1
|
The influence of meteorological factors and total malignant tumor health risk in Wuhu city in the context of climate change. BMC Public Health 2023; 23:346. [PMID: 36797719 PMCID: PMC9933274 DOI: 10.1186/s12889-023-15200-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
With the increasing severity of the malignant tumors situation worldwide, the impacts of climate on them are receiving increasing attention. In this study, for the first time, all-malignant tumors were used as the dependent variable and absolute humidity (AH) was innovatively introduced into the independent variable to investigate the relationship between all-malignant tumors and meteorological factors. A total of 42,188 cases of malignant tumor deaths and meteorological factors in Wuhu City were collected over a 7-year (2014-2020) period. The analysis method combines distributed lagged nonlinear modeling (DLNM) as well as generalized additive modeling (GAM), with prior pre-analysis using structural equation modeling (SEM). The results showed that AH, temperature mean (T mean) and diurnal temperature range (DTR) all increased the malignant tumors mortality risk. Exposure to low and exceedingly low AH increases the malignant tumors mortality risk with maximum RR values of 1.008 (95% CI: 1.001, 1.015, lag 3) and 1.016 (95% CI: 1.001, 1.032, lag 1), respectively. In addition, low and exceedingly low T mean exposures also increased the risk of malignant tumors mortality, the maximum RR was 1.020 (95% CI: 1.006, 1.034) for low T mean and 1.035 (95% CI: 1.014, 1.058) for exceedingly low T mean. As for DTR, all four levels (exceedingly low, low, high, exceedingly high, from low to high) of exposure increased the risk of death from malignant tumors, from exceedingly low to exceedingly high maximum RR values of 1.018 (95% CI: 1.004, 1.032), 1.011 (95% CI: 1.005, 1.017), 1.006 (95% CI: 1.001, 1.012) and 1.019 (95% CI: 1.007, 1.031), respectively. The results of the stratified analysis suggested that female appear to be more sensitive to humidity, while male require additional attention to reduce exposure to high level of DTR.
Collapse
|
2
|
Chen H, Zhang H, Jia T, Wang Z, Zhu W. Roles of leptin on energy balance and thermoregulation in Eothenomys miletus. Front Physiol 2022; 13:1054107. [PMID: 36589465 PMCID: PMC9800980 DOI: 10.3389/fphys.2022.1054107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Leptin is a hormone mainly synthesized and secreted by white adipose tissue (WAT), which regulates various physiological processes. To investigate the role of leptin in energy balance and thermoregulation in Eothenomys miletus, voles were randomly divided into leptin-injected and PBS-injected groups and placed at 25°C ± 1°C with a photoperiod of 12 L:12 D. They were housed under laboratory conditions for 28 days and compared in terms of body mass, food intake, water intake, core body temperature, interscapular skin temperature, resting metabolic rate (RMR), nonshivering thermogenesis (NST), liver and brown adipose tissue (BAT) thermogenic activity, and serum hormone levels. The results showed that leptin injection decreased body mass, body fat, food intake, and water intake. But it had no significant effect on carcass protein. Leptin injection increased core body temperature, interscapular skin temperature, resting metabolic rate, non-shivering thermogenesis, mitochondrial protein content and cytochrome C oxidase (COX) activity in liver and brown adipose tissue, uncoupling protein 1 (UCP1) content and thyroxin 5'-deiodinase (T45'-DII) activity in brown adipose tissue significantly. Serum leptin, triiodothyronine (T3), thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) concentrations were also increased significantly. Correlation analysis showed that serum leptin levels were positively correlated with core body temperature, body mass loss, uncoupling protein 1 content, thyroxin 5'-deiodinase activity, nonshivering thermogenesis, and negatively correlated with food intake; thyroxin 5'-deiodinase and triiodothyronine levels were positively correlated, suggesting that thyroxin 5'-deiodinase may play an important role in leptin-induced thermogenesis in brown adipose tissue. In conclusion, our study shows that exogenous leptin is involved in the regulation of energy metabolism and thermoregulation in E. miletus, and thyroid hormone may play an important role in the process of leptin regulating energy balance in E. miletus.
