1
|
Zhao M, Wu J, Jin Y, Li M, Yu K, Yu H. Schisandrin B from Schisandra chinensis alleviated pain via glycine receptors, Nav1.7 channels and Cav2.2 channels. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117996. [PMID: 38431110 DOI: 10.1016/j.jep.2024.117996] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis, the dried and ripe fruit of the magnolia family plant Schisandra chinensis (Turcz.) Baill, was commonly used in traditional analgesic prescription. Studies have shown that the extract of Schisandra chinensis (SC) displayed analgesic activity. However, the analgesic active component and the exact mechanisms have yet to be revealed. AIM OF THE STUDY The present study was to investigate the anti-nociceptive constituent of Schisandra chinensis, assess its analgesic effect, and explore the potential molecular mechanisms. MATERIALS AND METHODS The effects of a series of well-recognized compounds from SC on glycine receptors were investigated. The analgesic effect of the identified compound was evaluated in three pain models. Mechanistic studies were performed using patch clamp technique on various targets expressed in recombinant cells. These targets included glycine receptors, Nav1.7 sodium channels, Cav2.2 calcium channels et al. Meanwhile, primary cultured spinal dorsal horn (SDH) neurons and dorsal root ganglion (DRG) neurons were also utilized. RESULTS Schisandrin B (SchB) was a positive allosteric modulator of glycine receptors in spinal dorsal horn neurons. The EC50 of SchB on glycine receptors in spinal dorsal horn neurons was 2.94 ± 0.28 μM. In three pain models, the analgesic effect of SchB was comparable to that of indomethacin at the same dose. Besides, SchB rescued PGE2-induced suppression of α3 GlyR activity and alleviated persistent pain. Notably, SchB could also potently decrease the frequency of action potentials and inhibit sodium and calcium channels in DRG neurons. Consistent with the data from DRG neurons, SchB was also found to significantly block Nav1.7 sodium channels and Cav2.2 channels in recombinant cells. CONCLUSION Our results demonstrated that, Schisandrin B, the primary lignan component of Schisandra chinensis, may exert its analgesic effect by acting on multiple ion channels, including glycine receptors, Nav1.7 channels, and Cav2.2 channels.
Collapse
Affiliation(s)
- Miao Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Jun Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Min Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - KeXin Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Haibo Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Sas D, Gaudel F, Verdier D, Kolta A. Hyperexcitability of muscle spindle afferents in jaw-closing muscles in experimental myalgia: Evidence for large primary afferents involvement in chronic pain. Exp Physiol 2024; 109:100-111. [PMID: 38103003 PMCID: PMC10988680 DOI: 10.1113/ep090769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The goals of this review are to improve understanding of the aetiology of chronic muscle pain and identify new targets for treatments. Muscle pain is usually associated with trigger points in syndromes such as fibromyalgia and myofascial syndrome, and with small spots associated with spontaneous electrical activity that seems to emanate from fibers inside muscle spindles in EMG studies. These observations, added to the reports that large-diameter primary afferents, such as those innervating muscle spindles, become hyperexcitable and develop spontaneous ectopic firing in conditions leading to neuropathic pain, suggest that changes in excitability of these afferents might make an important contribution to the development of pathological pain. Here, we review evidence that the muscle spindle afferents (MSAs) of the jaw-closing muscles become hyperexcitable in a model of chronic orofacial myalgia. In these afferents, as in other large-diameter primary afferents in dorsal root ganglia, firing emerges from fast membrane potential oscillations that are supported by a persistent sodium current (INaP ) mediated by Na+ channels containing the α-subunit NaV 1.6. The current flowing through NaV 1.6 channels increases when the extracellular Ca2+ concentration decreases, and studies have shown that INaP -driven firing is increased by S100β, an astrocytic protein that chelates Ca2+ when released in the extracellular space. We review evidence of how astrocytes, which are known to be activated in pain conditions, might, through their regulation of extracellular Ca2+ , contribute to the generation of ectopic firing in MSAs. To explain how ectopic firing in MSAs might cause pain, we review evidence supporting the hypothesis that cross-talk between proprioceptive and nociceptive pathways might occur in the periphery, within the spindle capsule.
Collapse
Affiliation(s)
- Dar'ya Sas
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Fanny Gaudel
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Dorly Verdier
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
| | - Arlette Kolta
- Département de NeurosciencesUniversité de MontréalMontréalQuébecCanada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA)MontréalQuébecCanada
- Faculté de Médecine DentaireUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
3
|
Hough RA, McClellan AD. Spinal cord injury significantly alters the properties of reticulospinal neurons: delayed repolarization mediated by potassium channels. J Neurophysiol 2023; 130:1265-1281. [PMID: 37820016 PMCID: PMC10994645 DOI: 10.1152/jn.00251.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
After rostral spinal cord injury (SCI) of lampreys, the descending axons of injured (axotomized) reticulospinal (RS) neurons regenerate and locomotor function gradually recovers. Our previous studies indicated that relative to uninjured lamprey RS neurons, injured RS neurons display several dramatic changes in their biophysical properties, called the "injury phenotype." In the present study, at the onset of applied depolarizing current pulses for membrane potentials below as well as above threshold for action potentials (APs), injured RS neurons displayed a transient depolarization consisting of an initial depolarizing component followed by a delayed repolarizing component. In contrast, for uninjured neurons the transient depolarization was mostly only evident at suprathreshold voltages when APs were blocked. For injured RS neurons, the delayed repolarizing component resisted depolarization to threshold and made these neurons less excitable than uninjured RS neurons. After block of voltage-gated sodium and calcium channels for injured RS neurons, the transient depolarization was still present. After a further block of voltage-gated potassium channels, the delayed repolarizing component was abolished or significantly reduced, with little or no effect on the initial depolarizing component. Voltage-clamp experiments indicated that the delayed repolarizing component was due to a noninactivating outward-rectifying potassium channel whose conductance (gK) was significantly larger for injured RS neurons compared to that for uninjured neurons. Thus, SCI results in an increase in gK and other changes in the biophysical properties of injured lamprey RS neurons that lead to a reduction in excitability, which is proposed to create an intracellular environment that supports axonal regeneration.NEW & NOTEWORTHY After spinal cord injury (SCI), lamprey reticulospinal (RS) neurons responded to subthreshold depolarizing current pulses with a transient depolarization, which included an initial depolarization that was due to passive channels followed by a delayed repolarization that was mediated by voltage-gated potassium channels. The conductance of these channels (gK) was significantly increased for RS neurons after SCI and contributed to a reduction in excitability, which is expected to provide supportive conditions for subsequent axonal regeneration.
Collapse
Affiliation(s)
- Ryan A Hough
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
| | - Andrew D McClellan
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, United States
| |
Collapse
|
4
|
Viatchenko-Karpinski V, Kong L, Weng HR. Deficient AMPK activity contributes to hyperexcitability in peripheral nociceptive sensory neurons and thermal hyperalgesia in lupus mice. PLoS One 2023; 18:e0288356. [PMID: 37440542 PMCID: PMC10343046 DOI: 10.1371/journal.pone.0288356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Patients with systemic lupus erythematosus (SLE) often suffer from chronic pain. Little is known about the peripheral mechanisms underlying the genesis of chronic pain induced by SLE. The aim of this study was to investigate whether and how membrane properties in nociceptive neurons in the dorsal root ganglions (DRGs) are altered by SLE. We found elevation of resting membrane potentials, smaller capacitances, lower action potential thresholds and rheobases in nociceptive neurons in the DRGs from MRL/lpr mice (an SLE mouse model) with thermal hyperalgesia. DRGs from MRL/lpr mice had increased protein expressions in TNFα, IL-1β, and phosphorylated ERK but suppressed AMPK activity, and no changes in sodium channel 1.7 protein expression. We showed that intraplantar injection of Compound C (an AMPK inhibitor) induced thermal hyperalgesia in normal mice while intraplantar injection of AICAR (an AMPK activator) reduced thermal hyperalgesia in MRL/Lpr mice. Upon inhibition of AMPK membrane properties in nociceptive neurons from normal control mice could be rapidly switched to those found in SLE mice with thermal hyperalgesia. Our study indicates that increased excitability in peripheral nociceptive sensory neurons contributes to the genesis of thermal hyperalgesia in mice with SLE, and AMPK regulates membrane properties in nociceptive sensory neurons as well as thermal hyperalgesia in mice with SLE. Our study provides a basis for targeting signaling pathways regulating membrane properties of peripheral nociceptive neurons as a means for conquering chronic pain caused by SLE.
Collapse
Affiliation(s)
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States of America
| | - Han-Rong Weng
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States of America
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, United States of America
| |
Collapse
|
5
|
Song J, Jiang M, Jin Y, Li H, Li Y, Liu Y, Yu H, Huang X. Phytol from Faeces Bombycis alleviated migraine pain by inhibiting Nav1.7 sodium channels. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116161. [PMID: 36646158 DOI: 10.1016/j.jep.2023.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/11/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Faeces Bombycis (silkworm excrement, called Cansha in Chinese), is the dried faeces of the larvae of silkworm. According to the theories of traditional Chinese medicine recorded in "Compendium of Materia Medica", Faeces Bombycis has often been prescribed in traditional Chinese medicine for the treatment of recurrent headache, rheumatalgia, rubella and itching et al. However, the bioactive components and their exact mechanisms underlying the pain-relieving effects remain to be revealed. AIM OF THE STUDY The present study aimed to evaluate the analgesic effect of Faeces Bombycis extract (FBE) on migraine, explore the main active constituents and investigate the pharmacological mechanisms for its pain relief. MATERIALS AND METHODS The bioactivity of different extracts from Faeces Bombycis was tracked by the nitroglycerin (NTG)-induced migraine model on rats and identified by NMR spectroscopic data. Whole-cell patch clamp technique, an electrophysiological method, was used to screen the potential targets and study the mechanism of action for the bioactive compound. The following targets have been screened and studied, including Nav1.7 sodium channels, Nav1.8 sodium channels, TRPV1 channels and TRPA1 channels. The trigeminal ganglion neurons were further used to study the effects of the identified compound on neuronal excitability. RESULTS By testing the bioactivity of the different extracts proceedingly, fraction petroleum ether showed higher anti-migraine activity. Through further step-by-step isolations, 7 compounds were isolated. Among them, phytol was identified with the highest yield and displayed a potent anti-migraine effect. By screening the potential ion channel targets for migraine, phytol was found to preferentially block the inactivated state of Nav1.7 sodium channels with half-inhibition concentration 0.32 ± 0.05 μM. Thus, the effects of phytol on the biophysical properties of Nav1.7 sodium channels were further characterized. Phytol induced a hyperpolarizing shift of voltage-dependent inactivation and slowed the recovery from inactivation. The affinity of phytol became weaker in the inactivation-deficient Nav1.7 channels (Nav1.7-WCW). And such an effect was independent on the local anesthetic site (Nav1.7 F1737A). Consistent with the data from recombinant channels, the compound also displayed state-dependent inhibition on neuronal sodium channels and further decreased the neuronal excitability in trigeminal ganglion neurons. Moreover, besides Nav1.7 channel, phytol also antagonized the activation of TRPV1 and TRPA1 channels at micromolar concentrations with a weaker affinity. CONCLUSION Our results demonstrated that phytol is the major anti-migraine ingredient of Faeces Bombycis and alleviates migraine behaviors by acting on Nav1.7 sodium channels in the trigeminal ganglion neurons. This study provided evidences for the therapeutic application of Faeces Bombycis and phytol on migraine disease.
