res Cell Motil 2001; 21:507-26. [PMID: 11206130 DOI: 10.1023/a:1026561120566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Dihydropyridine receptors (DHPRs), ryanodine receptors (RyRs), and triadin are major components of triads of mature skeletal muscle and play crucial roles in Ca2+ release in excitation-contraction (E-C) coupling. We investigated the expression and localization of these proteins as well as intracellular Ca2+ transients during development of human muscle cells cultured aneurally and innervated with rat spinal cord. mRNAs encoding skeletal muscle isoforms of the DHPR alpha1 subunit (alpha1S-DHPR), the RyR, and triadin were scarce in myoblasts and increased remarkably after myotube formation. Immunocytochemically, alpha1S-DHPR was expressed after myoblast fusion and localized mainly within the cytoplasmic area of aneural myotubes whereas the cardiac isoform (alpha1C-DHPR) was abundant along the plasma membrane. RyRs and triadin were both detected after myotube formation and colocalized in the cytoplasm of aneural myotubes and innervated muscle fibers. Along the plasma membrane of aneural myotubes, colocalization of alpha1C-DHPR with the RyR was more frequently observed than that of alpha1S-DHPR. In innervated muscle fibers, alpha1S-DHPR and RyR were colocalized first along the plasma membrane and later in the cytoplasmic area and formed regular double rows of cross-striation. The alpha1C-DHPR diminished after innervation. In Ca2+ imaging, spontaneous irregular slow Ca2+ oscillations were observed in aneurally cultured myotubes whereas nerve-driven regular fast oscillations were observed in innervated muscle fibers. Both caffeine and depolarization induced Ca2+ transients in aneurally cultured myotubes and innervated muscle fibers. In aneurally cultured myotubes, depolarization-induced Ca2+ transients were highly dependent on extracellular Ca2+, suggesting immaturity of the Ca2+ release system. This dependence remarkably decreased after innervation. Our present results show that these proteins are expressed differently in aneurally cultured myotubes than in adult skeletal muscle, that Ca2+ release in aneurally cultured myotubes is different from in adult skeletal muscle, and that innervation induces formation of a mature skeletal muscle-like excitation-contraction coupling system in cultured human muscle cells.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling/physiology
- Carrier Proteins
- Cells, Cultured/cytology
- Cells, Cultured/metabolism
- Coculture Techniques
- Fetus
- Humans
- Intracellular Fluid/metabolism
- Intracellular Signaling Peptides and Proteins
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/innervation
- Neurites/metabolism
- Neurites/ultrastructure
- Neuromuscular Junction/cytology
- Neuromuscular Junction/embryology
- Neuromuscular Junction/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Spinal Cord/embryology
- Spinal Cord/metabolism
- Spinal Cord/transplantation
Collapse
Affiliation(s)
- H Tanaka
- Department of Neurology, Tokyo Medical and Dental University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
6
|
Gorovits R, Sjollema KA, Sietsma JH, Yarden O. Cellular distribution of COT1 kinase in Neurospora crassa. Fungal Genet Biol 2000; 30:63-70. [PMID: 10955908 DOI: 10.1006/fgbi.2000.1198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Neurospora crassa cot-1 gene encodes a Ser/Thr protein kinase, which is involved in hyphal elongation. Many vacuoles, abnormally shaped mitochondria, and nuclei, along with differences in the structure of the cell wall and hyphal septa, were observed in hyphae of the cot-1 mutant shortly after a shift to the restrictive temperature. Immunolocalization experiments indicated that COT1 was associated with the cytoplasmic membrane; COT1 was also detected in the cytoplasm. The membrane-associated COT1 was absent from the cot-1 mutant when shifted to the restrictive temperature, as was a lower molecular weight isoform of COT1. We propose that COT1 may be involved in several cellular processes, and the spatial and temporal regulation of COT1 activity involves trafficking of the kinase within the fungal cell and its possible interaction with additional proteins.
Collapse
Affiliation(s)
- R Gorovits
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
7
|
Byers PH, Pyeritz RE, Uitto J. Research Perspectives in Heritable Disorders of Connective Tissue. ACTA ACUST UNITED AC 1992; 12:333-42. [PMID: 1359391 DOI: 10.1016/s0934-8832(11)80085-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- P H Byers
- Department of Pathology, University of Washington, Seattle 98195
| | | | | |
Collapse
|