Collapse
Affiliation(s)
- Huibao Chen
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Hao Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, China
| | - Zhengkun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
3
|
Xu DL, Zhao MX. Leptin mediates the suppressive effect of partial fat removal on cellular and humoral immunity in striped hamsters. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111256. [PMID: 35690304 DOI: 10.1016/j.cbpa.2022.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
Abstract
Leptin secreted mainly by white adipose tissues (WAT) plays an important role in immune responses. To understand the role of energy status and leptin in immunity, bilateral perigonadal fat pads were removed or sham-removed in male striped hamsters (Cricetulus barabensis). Half of these hamsters were injected with sterile saline, and another half were administrated with exogenous leptin each day, which lasted for 20 days. Fat removal reduced total body fat mass and leptin titers significantly, leptin administration increased leptin levels in the fat removed hamsters to the control levels, but did not affect total body fat mass. Body mass and gross energy intake were not affected by fat removal, leptin supplement or their interaction. Fat removal decreased thymus mass, phytohaemagglutinin (PHA) response at 12 h, and the levels of immunoglobin (Ig) G 5, IgG10, IgM5, IgM10, IL-2, IL-4, and TNF-α, indicating a reduction in fat mass suppressed cellular and humoral immunity and the production of cytokines. However, fat removal had no effect on spleen mass, bacteria killing activity and IFN-γ titers. Leptin supplement increased PHA response at 6 h and 12 h, and the levels of IgG5, IgG10, IL-4, and IFN-γ to the control levels, implying its boosting effects on these parameters. In addition, leptin level was positively correlated with body fat mass, PHA 6 h, 12 h, Ig G10, Ig M5, Ig M10, IL-2, IL-4, and TNF-α. Collectively, these findings implied leptin was a link between energy status and immunity, and leptin mediated the suppressive effects of reduced energy storage on cellular and humoral immunity.
Collapse
Affiliation(s)
- De-Li Xu
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong Province, China.
| | - Ming-Xing Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, Shandong Province, China
| |
Collapse
|
4
|
Yang YZ, Han CY, Jia T, Wang ZK, Zhu WL, Zhang H. Variations of body mass and thermogenesis properties in Eothenomys olitor during cold acclimatization. ANIM BIOL 2021. [DOI: 10.1163/15707563-bja10062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The set-point hypothesis states that there is a biological control method in mammals that actively regulates weight toward a predetermined set weight for each individual, which may occur by regulation of energy intake or energy expenditure. In order to investigate the effects of low temperature on body mass regulation in Eothenomys olitor, body mass, body fat mass, food intake, resting metabolic rate (RMR), non-shivering thermogenesis (NST), serum leptin levels, morphology, biochemical indexes of liver and brown adipose tissue (BAT) and hypothalamic neuropeptide genes expression were measured during cold acclimatization. The results showed that there was no significant difference in body mass, but food intake, RMR and NST increased during cold acclimatization. Cytochrome c oxidase (COX) and α-glycerophosphate oxidase (α-GPO) activities in liver and BAT were significantly enhanced during cold acclimatization, and triiodothyronine (T3) and thyroxine (T4) levels in serum were significantly higher than those in the control group. Serum leptin levels decreased after cold acclimatization. Low temperature significantly increased the expression of neuropeptide Y (NPY) and agouti-related peptide (AgRP), while it decreased cocaine- and amphetamine-regulated transcript peptide (CART) and pro-opiomelanocortin (POMC) expressions. All of the above results suggested that body mass in E. olitor can remain relatively stable at low temperature, which conforms to the ‘set-point hypothesis’. However, the species showed differences with sympatric species, such as E. miletus, Apodemus chevrieri and Tupaia belangeri. Moreover, E. olitor can cope with low temperature by increasing its metabolic rate and thermogenesis properties.
Collapse
Affiliation(s)
- Ya-zuo Yang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Chun-yan Han
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, 650106, China
| | - Zheng-kun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Wan-long Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Hao Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
5
|
Bandyopadhayaya S, Ford B, Mandal CC. Cold-hearted: A case for cold stress in cancer risk. J Therm Biol 2020; 91:102608. [PMID: 32716858 DOI: 10.1016/j.jtherbio.2020.102608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
A negative correlation exists between environmental temperature and cancer risk based on both epidemiological and statistical analyses. Previously, cold stress was reported to be an effective cause of tumorigenesis. Several studies have demonstrated that cold temperature serves as a potential risk factor in cancer development. Most recently, a link was demonstrated between the effects of extreme cold climate on cancer incidence, pinpointing its impact on tumour suppressor genes by causing mutation. The underlying mechanism behind cold stress and its association with tumorigenesis is not well understood. Hence, this review intends to shed light on the role of associated factors, genetic and/or non-genetic, which are modulated by cold temperature, and eventually influence tumorigenic potential. While scrutinizing the effect of cold exposure on the body, the expression of certain genes, e.g. uncoupled proteins and heat-shock proteins, were elevated. Biological chemicals such as norepinephrine, thyroxine, and cholesterol were also elevated. Brown adipose tissue, which plays an essential role in thermogenesis, displayed enhanced activity upon cold exposure. Adaptive measures are utilized by the body to tolerate the cold, and in doing so, invites both epigenetic and genetic changes. Unknowingly, these adaptive strategies give rise to a lethal outcome i.e., genesis of cancer. Concisely, this review attempts to draw a link between cold stress, genetic and epigenetic changes, and tumorigenesis and aspires to ascertain the mechanism behind cold temperature-mediated cancer risk.