Collapse
Affiliation(s)
- Jianan Song
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Department of Neurobiology, Harbin Medical University, Harbin, 150086, China.
| | - Mengyuan Jiang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongrui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Yanhong Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, Harbin, 150086, China.
| | - Haibo Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Xiangzhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650504, China.
| |
Collapse
|
6
|
Kearns A, Jayasi J, Liu X, Wang J, Shi Y, Chung JM, La JH, Tang SJ, Bae C. Neuron Type-Dependent Synaptic Activity in the Spinal Dorsal Horn of Opioid-Induced Hyperalgesia Mouse Model. Front Synaptic Neurosci 2021; 13:748929. [PMID: 34867259 PMCID: PMC8637419 DOI: 10.3389/fnsyn.2021.748929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Opioids are widely used for pain relief; however, chronic opioid use causes a paradoxical state of enhanced pain sensitivity, termed “Opioid-induced hyperalgesia (OIH).” Despite the clinical importance of OIH, the detailed mechanism by which it enhances pain sensitivity remains unclear. In this study, we tested whether repeated morphine induces a neuronal circuit polarization in the mouse spinal dorsal horn (SDH). Transgenic mice expressing GFP to neurokinin 1 receptor-expressing neurons (sNK1Rn) and GABAergic interneurons (sGABAn) that received morphine [20 mg/kg, once daily for four consecutive days (i.p.)] developed mechanical hypersensitivity. Repeated morphine altered synaptic strengths in the SDH as a specific cell-type but not in a gender-dependent manner. In sNK1Rn and non-tonic firing neurons, repeated morphine treatment significantly increased frequency of spontaneous excitatory postsynaptic current (sEPSC) and evoked EPSC (eEPSC). In addition, repeated morphine treatment significantly decreased evoked inhibitory postsynaptic current (eIPSC) in sNK1Rn. Conversely, in sGABAn and tonic firing neurons, repeated morphine treatment significantly decreased sEPSC frequency and eEPSC, but had no change of eIPSC in sGABAn. Interestingly, repeated morphine treatment significantly decreased neuronal rheobase of sNK1Rn but had no effect on sGABAn. These findings suggest that spinal neuronal circuit polarization maybe the mechanism of OIH and identify a potential therapeutic mechanism to prevent or treat opioid-induced pain.
Collapse
Affiliation(s)
- Austin Kearns
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL, United States
| | - Jazmine Jayasi
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL, United States
| | - Xin Liu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Jigong Wang
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Yuqiang Shi
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Jin Mo Chung
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Jun-Ho La
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Shao-Jun Tang
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Chilman Bae
- School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL, United States.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Spinal Cord Injury Significantly Alters the Properties of Reticulospinal Neurons: I. Biophysical Properties, Firing Patterns, Excitability, and Synaptic Inputs. Cells 2021; 10:cells10081921. [PMID: 34440690 PMCID: PMC8392545 DOI: 10.3390/cells10081921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Following spinal cord injury (SCI) for larval lampreys, descending axons of reticulospinal (RS) neurons regenerate, and locomotor function gradually recovers. In the present study, the electrophysiological properties of uninjured (left)-injured (right) pairs of large, identified RS neurons were compared following rostral, right spinal cord hemi-transections (HTs). First, changes in firing patterns of injured RS neurons began in as little as 2-3 days following injury, these changes were maximal at ~2-3 weeks (wks), and by 12-16 wks normal firing patterns were restored for the majority of neurons. Second, at ~2-3 wks following spinal cord HTs, injured RS neurons displayed several significant changes in properties compared to uninjured neurons: (a) more hyperpolarized VREST; (b) longer membrane time constant and larger membrane capacitance; (c) increased voltage and current thresholds for action potentials (APs); (d) larger amplitudes and durations for APs; (e) higher slope for the repolarizing phase of APs; (f) virtual absence of some afterpotential components, including the slow afterhyperpolarization (sAHP); (g) altered, injury-type firing patterns; and (h) reduced average and peak firing (spiking) frequencies during applied depolarizing currents. These altered properties, referred to as the "injury phenotype", reduced excitability and spiking frequencies of injured RS neurons compared to uninjured neurons. Third, artificially injecting a current to add a sAHP waveform following APs for injured neurons or removing the sAHP following APs for uninjured neurons did not convert these neurons to normal firing patterns or injury-type firing patterns, respectively. Fourth, trigeminal sensory-evoked synaptic responses recorded from uninjured and injured pairs of RS neurons were not significantly different. Following SCI, injured lamprey RS neurons displayed several dramatic changes in their biophysical properties that are expected to reduce calcium influx and provide supportive intracellular conditions for axonal regeneration.
Collapse
|
8
|
Djouhri L, Zeidan A, Alzoghaibi M, Al Otaibi MF, Abd El-Aleem SA. L5 Spinal Nerve Axotomy Induces Distinct Electrophysiological Changes in Axotomized L5- and Adjacent L4-Dorsal Root Ganglion Neurons in Rats In Vivo. J Neurotrauma 2020; 38:330-341. [PMID: 32993425 DOI: 10.1089/neu.2020.7264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Peripheral neuropathic pain (PNP) is a major health problem for which effective drug treatment is lacking. Its underlying neuronal mechanisms are still illusive, but pre-clinical studies using animal models of PNP including the L5-spinal nerve axotomy (L5-SNA) model, suggest that it is partly caused by excitability changes in dorsal root ganglion (DRG) neurons. L5-SNA results in two DRG neuronal groups: (1) axotomized/damaged neurons in L5- plus some in L4-DRGs, and (2) ipsilateral L4-neurons with intact/uninjured fibers intermingling with degenerating L5-fibers. The axotomized neurons are deprived of peripherally derived trophic factors and degenerate causing neuroinflammation, whereas the uninjured L4-neuorns are subject to increased trophic factors and neuroinflammation associated with Wallerian degeneration of axotomized L5-nerve fibers. Whether these two groups of DRG neurons exhibit similar or distinct electrophysiological changes after L5-SNA remains unresolved. Conflicting evidence for this may result from some studies assuming that all L4-fibers are undamaged. Here, we recorded somatic action potentials (APs) intracellularly from C- and A-fiber L4/L5 DRG neurons in vivo, to examine our hypothesis that L5-SNA would induce distinct electrophysiological changes in the two populations of DRG neurons. Consistent with this hypothesis, we found (7 days post-SNA), in SNA rats with established pain hypersensitivity, slower AP kinetics in axotomized L5-neurons and faster AP kinetics in L4-nociceptive neurons including decreased rise time in Aδ-and Aβ-fiber nociceptors, and after-hyperpolarization duration in Aβ-fiber nociceptors. We also found several changes in axotomized L5-neurons but not in L4-nociceptive neurons, and some changes in L4-nociceptive but not L5-neurons. The faster AP kinetics (decreased refractory period) in L4-nociceptive neurons that are consistent with their reported hyperexcitability may lead to repetitive firing and thus provide enhanced afferent input necessary for initiating and/or maintaining PNP development. The changes in axotomized L5-neurons may contribute to the central mechanisms of PNP via enhanced neurotransmitter release in the central nervous system (CNS).
Collapse
Affiliation(s)
- Laiche Djouhri
- Department of Basic Medical Sciences, College of Medicine (QU Health), Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine (QU Health), Qatar University, Doha, Qatar
| | - Mohammad Alzoghaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad F Al Otaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Seham A Abd El-Aleem
- Department of Histology and Cell Biology, University of Manchester, Manchester, United Kingdom.,Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
9
|
Chakrabarti S, Pattison LA, Singhal K, Hockley JRF, Callejo G, Smith ESJ. Acute inflammation sensitizes knee-innervating sensory neurons and decreases mouse digging behavior in a TRPV1-dependent manner. Neuropharmacology 2018; 143:49-62. [PMID: 30240782 PMCID: PMC6277850 DOI: 10.1016/j.neuropharm.2018.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
Ongoing, spontaneous pain is characteristic of inflammatory joint pain and reduces an individual's quality of life. To understand the neural basis of inflammatory joint pain, we made a unilateral knee injection of complete Freund's adjuvant (CFA) in mice, which reduced their natural digging behavior. We hypothesized that sensitization of knee-innervating dorsal root ganglion (DRG) neurons underlies this altered behavior. To test this hypothesis, we performed electrophysiological recordings on retrograde labeled knee-innervating primary DRG neuron cultures and measured their responses to a number of electrical and chemical stimuli. We found that 24-h after CFA-induced knee inflammation, knee neurons show a decreased action potential generation threshold, as well as increased GABA and capsaicin sensitivity, but have unaltered acid sensitivity. The inflammation-induced sensitization of knee neurons persisted for 24-h in culture, but was not observed after 48-h in culture. Through immunohistochemistry, we showed that the increased knee neuron capsaicin sensitivity correlated with enhanced expression of the capsaicin receptor, transient receptor potential vanilloid 1 (TRPV1) in knee-innervating neurons of the CFA-injected side. We also observed an increase in the co-expression of TRPV1 with tropomyosin receptor kinase A (TrkA), which is the receptor for nerve growth factor (NGF), suggesting that NGF partially induces the increased TRPV1 expression. Lastly, we found that systemic administration of the TRPV1 antagonist, A-425619, reversed the decrease in digging behavior induced by CFA injection, further confirming the role of TRPV1, expressed by knee neurons, in acute inflammatory joint pain.
Knee inflammation decreases digging behavior in mice. Knee-innervating dorsal root ganglion neurons are hyperexcitable after inflammation. NGF-mediated increase in TRPV1 expression is observed in knee-innervating neurons. Systemic TRPV1 antagonist administration normalises digging behavior in mice.
Collapse
Affiliation(s)
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Kaajal Singhal
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Gerard Callejo
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
10
|
Xie RG, Chu WG, Hu SJ, Luo C. Characterization of Different Types of Excitability in Large Somatosensory Neurons and Its Plastic Changes in Pathological Pain States. Int J Mol Sci 2018; 19:ijms19010161. [PMID: 29303989 PMCID: PMC5796110 DOI: 10.3390/ijms19010161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022] Open
Abstract
Sensory neuron types have been distinguished by distinct morphological and transcriptional characteristics. Excitability is the most fundamental functional feature of neurons. Mathematical models described by Hodgkin have revealed three types of neuronal excitability based on the relationship between firing frequency and applied current intensity. However, whether natural sensory neurons display different functional characteristics in terms of excitability and whether this excitability type undergoes plastic changes under pathological pain states have remained elusive. Here, by utilizing whole-cell patch clamp recordings, behavioral and pharmacological assays, we demonstrated that large dorsal root ganglion (DRG) neurons can be classified into three classes and four subclasses based on their excitability patterns, which is similar to mathematical models raised by Hodgkin. Analysis of hyperpolarization-activated cation current (Ih) revealed different magnitude of Ih in different excitability types of large DRG neurons, with higher Ih in Class 2-1 than that in Class 1, 2-2 and 3. This indicates a crucial role of Ih in the determination of excitability type of large DRG neurons. More importantly, this pattern of excitability displays plastic changes and transition under pathological pain states caused by peripheral nerve injury. This study sheds new light on the functional characteristics of large DRG neurons and extends functional classification of large DRG neurons by integration of transcriptomic and morphological characteristics.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen-Guang Chu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - San-Jue Hu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
11
|
Margas W, Ferron L, Nieto-Rostro M, Schwartz A, Dolphin AC. Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0430. [PMID: 27377724 PMCID: PMC4938030 DOI: 10.1098/rstb.2015.0430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 12/12/2022] Open
Abstract
Gene deletion of the voltage-gated calcium channel auxiliary subunit α2δ-1 has been shown previously to have a cardiovascular phenotype, and a reduction in mechano- and cold sensitivity, coupled with delayed development of neuropathic allodynia. We have also previously shown that dorsal root ganglion (DRG) neuron calcium channel currents were significantly reduced in α2δ-1 knockout mice. To extend our findings in these sensory neurons, we have examined here the properties of action potentials (APs) in DRG neurons from α2δ-1 knockout mice in comparison to their wild-type (WT) littermates, in order to dissect how the calcium channels that are affected by α2δ-1 knockout are involved in setting the duration of individual APs and their firing frequency. Our main findings are that there is reduced Ca2+ entry on single AP stimulation, particularly in the axon proximal segment, reduced AP duration and reduced firing frequency to a 400 ms stimulation in α2δ-1 knockout neurons, consistent with the expected role of voltage-gated calcium channels in these events. Furthermore, lower intracellular Ca2+ buffering also resulted in reduced AP duration, and a lower frequency of AP firing in WT neurons, mimicking the effect of α2δ-1 knockout. By contrast, we did not obtain any consistent evidence for the involvement of Ca2+-activation of large conductance calcium-activated potassium (BK) and small conductance calcium-activated potassium (SK) channels in these events. In conclusion, the reduced Ca2+ elevation as a result of single AP stimulation is likely to result from the reduced duration of the AP in α2δ-1 knockout sensory neurons. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’.
Collapse
Affiliation(s)
- Wojciech Margas
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Manuela Nieto-Rostro
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Arnold Schwartz
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0557, USA
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Rat model of cancer-induced bone pain: changes in nonnociceptive sensory neurons in vivo. Pain Rep 2017; 2:e603. [PMID: 29392218 PMCID: PMC5741358 DOI: 10.1097/pr9.0000000000000603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/15/2017] [Accepted: 04/25/2017] [Indexed: 01/31/2023] Open
Abstract
Nonnociceptive sensory neurons relate to transient episodes of intense pain that characterize neuropathic pain. They are involved in the peripheral sensitization and tactile hypersensitivity. Introduction: Clinical data on cancer-induced bone pain (CIBP) suggest extensive changes in sensory function. In a previous investigation of an animal model of CIBP, we have observed that changes in intrinsic membrane properties and excitability of dorsal root ganglion (DRG) nociceptive neurons correspond to mechanical allodynia and hyperalgesia. Objectives: To investigate the mechanisms underlying changes in nonnociceptive sensory neurons in this model, we have compared the electrophysiological properties of primary nonnociceptive sensory neurons at <1 and >2 weeks after CIBP model induction with properties in sham control animals. Methods: Copenhagen rats were injected with 106 MAT-LyLu rat prostate cancer cells into the distal femur epiphysis to generate a model of CIBP. After von Frey tactile measurement of mechanical withdrawal thresholds, the animals were prepared for acute electrophysiological recordings of mechanically sensitive neurons in the DRG in vivo. Results: The mechanical withdrawal threshold progressively decreased in CIBP model rats. At <1 week after model induction, there were no changes observed in nonnociceptive Aβ-fiber DRG neurons between CIBP model rats and sham rats. However, at >2 weeks, the Aβ-fiber low-threshold mechanoreceptors (LTMs) in CIBP model rats exhibited a slowing of the dynamics of action potential (AP) genesis, including wider AP duration and lower AP amplitude compared with sham rats. Furthermore, enhanced excitability of Aβ-fiber LTM neurons was observed as an excitatory discharge in response to intracellular injection of depolarizing current into the soma. Conclusion: After induction of the CIBP model, Aβ-fiber LTMs at >2 weeks but not <1 week had undergone changes in electrophysiological properties. Importantly, changes observed are consistent with observations in models of peripheral neuropathy. Thus, Aβ-fiber nonnociceptive primary sensory neurons might be involved in the peripheral sensitization and tumor-induced tactile hypersensitivity in CIBP.
Collapse
|
13
|
Liu DL, Wang X, Chu WG, Lu N, Han WJ, Du YK, Hu SJ, Bai ZT, Wu SX, Xie RG, Luo C. Chronic cervical radiculopathic pain is associated with increased excitability and hyperpolarization-activated current ( I h) in large-diameter dorsal root ganglion neurons. Mol Pain 2017; 13:1744806917707127. [PMID: 28587505 PMCID: PMC5466279 DOI: 10.1177/1744806917707127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cervical radiculopathic pain is a very common symptom that may occur with cervical
spondylosis. Mechanical allodynia is often associated with cervical radiculopathic pain
and is inadequately treated with current therapies. However, the precise mechanisms
underlying cervical radiculopathic pain-associated mechanical allodynia have remained
elusive. Compelling evidence from animal models suggests a role of large-diameter dorsal
root ganglion neurons and plasticity of spinal circuitry attached with Aβ fibers in
mediating neuropathic pain. Whether cervical radiculopathic pain condition induces plastic
changes of large-diameter dorsal root ganglion neurons and what mechanisms underlie these
changes are yet to be known. With combination of patch-clamp recording,
immunohistochemical staining, as well as behavioral surveys, we demonstrated that upon
chronic compression of C7/8 dorsal root ganglions, large-diameter cervical dorsal root
ganglion neurons exhibited frequent spontaneous firing together with hyperexcitability.
Quantitative analysis of hyperpolarization-activated cation current
(Ih) revealed that Ih was
greatly upregulated in large dorsal root ganglion neurons from cervical radiculopathic
pain rats. This increased Ih was supported by the enhanced
expression of hyperpolarization-activated, cyclic nucleotide-modulated channels subunit 3
in large dorsal root ganglion neurons. Blockade of Ih with
selective antagonist, ZD7288 was able to eliminate the mechanical allodynia associated
with cervical radiculopathic pain. This study sheds new light on the functional plasticity
of a specific subset of large-diameter dorsal root ganglion neurons and reveals a novel
mechanism that could underlie the mechanical allodynia associated with cervical
radiculopathy.
Collapse
Affiliation(s)
- Da-Lu Liu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,2 Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Guang Chu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Na Lu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China.,4 ART Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Wen-Juan Han
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Yi-Kang Du
- 5 The First Brigade, Fourth Military Medical University, Xi'an, China
| | - San-Jue Hu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- 3 Research Center for Resource Polypeptide Drugs and College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Rou-Gang Xie
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- 1 Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Abstract
Chronic neuropathic pain is a widespread problem with negative personal and societal consequences. Despite considerable clinical neuroscience research, the goal of developing effective, reliable, and durable treatments has remained elusive. The critical role played by the dorsal root ganglion (DRG) in the induction and maintenance of chronic pain has been largely overlooked in these efforts, however. It may be that, by targeting this site, robust new options for pain management will be revealed. This review summarizes recent advances in the knowledge base for DRG-targeted treatments for neuropathic pain:• Pharmacological options including the chemical targeting of voltage-dependent calcium channels, transient receptor potential channels, neurotrophin production, potentiation of opioid transduction pathways, and excitatory glutamate receptors.• Ablation or modulation of the DRG via continuous thermal radiofrequency and pulsed radiofrequency treatments.• Implanted electrical neurostimulator technologies.• Interventions involving the modification of DRG cellular function at the genetic level by using viral vectors and gene silencing methods.
Collapse
|
15
|
Simon NG, Franz CK, Gupta N, Alden T, Kliot M. Central Adaptation following Brachial Plexus Injury. World Neurosurg 2016; 85:325-32. [DOI: 10.1016/j.wneu.2015.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
|
16
|
Hua B, Gao Y, Kong X, Yang L, Hou W, Bao Y. New insights of nociceptor sensitization in bone cancer pain. Expert Opin Ther Targets 2014; 19:227-43. [PMID: 25547644 DOI: 10.1517/14728222.2014.980815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Numerous studies have shown that an intact CNS is required for the conscious perception of cancer-induced bone pain (CIBP) and that changes in the CNS are clearly evident. Accordingly, the blockage of nociceptive stimulus into the CNS can effectively relieve or markedly attenuate CIBP, revealing the clinical implication of the blockage of ongoing peripheral inputs for the control of CIBP. AREAS COVERED In this review, the heterogeneity and excitability of nociceptors in bone are covered. Furthermore, their role in initiating and maintaining CIBP is also described. EXPERT OPINION Developing mechanistic therapies to treat CIBP is a challenge, but they have the potential to fundamentally change our ability to effectively block/relieve CIBP and increase the functional status and quality of life of patients with bone metastasis. Further studies are desperately needed at both the preclinical and clinical levels to determine whether the targets as mentioned in this review are viable and feasible for patient populations.
Collapse
Affiliation(s)
- Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Department of Oncology , Beixiange 5, Xicheng District, Beijing 100053 , China +86 10 88001221 ; +86 10 88001340 ;
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Neuropathic pain often fails to respond to conventional pain management procedures. here we review the aetiology of neuropathic pain as would result from peripheral neuropathy or injury. We show that inflammatory mediators released from damaged nerves and tissue are responsible for triggering ectopic activity in primary afferents and that this, in turn, provokes increased spinal cord activity and the development of ‘central sensitization’. Although evidence is mounting to support the role of interleukin-1β, prostaglandins and other cytokines in the onset of neuropathic pain, the clinical efficacy of drugs which antagonize or prevent the actions of these mediators is yet to be determined. basic science findings do, however, support the use of pre-emptive analgesia during procedures which involve nerve manipulation and the use of anti-inflammatory steroids as soon as possible following traumatic nerve injury.