Collapse
Affiliation(s)
| | - Bridget Ford
- Department of Biology, University of the Incarnate Word, San Antonio, TX, 78209, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
6
|
Zhang L, Yang F, Wang ZK, Zhu WL. Role of thermal physiology and bioenergetics on adaptation in tree shrew (Tupaia belangeri): the experiment test. Sci Rep 2017; 7:41352. [PMID: 28145515 PMCID: PMC5286505 DOI: 10.1038/srep41352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Ambient conditions, as temperature and photoperiod, play a key role in animals’ physiology and behaviors. To test the hypothesis that the maximum thermal physiological and bioenergetics tolerances are induced by extreme environments in Tupaia belangeri. We integrated the acclimatized and acclimated data in several physiological, hormonal, and biochemical markers of thermogenic capacity and bioenergetics in T. belangeri. Results showed that T. belangeri increased body mass, thermogenesis capacity, protein contents and cytochrome c oxidase (COX) activity of liver and brown adipose tissue in winter-like environments, which indicated that temperature was the primary signal for T. belangeri to regulate several physiological capacities. The associated photoperiod signal also elevated the physiological capacities. The regulations of critical physiological traits play a primary role in meeting the survival challenges of winter-like condition in T. belangeri. Together, to cope with cold, leptin may play a potential role in thermogenesis and body mass regulation, as this hormonal signal is associated with other hormones. The strategies of thermal physiology and bioenergetics differs between typical Palearctic species and the local species. However, the maximum thermal physiology and bioenergetic tolerance maybe is an important strategy to cope with winter-like condition of T. belangeri.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zheng-Kun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Wan-Long Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
7
|
Wan-Long Z, Zheng-Kun W. Effects of random food deprivation and refeeding on energy metabolism, behavior and hypothalamic neuropeptide expression in Apodemus chevrieri. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:71-78. [PMID: 27387442 DOI: 10.1016/j.cbpa.2016.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Maintaining adaptive control of behavior and physiology is the main strategy used by animals in responding to changes of food resources. To investigate the effects of random food deprivation (FD) and refeeding on energy metabolism and behavior in Apodemus chevrieri, we acclimated adult males to FD for 4weeks, then refed them ad libitum for 4weeks (FD-Re group). During the period of FD, animals were fed ad libitum for 4 randomly assigned days each week, and deprived of food the other 3days. A control group was fed ad libitum for 8weeks. At 4 and 8weeks we measured body mass, thermogenesis, serum leptin levels, body composition, gastrointestinal tract morphology, behavior and hypothalamic neuropeptide expression. At 4weeks, food intake, gastrointestinal mass, neuropeptide Y (NPY) and agouti-related protein (AgRP) mRNA expressions increased and thermogenesis, leptin levels, pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) expressions decreased in FD compared with controls. FD also showed more resting behavior and less activity than the controls on ad libitum day. There were no differences between FD-Re and controls at 8weeks, indicating significant plasticity. These results suggested that animals can compensate for unpredictable reduction in food availability by increasing food intake and reducing energy expended through thermogenesis and activity. Leptin levels, NPY, AgRP, POMC, and CART mRNA levels may also regulate energy metabolism. Significant plasticity in energy metabolism and behavior was shown by A. chevrieri over a short timescale, allowing them to adapt to food shortages in nutritionally unpredictable environments.
Collapse
Affiliation(s)
- Zhu Wan-Long
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China.
| | - Wang Zheng-Kun
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
8
|
Gao WR, Zhu WL, Wang ZK. The role of dietary fiber content on energy metabolism, thermogenesis, and leptin in Chevrier’s field mouse (Apodemus chevrieri). CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food quality and availability are important factors influencing the survival and reproduction of animals. The aim of the present study was to examine the effect of dietary fiber content high-fiber (HF) diet treatment or low-fiber (LF) diet treatment) on energy metabolism, thermogenesis, and leptin concentrations in Chevrier’s field mouse (Apodemus chevrieri (Milne-Edwards, 1868)) (Mammalia: Rodentia: Muridae). Mice on the HF treatment showed a lower body mass compared with LF treatment from day 27 to day 37, and a lower but insignificant body mass to day 71. Dry matter intake (DMI) and gross energy intake (GEI) were greater in HF compared with LF, whereas the digestible energy intake (DEI) was similar for both treatments. Nonshivering thermogenesis (NST) decreased in HF mice, whereas LF mice remained stable; no significant differences were detected in the basal metabolic rate (BMR), uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT), or the levels of serum tri-iodothyronine (T3) and thyroxine (T4) between HF and LF mice. Although there were no differences in body fat content and serum leptin concentrations between HF and LF mice, serum leptin levels were positively correlated with body fat mass. These results support the hypothesis that A. chevrieri can compensate the poor-quality diet physiologically by way of increasing food intake and decreasing thermogenesis.