Collapse
|
18
|
Cummins TR, Rush AM. Voltage-gated sodium channel blockers for the treatment of neuropathic pain. Expert Rev Neurother 2014; 7:1597-612. [DOI: 10.1586/14737175.7.11.1597] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Zhao X, Tang Z, Zhang H, Atianjoh FE, Zhao JY, Liang L, Wang W, Guan X, Kao SC, Tiwari V, Gao YJ, Hoffman PN, Cui H, Li M, Dong X, Tao YX. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci 2013; 16:1024-31. [PMID: 23792947 DOI: 10.1038/nn.3438] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/16/2013] [Indexed: 12/18/2022]
Abstract
Neuropathic pain is a refractory disease characterized by maladaptive changes in gene transcription and translation in the sensory pathway. Long noncoding RNAs (lncRNAs) are emerging as new players in gene regulation, but how lncRNAs operate in the development of neuropathic pain is unclear. Here we identify a conserved lncRNA, named Kcna2 antisense RNA, for a voltage-dependent potassium channel mRNA, Kcna2, in first-order sensory neurons of rat dorsal root ganglion (DRG). Peripheral nerve injury increased Kcna2 antisense RNA expression in injured DRG through activation of myeloid zinc finger protein 1, a transcription factor that binds to the Kcna2 antisense RNA gene promoter. Mimicking this increase downregulated Kcna2, reduced total voltage-gated potassium current, increased excitability in DRG neurons and produced neuropathic pain symptoms. Blocking this increase reversed nerve injury-induced downregulation of DRG Kcna2 and attenuated development and maintenance of neuropathic pain. These findings suggest endogenous Kcna2 antisense RNA as a therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xiuli Zhao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
n5-STZ Diabetic Model Develops Alterations in Sciatic Nerve and Dorsal Root Ganglia Neurons of Wistar Rats. ISRN ENDOCRINOLOGY 2013; 2013:638028. [PMID: 23476801 PMCID: PMC3588209 DOI: 10.1155/2013/638028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/18/2012] [Indexed: 12/20/2022]
Abstract
One experimental model of diabetes mellitus (DM) similar to type
II DM, called n5-STZ, is obtained by a single injection (via i.p.)
of streptozotocin (STZ) in the 5th day of life of newborn rats.
The present investigation aimed to characterize alterations in
excitability of rat peripheral neurons in n5-STZ model. n5-STZ DM
was induced, and electrophysiological evaluation was done at 12th
week of rat life. Rats developed glucose intolerance, sensory
alteration, and hyperglycemia or near-normoglycemia (21.2 ± 1.6 and 7.4 ± 0.4 mmol/L). In near-normoglycemia group the significant
electrophysiological alteration observed was decreased in
amplitude of 2nd wave (2nd component, conduction velocity:
48.8 m/s) of compound action potential (CAP) of sciatic nerve. For
hyperglycemic rats, decreased excitability, amplitude, and
conduction velocity of 2nd CAP component of sciatic nerve were
found; a depolarization of resting potential (4-5 mV) and reduction
in maximum ascendant and descendant inclinations of action
potential were found in DRG neurons but no alteration on
Na+ current (INa+).
Thus, n5-STZ rats develop alterations in
excitability which were related to glycemic levels but were not
likely attributable to changes on INa+. Our data confirm that
n5-STZ model is a useful model to study type II DM.
Collapse
|
21
|
Hagenacker T, Schäfer N, Büsselberg D, Schäfers M. Analgesic ineffectiveness of lacosamide after spinal nerve ligation and its sodium channel activity in injured neurons. Eur J Pain 2012; 17:881-92. [DOI: 10.1002/j.1532-2149.2012.00260.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/10/2022]
Affiliation(s)
- T. Hagenacker
- Department of Neurology; University Hospital Essen; Germany
| | - N. Schäfer
- Department of Neurology; University Hospital Essen; Germany
| | - D. Büsselberg
- Weill Cornell Medical College in Qatar; Qatar Foundation-Education City; Doha; Qatar
| | - M. Schäfers
- Department of Neurology; University Hospital Essen; Germany
| |
Collapse
|
22
|
Zhu YF, Wu Q, Henry JL. Changes in functional properties of A-type but not C-type sensory neurons in vivo in a rat model of peripheral neuropathy. J Pain Res 2012; 5:175-92. [PMID: 22792004 PMCID: PMC3392709 DOI: 10.2147/jpr.s26367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study was to compare primary sensory neurons in controls and in an animal neuropathic pain model in order to understand which types of neurons undergo changes associated with peripheral neuropathy. On the basis of intracellular recordings in vivo from somata, L4 sensory dorsal root ganglion neurons were categorized according to action potential configuration, conduction velocity, and receptive field properties to mechanical stimuli. Methods Intracellular recordings were made from functionally identified dorsal root ganglion neurons in vivo in the Mosconi and Kruger animal model of peripheral neuropathic pain. Results In this peripheral neuropathy model, a specific population of Aβ-fiber low threshold mechanoreceptor neurons, which respond normally to innocuous mechanical stimuli, exhibited differences in action potential configuration and conduction velocity when compared with control animals. No abnormal conduction velocity, action potential shapes, or tactile sensitivity of C-fiber neurons were encountered. Conclusion This study provides evidence for defining a potential role of Aβ-fiber low threshold mechanoreceptor neurons that might contribute to peripheral neuropathic pain.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G DeGroote Institute for Pain Research and Care, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
23
|
Hirakawa R, El-Bizri N, Shryock JC, Belardinelli L, Rajamani S. Block of Na+ currents and suppression of action potentials in embryonic rat dorsal root ganglion neurons by ranolazine. Neuropharmacology 2012; 62:2251-60. [DOI: 10.1016/j.neuropharm.2012.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/13/2011] [Accepted: 01/21/2012] [Indexed: 12/19/2022]
|
24
|
Wu Q, Henry JL. Functional changes in muscle afferent neurones in an osteoarthritis model: implications for impaired proprioceptive performance. PLoS One 2012; 7:e36854. [PMID: 22606297 PMCID: PMC3351471 DOI: 10.1371/journal.pone.0036854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 04/14/2012] [Indexed: 01/02/2023] Open
Abstract
Background Impaired proprioceptive performance is a significant clinical issue for many who suffer osteoarthritis (OA) and is a risk factor for falls and other liabilities. This study was designed to evaluate weight-bearing distribution in a rat model of OA and to determine whether changes also occur in muscle afferent neurones. Methodology/Principal Findings Intracellular recordings were made in functionally identified dorsal root ganglion neurones in acute electrophysiological experiments on the anaesthetized animal following measurements of hind limb weight bearing in the incapacitance test. OA rats but not naïve control rats stood with less weight on the ipsilateral hind leg (P = 0.02). In the acute electrophysiological experiments that followed weight bearing measurements, action potentials (AP) elicited by electrical stimulation of the dorsal roots differed in OA rats, including longer AP duration (P = 0.006), slower rise time (P = 0.001) and slower maximum rising rate (P = 0.03). Depolarizing intracellular current injection elicited more APs in models than in naïve muscle afferent neurones (P = 0.01) indicating greater excitability. Axonal conduction velocity in model animals was slower (P = 0.04). Conclusions/Significance The present study demonstrates changes in hind limb stance accompanied by changes in the functional properties of muscle afferent neurones in this derangement model of OA. This may provide a possible avenue to explore mechanisms underlying the impaired proprioceptive performance and perhaps other sensory disorders in people with OA.
Collapse
Affiliation(s)
- Qi Wu
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - James L. Henry
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Zheng Q, Fang D, Cai J, Wan Y, Han JS, Xing GG. Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain. Mol Pain 2012; 8:24. [PMID: 22472208 PMCID: PMC3379961 DOI: 10.1186/1744-8069-8-24] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 04/03/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG) neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain. RESULTS Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1) depolarized resting membrane potential (RMP); 2) decreased input resistance (Rin); 3) a marked reduction in current threshold (CT) and voltage threshold (TP) of action potential (AP); 4) a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP); and 5) a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone cancer rats. In addiotion, immunofluorescent staining and single-cell reverse-transcriptase PCR revealed that in isolated small DRG neurons, most neurons were IB4-positive, or expressed TRPV1 or CGRP, indicating that most recorded small DRG neurons were nociceptive neurons. Finally, using in vivo behavioral test, we found that blockade of DRG neurons activity by TTX inhibited the tumor-evoked mechanical allodynia and thermal hyperalgesia in bone cancer rats, implicating that the enhanced excitability of primary sensory neurons underlied the development of bone cancer pain. CONCLUSIONS Our present results suggest that implantation of tumor cells into the tibial canal in rats induces an enhanced excitability of small-sized DRG neurons that is probably as results of alterations in intrinsic electrogenic properties of these neurons. Therefore, alterations in intrinsic membrane properties associated with the hyperexcitability of primary sensory neurons likely contribute to the peripheral sensitization and tumor-induced hyperalgesia under cancer condition.
Collapse
Affiliation(s)
- Qin Zheng
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
- Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
| | - Dong Fang
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
- Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
- Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
- Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
| | - Ji-Sheng Han
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
- Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
| | - Guo-Gang Xing
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
- Key Laboratory for Neuroscience of the Ministry of Education and the Ministry of Public Health, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
| |
Collapse
|
26
|
Excitability of Aβ sensory neurons is altered in an animal model of peripheral neuropathy. BMC Neurosci 2012; 13:15. [PMID: 22289651 PMCID: PMC3292996 DOI: 10.1186/1471-2202-13-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 01/30/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Causes of neuropathic pain following nerve injury remain unclear, limiting the development of mechanism-based therapeutic approaches. Animal models have provided some directions, but little is known about the specific sensory neurons that undergo changes in such a way as to induce and maintain activation of sensory pain pathways. Our previous studies implicated changes in the Aβ, normally non-nociceptive neurons in activating spinal nociceptive neurons in a cuff-induced animal model of neuropathic pain and the present study was directed specifically at determining any change in excitability of these neurons. Thus, the present study aimed at recording intracellularly from Aβ-fiber dorsal root ganglion (DRG) neurons and determining excitability of the peripheral receptive field, of the cell body and of the dorsal roots. METHODS A peripheral neuropathy was induced in Sprague Dawley rats by inserting two thin polyethylene cuffs around the right sciatic nerve. All animals were confirmed to exhibit tactile hypersensitivity to von Frey filaments three weeks later, before the acute electrophysiological experiments. Under stable intracellular recording conditions neurons were classified functionally on the basis of their response to natural activation of their peripheral receptive field. In addition, conduction velocity of the dorsal roots, configuration of the action potential and rate of adaptation to stimulation were also criteria for classification. Excitability was measured as the threshold to activation of the peripheral receptive field, the response to intracellular injection of depolarizing current into the soma and the response to electrical stimulation of the dorsal roots. RESULTS In control animals mechanical thresholds of all neurons were within normal ranges. Aβ DRG neurons in neuropathic rats demonstrated a mean mechanical threshold to receptive field stimulation that were significantly lower than in control rats, a prolonged discharge following this stimulation, a decreased activation threshold and a greater response to depolarizing current injection into the soma, as well as a longer refractory interval and delayed response to paired pulse electrical stimulation of the dorsal roots. CONCLUSIONS The present study has demonstrated changes in functionally classified Aβ low threshold and high threshold DRG neurons in a nerve intact animal model of peripheral neuropathy that demonstrates nociceptive responses to normally innocuous cutaneous stimuli, much the same as is observed in humans with neuropathic pain. We demonstrate further that the peripheral receptive fields of these neurons are more excitable, as are the somata. However, the dorsal roots exhibit a decrease in excitability. Thus, if these neurons participate in neuropathic pain this differential change in excitability may have implications in the peripheral drive that induces central sensitization, at least in animal models of peripheral neuropathic pain, and Aβ sensory neurons may thus contribute to allodynia and spontaneous pain following peripheral nerve injury in humans.
Collapse
|
27
|
Stemkowski PL, Smith PA. Long-term IL-1β exposure causes subpopulation-dependent alterations in rat dorsal root ganglion neuron excitability. J Neurophysiol 2011; 107:1586-97. [PMID: 22170966 DOI: 10.1152/jn.00587.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The effect of interleukin-1β (IL-1β) on the electrical properties of sensory neurons was assessed at levels and exposure times comparable to those found in animal models of neuropathic pain. Experiments involved whole cell current-clamp recordings from rat dorsal root ganglion (DRG) neurons in defined-medium, neuron-enriched cultures. Five- to six-day exposure to 100 pM IL-1β produced subpopulation-dependent effects on DRG neurons. These included an increase in the excitability of medium-diameter and small-diameter isolectin B(4) (IB(4))-positive neurons that was comparable to that found after peripheral nerve injury. By contrast, a reduction in excitability was observed in large-diameter neurons, while no effect was found in small-diameter IB(4)-negative neurons. Further characterization of changes in medium and small IB(4)-positive neurons revealed that some, but not all, effects of IL-1β were mediated through its receptor, IL-1RI. Although the acute actions of IL-1β on sensory neurons have been well studied and related to acute and/or inflammatory pain, the present study shows how sensory neurons respond to long-term cytokine exposure. Such effects are relevant to understanding processes that contribute to the onset of neuropathic pain.
Collapse
|
28
|
Does norepinephrine influence pain behavior mediated by dorsal root ganglia?: a pilot study. Clin Orthop Relat Res 2011; 469:2568-76. [PMID: 21312078 PMCID: PMC3148377 DOI: 10.1007/s11999-011-1798-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 01/20/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Postganglionic neurons in the sympathetic nervous system reportedly are involved in lumbar radicular pain and release norepinephrine (NE), a neurotransmitter. Increased numbers of sympathetic nerve fibers have been found in dorsal root ganglion (DRG) neurons in a root constriction model. Whether this is a reasonable model for pain, however, is unclear QUESTIONS/PURPOSES We asked whether: (1) painful behaviors occurred in the root constriction model; (2) NE enhanced the excitability of DRG neurons in the root constriction model; and (3) which adrenoceptors were related to the mediation of the NE effects. METHODS The L5 root was sutured proximal to the DRG as the root constriction model. Behavioral tests were performed until 28 days after surgery. At 10 to 14 days after the root constriction, DRG neurons were quickly excised and digested with collagenase for electrophysiologic studies. Action potentials were recorded from single DRG neurons using a whole-cell patch clamp technique. NE (10 μmol/L) was directly applied to the DRG neurons. The adrenergic sensitivity was examined in combination with antagonists. RESULTS The rats with root constriction exhibited painful behavior. NE increased the excitability of DRG neurons in the root constriction model. The effects of NE were inhibited by pretreatment with an α-antagonist and α(2)-antagonist but not an α(1)-antagonist. CONCLUSIONS Our observations suggest NE plays an important role in generating lumbar radicular pain mainly via α(2)-adrenoceptors. CLINICAL RELEVANCE An α(2)-antagonist may be an appropriate agent for trials to treat lumbar radicular pain.
Collapse
|
29
|
Xie W, Strong JA, Zhang JM. Increased excitability and spontaneous activity of rat sensory neurons following in vitro stimulation of sympathetic fiber sprouts in the isolated dorsal root ganglion. Pain 2010; 151:447-459. [PMID: 20800969 DOI: 10.1016/j.pain.2010.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 11/18/2022]
Abstract
Many chronic pain conditions including complex regional pain syndrome are exacerbated by sympathetic activity. In animal models, sympathetic fibers sprout into the dorsal root ganglia (DRG) after peripheral nerve injury, forming abnormal connections with sensory neurons. However, functional studies of sympathetic-sensory connections have been limited largely to in vivo studies. This study describes a new method for studying sympathetic-sensory connections in an isolated whole DRG preparation in the rat spinal nerve ligation (SNL) model. Three days after ligation of the ventral ramus of the spinal nerve (SNL), sympathetic fibers sprouting into the DRG were observed to originate largely in the intact dorsal ramus of the spinal nerve, which at the lumbar level is a small branch of the spinal nerve separating from the ventral ramus near the intervertebral foramen. In whole DRG isolated 3 days after SNL, microelectrode recordings of sensory neurons showed that repeated stimulation of the dorsal ramus enhanced spontaneous activity in large and medium diameter neurons and reduced rheobase in large neurons. These effects, which were slow and long lasting, were attributed to stimulation of the sympathetic sprouts because: stimulation had no effect in uninjured DRG; and effects could be reduced or eliminated by a "cocktail" of antagonists of norepinephrine and ATP receptors, by pretreatment with the sympathetic release blocker bretylium, or by pre-cutting the grey ramus through which sympathetic fibers coursed to the ligated DRG. The latter treatment, a relatively minimal form of sympathectomy, was also highly effective in reducing mechanical pain ipsilateral to the SNL.
Collapse
Affiliation(s)
- Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | | | | |
Collapse
|
30
|
Wu Q, Henry JL. Changes in Abeta non-nociceptive primary sensory neurons in a rat model of osteoarthritis pain. Mol Pain 2010; 6:37. [PMID: 20594346 PMCID: PMC2908067 DOI: 10.1186/1744-8069-6-37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Pain is a major debilitating factor in osteoarthritis (OA), yet few mechanism-based therapies are available. To address the need to understand underlying mechanisms the aim of the present study was to determine changes in sensory neurons in an animal model of OA pain. Results The model displayed typical osteoarthritis pathology characterized by cartilage degeneration in the knee joint and also manifested knee pathophysiology (edema and increased vasculature permeability of the joint) and altered nociception of the affected limb (hind paw tenderness and knee articulation-evoked reduction in the tail flick latency). Neurons included in this report innervated regions throughout the entire hind limb. Aβ-fiber low threshold mechanoreceptors exhibited a slowing of the dynamics of action potential (AP) genesis, including wider AP duration and slower maximum rising rate, and muscle spindle neurons were the most affected subgroup. Only minor AP configuration changes were observed in either C- or Aδ-fiber nociceptors. Conclusion Thus, at one month after induction of the OA model Aβ-fiber low threshold mechanoreceptors but not C- or Aδ-fiber nociceptors had undergone changes in electrophysiological properties. If these changes reflect a change in functional role of these neurons in primary afferent sensory processing, then Aβ-fiber non-nociceptive primary sensory neurons may be involved in the pathogenesis of OA pain. Further, it is important to point out that the patterns of the changes we observed are consistent with observations in models of peripheral neuropathy but not models of peripheral inflammation.
Collapse
Affiliation(s)
- Qi Wu
- Psychiatry and Behavioral Neurosciences, McMaster University, HSC 4N35, Hamilton, Ontario, Canada
| | | |
Collapse
|
31
|
Cao XY, Xu H, Wu LJ, Li XY, Chen T, Zhuo M. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury. Mol Pain 2009; 5:73. [PMID: 20015370 PMCID: PMC2807858 DOI: 10.1186/1744-8069-5-73] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/16/2009] [Indexed: 01/15/2023] Open
Abstract
The anterior cingulate cortex (ACC) is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i) regular spiking (RS) cells (24.7%), intrinsic bursting (IB) cells (30.9%), and intermediate (IM) cells (44.4%). In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5%) and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner.
Collapse
Affiliation(s)
- Xiao-Yan Cao
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
The role of brain-derived neurotrophic factor in different animal models of neuropathic pain. Eur J Pain 2009; 14:473.e1-9. [PMID: 19959385 DOI: 10.1016/j.ejpain.2009.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 09/22/2009] [Accepted: 09/29/2009] [Indexed: 12/20/2022]
Abstract
Even in present day pain therapy, neuropathic pain remains a challenge for clinicians to treat and a challenge for researchers to investigate. Different animal models have been developed to mimic neuropathic pain. Neurotrophins such as nerve growth factor, brain-derived neurotrophic factor and neurotrophin 3 have been studied extensively in these models, yet few review articles concerning brain-derived neurotrophic factor have been published. This article reassesses the literature concerning brain-derived neurotrophic factor expression in the sciatic nerve chronic constriction injury model, the sciatic nerve transection model, the spinal nerve ligation model and the spinal nerve transection model and discusses differences in regulation of brain-derived neurotrophic factor between these models and their causality with neuropathic pain.
Collapse
|
33
|
Wu Q, Henry JL. Delayed onset of changes in soma action potential genesis in nociceptive A-beta DRG neurons in vivo in a rat model of osteoarthritis. Mol Pain 2009; 5:57. [PMID: 19785765 PMCID: PMC2761878 DOI: 10.1186/1744-8069-5-57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 09/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clinical data on osteoarthritis (OA) suggest widespread changes in sensory function that vary during the progression of OA. In previous studies on a surgically-induced animal model of OA we have observed that changes in structure and gene expression follow a variable trajectory over the initial days and weeks. To investigate mechanisms underlying changes in sensory function in this model, the present electrophysiological study compared properties of primary sensory nociceptive neurons at one and two months after model induction with properties in naïve control animals. Pilot data indicated no difference in C- or Adelta-fiber associated neurons and therefore the focus is on Abeta-fiber nociceptive neurons. RESULTS At one month after unilateral derangement of the knee by cutting the anterior cruciate ligament and removing the medial meniscus, the only changes observed in Abeta-fiber dorsal root ganglion (DRG) neurons were in nociceptor-like unresponsive neurons bearing a hump on the repolarization phase; these changes consisted of longer half width, reflecting slowed dynamics of AP genesis, a depolarized Vm and an increased AP amplitude. At two months, changes observed were in Abeta-fiber high threshold mechanoreceptors, which exhibited shorter AP duration at base and half width, shorter rise time and fall time, and faster maximum rising rate/maximum falling rate, reflecting accelerated dynamics of AP genesis. CONCLUSION These data indicate that Abeta nociceptive neurons undergo significant changes that vary in time and occur later than changes in structure and in nociceptive scores in this surgically induced OA model. Thus, if changes in Abeta-fiber nociceptive neurons in this model reflect a role in OA pain, they may relate to mechanisms underlying pain associated with advanced OA.
Collapse
Affiliation(s)
- Qi Wu
- Michael G DeGroote Institute for Pain Research and Care, McMaster University, 1200 Main Street West, HSC 4N35, Hamilton ON, L8N 3Z5, Canada.
| | | |
Collapse
|
34
|
Wang JG, Strong JA, Xie W, Zhang JM. Local inflammation in rat dorsal root ganglion alters excitability and ion currents in small-diameter sensory neurons. Anesthesiology 2007; 107:322-32. [PMID: 17667578 PMCID: PMC1945168 DOI: 10.1097/01.anes.0000270761.99469.a7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic pain conditions may result from peripheral nerve injury, chronic peripheral inflammation, or sensory ganglia inflammation. However, inflammatory processes may also contribute to peripheral nerve injury responses. To isolate the contribution of local inflammation of sensory ganglia to chronic pain states, the authors previously developed a rat model in which long-lasting pain is induced by inflaming sensory ganglia without injuring the neurons. This results in prolonged mechanical pain, local increases in proinflammatory cytokines, increased neuronal hyperexcitability, and abnormal spontaneous activity. METHODS The authors used whole cell patch clamp in acutely isolated small-diameter neurons to determine how localized inflammation (3-5 days) of L4 and L5 ganglia altered voltage-gated K and Na currents. RESULTS Tetrodotoxin-sensitive Na currents increased twofold to threefold in neurons from inflamed ganglia. Tetrodotoxin-resistant Na currents increased more than twofold, but only in cells that bound isolectin B4. These increases occurred without shifts in voltage dependence of activation and inactivation. Similar results are seen in models of peripheral inflammation, except for the large magnitudes. Unlike most pain models, localized inflammation increased rather than decreased voltage-gated K currents, due to increased amplitudes of the sustained (delayed rectifier) and fast-inactivating transient components. The overall effect in current clamp experiments was an increase in excitability as indicated by decreased rheobase and lower action potential threshold. CONCLUSIONS Neuronal inflammation per se, in the absence of nerve injury, causes large increases in Na channel density and enhanced excitability. The unusual finding of increased K current may reflect regulation of excitability in the face of such large increases in Na current.
Collapse
MESH Headings
- Action Potentials/drug effects
- Anesthetics, Local/administration & dosage
- Animals
- Cells, Cultured
- Disease Models, Animal
- Electric Conductivity
- Electrophysiology/methods
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiopathology
- Inflammation/physiopathology
- Ion Channel Gating
- Membrane Potentials/drug effects
- Neural Conduction/drug effects
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Patch-Clamp Techniques/methods
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/metabolism
- Rats
- Rats, Sprague-Dawley
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Tetrodotoxin/administration & dosage
Collapse
Affiliation(s)
- Jun-Gang Wang
- Research Fellow, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | - Judith A. Strong
- Research Associate Professor, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | - Wenrui Xie
- Research Fellow, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| | - Jun-Ming Zhang
- Associate Professor and Director of Research, Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0531, USA
| |
Collapse
|
35
|
Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82:163-201. [PMID: 17643733 DOI: 10.1016/j.pneurobio.2007.06.005] [Citation(s) in RCA: 641] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/18/2007] [Accepted: 06/14/2007] [Indexed: 01/01/2023]
Abstract
Injuries to the peripheral nerves result in partial or total loss of motor, sensory and autonomic functions conveyed by the lesioned nerves to the denervated segments of the body, due to the interruption of axons continuity, degeneration of nerve fibers distal to the lesion and eventual death of axotomized neurons. Injuries to the peripheral nervous system may thus result in considerable disability. After axotomy, neuronal phenotype switches from a transmitter to a regenerative state, inducing the down- and up-regulation of numerous cellular components as well as the synthesis de novo of some molecules normally not expressed in adult neurons. These changes in gene expression activate and regulate the pathways responsible for neuronal survival and axonal regeneration. Functional deficits caused by nerve injuries can be compensated by three neural mechanisms: the reinnervation of denervated targets by regeneration of injured axons, the reinnervation by collateral branching of undamaged axons, and the remodeling of nervous system circuitry related to the lost functions. Plasticity of central connections may compensate functionally for the lack of specificity in target reinnervation; plasticity in human has, however, limited effects on disturbed sensory localization or fine motor control after injuries, and may even result in maladaptive changes, such as neuropathic pain, hyperreflexia and dystonia. Recent research has uncovered that peripheral nerve injuries induce a concurrent cascade of events, at the systemic, cellular and molecular levels, initiated by the nerve injury and progressing throughout plastic changes at the spinal cord, brainstem relay nuclei, thalamus and brain cortex. Mechanisms for these changes are ubiquitous in central substrates and include neurochemical changes, functional alterations of excitatory and inhibitory connections, atrophy and degeneration of normal substrates, sprouting of new connections, and reorganization of somatosensory and motor maps. An important direction for ongoing research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, but are also able to modulate central nervous system reorganization, amplifying those positive adaptive changes that help to improve functional recovery but also diminishing undesirable consequences.
Collapse
Affiliation(s)
- X Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | |
Collapse
|
36
|
Ritter AM, Ritchie C, Martin WJ. Relationship Between the Firing Frequency of Injured Peripheral Neurons and Inhibition of Firing by Sodium Channel Blockers. THE JOURNAL OF PAIN 2007; 8:287-95. [PMID: 17113351 DOI: 10.1016/j.jpain.2006.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 08/22/2006] [Accepted: 09/02/2006] [Indexed: 01/06/2023]
Abstract
UNLABELLED Animal models of neuropathic pain in which a peripheral nerve is damaged result in spontaneous activity in primary afferents that can be inhibited by intravenous administration of sodium channel blockers. Many of these compounds exhibit use-dependent block of sodium current, leading to the prediction that they should more readily inhibit neurons that fire at higher frequencies. This prediction was tested in 2 rat models of nerve injury, L5 spinal nerve section and sciatic nerve section. Sciatic nerve section produced average firing frequencies that were higher than spinal nerve section and often manifested as high-frequency bursting. Inhibition of firing by intravenous sodium channel blockers was longer lasting in this model. Within each model, higher frequency of firing did not translate into more effective block. In the spinal nerve section model, there was a robust inverse correlation between frequency and inhibition. Within the sciatic section model, only neurons that fired in rhythmic bursts were inhibited, and again, those firing at lower mean frequencies were more effectively inhibited. These results indicate that the efficacy of sodium channel blockers depends on the nature of the injury and the pattern of the resulting activity rather than simply the frequency of action potentials generated. PERSPECTIVE This study examines the ability of frequency-dependent sodium channel blockers to inhibit spontaneous firing of injured peripheral nerves in vivo. It outlines the conditions under which inhibition is more and less effective and will provide insight into conditions under which sodium channel blockers are likely to be therapeutically useful.
Collapse
Affiliation(s)
- Amy M Ritter
- Department of Pharmacology, Merck Research Labs, Rahway, New Jersey 06075, USA.
| | | | | |
Collapse
|
37
|
Zheng JH, Walters ET, Song XJ. Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP. J Neurophysiol 2006; 97:15-25. [PMID: 17021029 DOI: 10.1152/jn.00559.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Injury or inflammation affecting sensory neurons in dorsal root ganglia (DRG) causes hyperexcitability of DRG neurons that can lead to spontaneous firing and neuropathic pain. Recent results indicate that after chronic compression of DRG (CCD treatment), both hyperexcitability of neurons in intact DRG and behaviorally expressed hyperalgesia are maintained by concurrent activity in cAMP-protein kinase A (PKA) and cGMP-protein kinase G (PKG) signaling pathways. We report here that when tested under identical conditions, dissociation produces a pattern of hyperexcitability in small DRG neurons similar to that produced by CCD treatment, manifest as decreased action potential (AP) current threshold, increased AP duration, increased repetitive firing to depolarizing pulses, increased spontaneous firing and resting depolarization. A novel feature of this hyperexcitability is its early expression-as soon as testing can be conducted after dissociation (approximately 2 h). Both forms of injury increase the electrophysiological responsiveness of the neurons to activation of cAMP-PKA and cGMP-PKG pathways as indicated by enhancement of hyperexcitability by agonists of these pathways in dissociated or CCD-treated neurons but not in control neurons. Although inflammatory signals are known to activate cAMP-PKA pathways, dissociation-induced hyperexcitability is unlikely to be triggered by signals released from inflammatory cells recruited to the DRG because of insufficient time for recruitment during the dissociation procedure. Inhibition by specific antagonists indicates that continuing activation of cAMP-PKA and cGMP-PKG pathways is required to maintain hyperexcitability after dissociation. The reduction of hyperexcitability by blockers of adenylyl cyclase and soluble guanylyl cyclase after dissociation suggests a continuing release of autocrine and/or paracrine factors from dissociated neurons and/or satellite cells, which activate both cyclases and help to maintain acute, injury-induced hyperexcitability of DRG neurons.
Collapse
Affiliation(s)
- Ji-Hong Zheng
- Department of Neurobiology, Parker College Research Institute, 2500 Walnut Hill Lane, Dallas, TX 75229, USA.
| | | | | |
Collapse
|
38
|
Brochu RM, Dick IE, Tarpley JW, McGowan E, Gunner D, Herrington J, Shao PP, Ok D, Li C, Parsons WH, Stump GL, Regan CP, Lynch JJ, Lyons KA, McManus OB, Clark S, Ali Z, Kaczorowski GJ, Martin WJ, Priest BT. Block of peripheral nerve sodium channels selectively inhibits features of neuropathic pain in rats. Mol Pharmacol 2006; 69:823-32. [PMID: 16301337 DOI: 10.1124/mol.105.018127] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several sodium channel blockers are used clinically to treat neuropathic pain. However, many patients fail to achieve adequate pain relief from these highly brain-penetrant drugs because of dose-limiting central nervous system side effects. Here, we describe the functional properties of trans-N-{[2'-(aminosulfonyl)biphenyl-4-yl]methyl}-N-methyl-N'-[4-(trifluoromethoxy)benzyl]cyclopentane-1,2-dicarboxamide (CDA54), a peripherally acting sodium channel blocker. In whole-cell electrophysiological assays, CDA54 blocked the inactivated states of hNa(V)1.7 and hNa(V)1.8, two channels of the peripheral nervous system implicated in nociceptive transmission, with affinities of 0.25 and 0.18 microM, respectively. CDA54 displayed similar affinities for the tetrodotoxin-resistant Na+ current in small-diameter mouse dorsal root ganglion neurons. Peripheral nerve injury causes spontaneous electrical activity in normally silent sensory neurons. CDA54 inhibited these injury-induced spontaneous action potentials at concentrations 10-fold lower than those required to block normal A- and C-fiber conduction. Consistent with the selective inhibition of injury-induced firing, CDA54 (10 mg/kg p.o.) significantly reduced behavioral signs of neuropathic pain in two nerve injury models, whereas the same dose of CDA54 did not affect acute nociception or motor coordination. In anesthetized dogs, CDA54, at plasma concentrations of 6.7 microM, had no effect on cardiac electrophysiological parameters including conduction. Thus, the peripheral nerve sodium channel blocker CDA54 selectively inhibits sensory nerve signaling associated with neuropathic pain.
Collapse
Affiliation(s)
- Richard M Brochu
- Department of Ion Channels, Merck Research Laboratories, Rahway, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tan ZY, Donnelly DF, LaMotte RH. Effects of a Chronic Compression of the Dorsal Root Ganglion on Voltage-Gated Na+ and K+ Currents in Cutaneous Afferent Neurons. J Neurophysiol 2006; 95:1115-23. [PMID: 16424456 DOI: 10.1152/jn.00830.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A chronic compression of the dorsal root ganglion (CCD) produces ipsilateral cutaneous hyperalgesia that is associated with an increased excitability of neuronal somata in the compressed ganglion, as evidenced by spontaneous activity and a lower rheobase. We searched for differences in the properties of voltage-gated Na+ and K+ currents between somata of CCD- and control (unoperated) rats. CCD was produced in adult rats by inserting two rods through the intervertebral foramina, one compressing the L4, and the other, the ipsilateral, L5 dorsal root ganglion (DRG). After 5–9 days, DRG somata were dissociated and placed in culture for 16–26 h. Cutaneous neurons of medium size (35–45 μm), Fluorogold-labeled from the hindpaw, were selected for whole cell patch-clamp recording of action potentials and ion currents. In comparison with control neurons, CCD neurons had steady-state activation curves for TTX-sensitive (TTX-S) Na+ currents that were shifted in the hyperpolarizing direction, and CCD neurons had enhanced TTX-resistant (TTX-R) current. CCD neurons also had smaller, fast-inactivating K+ currents (Ka) at voltages from −30 to 50 mV. The reduction in Ka, the hyperpolarizing shift in TTX-S Na+ current activation, and the enhanced TTX-R Na+ current may all contribute to the enhanced neuronal excitability and thus to the pain and hyperalgesia associated with CCD.
Collapse
Affiliation(s)
- Z Y Tan
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
40
|
Sapunar D, Modric-Jednacak K, Grkovic I, Michalkiewicz M, Hogan QH. Effect of peripheral axotomy on pain-related behavior and dorsal root ganglion neurons excitability in NPY transgenic rats. Brain Res 2005; 1063:48-58. [PMID: 16259969 DOI: 10.1016/j.brainres.2005.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 09/19/2005] [Accepted: 09/25/2005] [Indexed: 11/30/2022]
Abstract
In order to clarify the physiologic role of NPY in sensory processing, we obtained intracellular recordings of DRG neurons from wild type (WT) and NPY overexpressing transgenic rats (NPY-TG) before and after injury. We investigated medium and large diameter DRG neurons since upregulation of NPY peptide following the nerve injury occurs primarily in those cells. Neurons were classified as Aalpha/beta and Adelta using conduction velocity and action potential duration. Prior to the injury, Aalpha/beta neurons of NPY-TG rats conducted more slowly and had a more brief AHP than similar cells from the WT group. Adelta neurons at baseline conducted faster in TG animals compared to WT. Ligation of the 5th lumbar spinal nerve (SNL) produced certain changes in Aalpha/beta cells that were evident only in the TG group. These include increased refractory period, increased input resistance, AHP prolongation and a depolarizing shift in threshold for AP initiation. The expected injury-induced CV slowing was not seen in NPY-TG Aalpha/beta cells. In the Adelta cell group, injury produced a depolarizing shift in the resting membrane potential, an increase in AP duration and decrease in AHP and refractory period duration only in WT rats, while NPY-TG cells lacked these injury-induced changes. Behavior tests showed diminished sensory response to nerve injury in NPY-TG rats, i.e., shorter duration of enhanced pain-related behavior and attenuation of contralateral effect. In conclusion, our observations suggest that NPY overexpression leads to reduced neuronal activity following nerve injury in a cell-specific manner.
Collapse
Affiliation(s)
- Damir Sapunar
- Department of Anatomy, Histology and Embryology, University of Split Medical School, PAK, KB Split, Spinciceva 1, 21000 Split, Croatia.
| | | | | | | | | |
Collapse
|
41
|
Yu K, Kocsis JD. Schwann cell engraftment into injured peripheral nerve prevents changes in action potential properties. J Neurophysiol 2005; 94:1519-27. [PMID: 16061494 PMCID: PMC2605390 DOI: 10.1152/jn.00107.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peripheral nerve injury results in changes in action potential waveform, ion channel organization, and firing properties of primary afferent neurons. It has been suggested that these changes are the result of reduction in basal trophic support from skin targets. Subcutaneous injections of Fluro-Gold (FG) in the hind limb of the rat were used to identify cutaneous primary afferent neurons. Five days after FG injection, sciatic nerves were ligated and encapsulated in a silicon tube allowing neuroma formation. Green fluorescent protein (GFP)-expressing Schwann cells (SCs) were injected proximal to the cut end of the nerve. Thirteen to 22 days after injury and SC injection, the L4 and L5 dorsal root ganglia (DRG) were prepared for acute culture. Whole cell patch-clamp recordings in current clamp mode were obtained and action potential properties of medium-sized (34-45 microm) FG+ DRG neurons were characterized. In the neuroma group without cell transplantation, action potential duration and spike inflections were reduced as were the amplitude and duration of spike afterhyperpolarizations. These changes were not observed after transection by nerve crush where axons were allowed to regenerate to distal peripheral targets. In the transplantation group, GFP(+)-SCs were extensively distributed throughout the neuroma, and oriented longitudinally along axons proximal to the neuroma. Changes in action potential properties were attenuated in the GFP(+)-SC group. Thus the engrafted SC procedure ameliorated the changes in action potential waveform of cutaneous primary afferents associated with target disconnection and neuroma formation.
Collapse
Affiliation(s)
- Kewei Yu
- Department of Neurology, Yale University School of Medicine, Neuroscience Research Center, West Haven, CT 06516, USA
| | | |
Collapse
|
42
|
Gasull X, Liao X, Dulin MF, Phelps C, Walters ET. Evidence That Long-Term Hyperexcitability of the Sensory Neuron Soma Induced by Nerve Injury inAplysiaIs Adaptive. J Neurophysiol 2005; 94:2218-30. [PMID: 15944238 DOI: 10.1152/jn.00169.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peripheral axotomy induces long-term hyperexcitability (LTH) of centrally located sensory neuron (SN) somata in diverse species. In mammals this LTH can promote spontaneous activity of pain-related SNs, and such activity may contribute to neuropathic pain and hyperalgesia. However, few axotomized SN somata begin to fire spontaneously in any species, and why so many SNs display soma LTH after axotomy remains a mystery. Is soma LTH a side effect of injury with pathological but no adaptive consequences, or was this response selected during evolution for particular functions? A hypothesis for one function of soma LTH in nociceptive SNs in Aplysia californica is proposed: after peripheral injury that produces partial axotomy of some SNs, compensation for sensory deficits and protective sensitization are achieved by facilitating afterdischarge near the soma, which amplifies sensory input from injured peripheral fields. Four predictions of this hypothesis were confirmed in SNs that innervate the tail. First, LTH of SN somata was induced by a relatively natural axotomizing event—a small cut across part of the tail in the absence of anesthesia. Second, soma LTH was selectively expressed in SNs having axons in cut or crushed nerves rather than nearby, uninjured nerves. Third, after several weeks soma LTH began to reverse when functional recovery of the interrupted afferent pathway was shown by reestablishment of a centrally mediated siphon reflex. Fourth, axotomized SNs developed central afterdischarge that amplified sensory discharge coming from the periphery, and the afterdepolarization underlying this afterdischarge was enhanced by previous axotomy.
Collapse
Affiliation(s)
- Xavier Gasull
- Department of Integrative Biology and Pharmacology, University of Texas-Houston Medical School, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
43
|
Hilaire C, Inquimbert P, Al-Jumaily M, Greuet D, Valmier J, Scamps F. Calcium dependence of axotomized sensory neurons excitability. Neurosci Lett 2005; 380:330-4. [PMID: 15862912 DOI: 10.1016/j.neulet.2005.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 11/24/2022]
Abstract
Hyperexcitability of axotomized dorsal root ganglion neurons is thought to play a role in neuropathic pain. Numerous changes in ionic channels expression or current amplitude are reported after an axotomy, but to date no direct correlation between excitability of axotomized sensory neurons and ionic channels alteration has been provided. Following sciatic nerve injury, we examined, under whole-cell patch clamp recording, the effects of calcium homeostasis on the electrical activity of axotomized medium-sized sensory neurons isolated from lumbar dorsal root ganglia of adult mice. Axotomy induced an increase in excitability of medium sensory neurons among which 25% develop a propensity to fire repetitively. The condition necessary to get burst discharge in axotomized neurons was the presence of a high intracellular Ca2+ buffer concentration. The main effect was to amplify the increase in threshold current and apparent input resistance induced by axotomy. These data supply evidence for a role of Ca2+-dependent mechanisms in the control of excitability of axotomized sensory neurons.
Collapse
Affiliation(s)
- Cécile Hilaire
- INSERM U 583, Hopital St. Eloi, 80, rue Augustin Fliche, BP 74103, 34091 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
44
|
Ma C, LaMotte RH. Enhanced excitability of dissociated primary sensory neurons after chronic compression of the dorsal root ganglion in the rat. Pain 2005; 113:106-12. [PMID: 15621370 DOI: 10.1016/j.pain.2004.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 09/15/2004] [Accepted: 09/28/2004] [Indexed: 11/29/2022]
Abstract
A chronic compression of the dorsal root ganglion (CCD) produces ipsilateral cutaneous hyperalgesia and allodynia in rats. Intracellular electrophysiological recordings from formerly compressed neurons in the intact dorsal root ganglion (DRG) reveal lower than normal current thresholds (CTs) and abnormal spontaneous activity (SA) (Zhang JM, Song XJ, LaMotte RH. Enhanced excitability of sensory neurons in rats with cutaneous hyperalgesia produced by chronic compression of the dorsal root ganglion. J Neurophysiol 1999;82:3359-66). To determine if the neuronal hyperexcitability is intrinsic to the soma, L4 and L5 DRG neurons from rats that had prior CCD surgery or those that did not (controls) were dissociated, and intracellular recordings obtained 3-8 h (acute) or 24-30 h (1d) after culture. The CTs of large- (>45 microm diameter) and medium- (30 approximately 45 microm) sized neurons from control rats after acute or 1d culture were similar to those formerly recorded from the intact DRG and significantly lower for CCD than for control rats. However, the CTs of small- (<or=30 microm) sized neurons from control rats were significantly lower in acute or 1d culture groups than they were in the intact DRG and not significantly different from those of dissociated small neurons from CCD rats. The overall incidence of SA was higher for CCD than for control neurons after 1d culture (10.3 vs. 1.8%) and similar to that obtained in the intact DRG. We conclude that the CCD-induced hyperexcitability of medium- and large-sized neurons remains after dissociation and is intrinsic to the soma. For small-sized neurons, the effects of CCD observed in the intact DRG are less apparent after dissociation possibly due to the hyperexcitability produced by the dissociation process itself.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06510, USA
| | | |
Collapse
|
45
|
Sung YJ, Walters ET, Ambron RT. A neuronal isoform of protein kinase G couples mitogen-activated protein kinase nuclear import to axotomy-induced long-term hyperexcitability in Aplysia sensory neurons. J Neurosci 2005; 24:7583-95. [PMID: 15329406 PMCID: PMC6729646 DOI: 10.1523/jneurosci.1445-04.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The induction of a long-term hyperexcitability (LTH) in vertebrate nociceptive sensory neurons (SNs) after nerve injury is an important contributor to neuropathic pain in humans, but the signaling cascades that induce this LTH have not been identified. In particular, it is not known how injuring an axon far from the cell soma elicits changes in gene expression in the nucleus that underlie LTH. The nociceptive SNs of Aplysia (ap) develop an LTH with electrophysiological properties after axotomy similar to those of mammalian neurons and are an experimentally useful model to examine these issues. We cloned an Aplysia PKG (cGMP-dependent protein kinase; protein kinase G) that is homologous to vertebrate type-I PKGs and found that apPKG is activated at the site of injury in the axon after peripheral nerve crush. The active apPKG is subsequently retrogradely transported to the somata of the SNs, but apPKG activity does not appear in other neurons whose axons are injured. In the soma, apPKG phosphorylates apMAPK (Aplysia mitogen-activated protein kinase), resulting in its entry into the nucleus. Surprisingly, studies using recombinant proteins in vivo and in vitro indicate that apPKG directly phosphorylates the threonine moiety in the T-E-Y activation site of apMAPK when the -Y- site contains a phosphate. We used inhibitors of nitric oxide synthase, soluble guanyl cyclase, or PKG after nerve injury, and found that each prevented the appearance of the LTH. Moreover, blocking apPKG activation prevented the nuclear import of apMAPK. Consequently, the nitric oxide-PKG-MAPK pathway is a potential target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Ying-Ju Sung
- Department of Anatomy and Cell Biology, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
46
|
Peng XQ, Zhang XL, Fang Y, Xie WR, Xie YK. Sialic acid contributes to hyperexcitability of dorsal root ganglion neurons in rats with peripheral nerve injury. Brain Res 2004; 1026:185-93. [PMID: 15488480 DOI: 10.1016/j.brainres.2004.07.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2004] [Indexed: 11/20/2022]
Abstract
Axonal injury of the dorsal root ganglion (DRG) neurons may alter the synthesis of certain membrane proteins that are responsible for the development of abnormal hyperexcitability. The external domains of most of these membrane proteins are sialylated. Because sialic acid carries heavy negative charges, the increase of sialylated proteins may increase neurons' negative surface charges, which will have predictable effects on the voltage-gated channels, and affect the excitability of injured neurons. Using intracellular electrophysiological recording, we demonstrated that following chronic constriction injury (CCI) of the sciatic nerve, Aalpha/beta DRG neurons become hyperexcitable, as indicated by a more depolarized resting membrane potential (Vm) and a lowered threshold current (TIC). More interestingly, the excitability of injured DRG neurons was reduced substantially when the extracellular sialic acid was removed by pretreatment with neuraminidase. The Vm was less depolarized and the TIC increased robustly as compared to the CCI neurons without neuraminidase treatment. However, desialylation of normal, intact neurons had no significant effect on the Vm and less effect on the TIC. Our results suggest that the hyperexcitability of injured sensory neurons may be associated with increased negatively charged sialic acid residues on the surface of the neuronal somata.
Collapse
Affiliation(s)
- Xiao-Qing Peng
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, #5 Dong Dan San Tiao, Beijing 100005, China.
| | | | | | | | | |
Collapse
|
47
|
Sculptoreanu A, Yoshimura N, de Groat WC. KW-7158 [(2S)-(+)-3,3,3-trifluoro-2-hydroxy-2-methyl-N-(5,5,10-trioxo-4,10-dihydrothieno[3,2-c][1]benzothiepin-9-yl)propanamide] enhances A-type K+ currents in neurons of the dorsal root ganglion of the adult rat. J Pharmacol Exp Ther 2004; 310:159-68. [PMID: 15010502 DOI: 10.1124/jpet.104.065409] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies revealed that a new compound, KW-7158 [(2S)-(+)-3,3,3-trifluoro-2-hydroxy-2-methyl-N-(5,5,10-trioxo-4,10-dihydrothieno[3,2-c][1]benzothiepin-9-yl)propanamide], can depress the excitability of afferent pathways from the urinary bladder and reduce bladder overactivity induced by chemical irritation of the urinary tract with xylene, an agent that sensitizes capsaicin-sensitive, C-fiber afferent nerves. In the present experiments, we examined the mechanisms that might underlie the depressant effect of KW-7158 on primary afferent neurons by studying the actions of the compound on ion channels and firing in dissociated dorsal root ganglion (DRG) cells from adult rats using whole cell patch-clamp techniques. KW-7158 increased transient, A-type K+ currents at concentrations ranging from 50 nM to 1 microM (20-50% increases). Similar effects were seen in fast blue identified bladder afferent neurons. Low concentrations of KW-7158 shortened the action potential duration, produced a 5- to 10-mV hyperpolarization, and inhibited repetitive firing induced by either 4-AP (50 microM) or substance P (0.5 microM) in phasic firing DRG neurons. Above 1 microM, KW-7158 elicited a smaller enhancement of A-type K+currents and in high concentrations inhibited the currents. Tetraethylammonium (5-60 mM) and verapamil (50 microM), which block noninactivating K+ currents, did not prevent the facilitatory effects of KW-7158. High concentrations of 4-AP (5 mM) inhibited A-type K+ currents and prevented the facilitatory effect of KW-7158 on the remaining currents. These data suggest that KW-7158 enhances A-type K+ currents in DRG neurons. Because A-type K+ channels regulate afferent neuron excitability and firing properties, KW-7158 is a promising new compound for treatment of hyper-reflexic bladder conditions.
Collapse
Affiliation(s)
- Adrian Sculptoreanu
- Department of Pharmacology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | |
Collapse
|
48
|
Sung YJ, Ambron RT. Pathways that elicit long-term changes in gene expression in nociceptive neurons following nerve injury: contributions to neuropathic pain. Neurol Res 2004; 26:195-203. [PMID: 15072639 DOI: 10.1179/016164104225013761] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic neuropathic pain following nerve injury or inflammation is mediated by transcription-dependent changes in neurons that comprise the nociceptive pathway. Among these changes is often a long-term hyperexcitability (LTH) in primary nociceptors that persists long after the lesion has healed. LTH is manifest by a reduction in threshold and an increased tendency to fire action potentials. This increased excitability activates higher order neurons in the pathway, leading to the perception of pain. Efforts to ameliorate chronic pain would therefore benefit if we understood how LTH is induced, but studies toward this goal are impeded by the complexity and heterogeneity of vertebrate nervous systems. Fortunately, LTH is an evolutionarily conserved mechanism that underlies defensive behaviors across phyla, including invertebrates. Thus, the same electrophysiological changes that underlie LTH in vertebrate nociceptive neurons are seen in their counterparts in the experimentally favorable mollusk Aplysia californica. Nociceptive neurons of Aplysia are readily accessible and large enough to approach using a variety of cell and molecular approaches not possible in higher organisms. Studies of the molecular cascades activated by injury to Aplysia peripheral nerves has focused on a group of positive injury signals that are retrogradely transported from the injury site in the axon to the cell nucleus where they regulate gene transcription. One of these, protein kinase G, is activated by nitric oxide synthetase and its activation in axons is required for the induction of LTH after injury. This pathway, and the transcriptional events that it activates, are targets for therapeutic intervention for chronic pain.
Collapse
Affiliation(s)
- Ying-Ju Sung
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
49
|
Abdulla FA, Moran TD, Balasubramanyan S, Smith PA. Effects and consequences of nerve injury on the electrical properties of sensory neurons. Can J Physiol Pharmacol 2003; 81:663-82. [PMID: 12897814 DOI: 10.1139/y03-064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nociceptive pain alerts the body to potential or actual tissue damage. By contrast, neuropathic or "noninflammatory" pain, which results from injury to the nervous system, serves no useful purpose. It typically continues for years after the original injury has healed. Sciatic nerve lesions can invoke chronic neuropathic pain that is accompanied by persistent, spontaneous activity in primary afferent fibers. This activity, which reflects changes in the properties and functional expression of Na+, K+, and Ca2+ channels, initiates a further increase in the excitability of second-order sensory neurons in the dorsal horn. This change persists for many weeks. The source of origin of the pain thus moves from the peripheral to the central nervous system. We hypothesize that this centralization of pain involves the inappropriate release of peptidergic neuromodulators from primary afferent fibers. Peptides such as substance P, neuropeptide Y (NPY), calcitonin-gene-related peptide (CGRP), and brain-derived neurotrophic factor (BDNF) may promote enduring changes in excitability as a consequence of neurotrophic actions on ion channel expression in the dorsal horn. Findings that form the basis of this hypothesis are reviewed. Study of the neurotrophic control of ion channel expression by spinal peptides may thus provide new insights into the etiology of neuropathic pain.
Collapse
Affiliation(s)
- Fuad A Abdulla
- Department of Physical Therapy, School of Allied Health Sciences, Hashemite University, Zarqa, Jordan
| | | | | | | |
Collapse
|
50
|
Ma C, Shu Y, Zheng Z, Chen Y, Yao H, Greenquist KW, White FA, LaMotte RH. Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol 2003; 89:1588-602. [PMID: 12612024 DOI: 10.1152/jn.00855.2002] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated electrophysiological changes in chronically axotomized and neighboring intact dorsal root ganglion (DRG) neurons in rats after either a peripheral axotomy consisting of an L5 spinal nerve ligation (SNL) or a central axotomy produced by an L5 partial rhizotomy (PR). SNL produced lasting hyperalgesia to punctate indentation and tactile allodynia to innocuous stroking of the foot ipsilateral to the injury. PR produced ipsilateral hyperalgesia without allodynia with recovery by day 10. Intracellular recordings were obtained in vivo from the cell bodies (somata) of axotomized and intact DRG neurons, some with functionally identified peripheral receptive fields. PR produced only minor electrophysiological changes in both axotomized and intact somata in L5 DRG. In contrast, extensive changes were observed after SNL in large- and medium-sized, but not small-sized, somata of intact (L4) as well as axotomized (L5) DRG neurons. These changes included (in relation to sham values) higher input resistance, lower current and voltage thresholds, and action potentials with longer durations and slower rising and falling rates. The incidence of spontaneous activity, recorded extracellularly from dorsal root fibers in vitro, was significantly higher (in relation to sham) after SNL but not after PR, and occurred in myelinated but not unmyelinated fibers from both L4 (9.1%) and L5 (16.7%) DRGs. We hypothesize that the changes in the electrophysiological properties of axotomized and intact DRG neurons after SNL are produced by a mechanism associated with Wallerian degeneration and that the hyperexcitability of intact neurons may contribute to SNL-induced hyperalgesia and allodynia.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|