Collapse
Affiliation(s)
- W.-R. Gao
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, 1st Yuhua District, Chenggong County, Kunming 650500, People’s Republic of China
- School of Energy and Environmental Science, Yunnan Normal University, 1st Yuhua District, Chenggong County, Kunming 650500, People’s Republic of China
| | - W.-L. Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, 1st Yuhua District, Chenggong County, Kunming 650500, People’s Republic of China
| | - Z.-K. Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, 1st Yuhua District, Chenggong County, Kunming 650500, People’s Republic of China
| |
Collapse
|
9
|
Gao WR, Wang ZK, Zhu WL. Plasticity in the physiological energetics of Apodemus chevrieri: the role of dietary fiber content. ANIM BIOL 2016. [DOI: 10.1163/15707563-00002503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Small mammals are usually adapted to cope with changes in food quality and availability. In order to investigate the adaptive strategy of small rodents responding to varying dietary fiber content, in the present study, Apodemus chevrieri individuals were acclimated to a high-fiber diet for four weeks and then a relatively low-fiber diet for another four weeks. The results show that body mass was relatively stable over the course of acclimation, but dry matter intake, gross energy intake and the mass of the digestive tract increased significantly and digestibility decreased significantly in high-fiber diet mice, while the digestible energy intake was similar for both high-fiber and low-fiber diet mice except for the first week. High-fiber/low-fiber diet mice showed only a significant lower basal metabolic rate and nonshivering thermogenesis compared to low-fiber diet mice on day R1. The high-fiber diet induced a decrease in serum leptin levels and brown adipose tissue mass associated with a reduction in the cytochrome c oxidase activity and uncoupling protein 1 content of brown adipose tissue. Body mass, thermogenic capacity, energy intake, serum leptin levels and digestive tract morphology returned to the control levels after 4 weeks of refeeding low-fiber diet. Further, serum leptin levels were positively related to body fat mass and negatively related to food intake. These data indicated that body mass, energy intake, serum leptin levels and organ morphological plasticity were the main strategies by which A. chevrieri copes with variations in dietary fiber content.
Collapse
Affiliation(s)
- Wen-rong Gao
- 1Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, Kunming, 650500, China
- 2School of Energy and Environmental Science, Yunnan Normal University, Kunming, 650500, China
| | - Zheng-kun Wang
- 1Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, Kunming, 650500, China
| | - Wan-long Zhu
- 1Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of University in Yunnan Province, School of Life Science of Yunnan Normal University, Kunming, 650500, China
| |
Collapse
|
10
|
Plush KJ, Hebart ML, Brien FD, Hynd PI. Variation in physiological profiles may explain breed differences in neonatal lamb thermoregulation. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ability to adapt rapidly from the uterine environment to self-thermoregulation following birth is a vital requirement for neonatal lamb survival. This investigation reports factors that could explain differences in thermoregulation among breeds that differ in lamb survival. Breeds such as the Merino and Border Leicester have previously been shown to be divergent for birthweight, cold resistance and lamb survival. Cross-bred (Poll Dorset Border Leicester (PDBL, n = 9) and Poll Dorset Merino (PDM, n = 25)) and pure-bred (Border Leicester (BL, n = 35) and Merino (M, n = 46)) lambs were recorded for the thermogenic measures rectal temperature at birth, cold resistance (time for rectal temperature to fall to 35°C while in a cooled water bath) and cold recovery (time to restore rectal temperature after cold exposure) at 1 day of age. In pure-bred lambs, 1 kg increase in weight resulted in a 0.25°C increase in rectal temperature at birth (P < 0.001) and 4.2 min increase in cold resistance (P < 0.001). In contrast, cross-bred lambs did not exhibit any relationship between birthweight and rectal temperature at birth, although they displayed a 3.2 min greater cold resistance for every 1 kg increase in birthweight (P < 0.001). BL-derived lambs were more cold resistant than M lambs (cross-bred: PDBL, 67.1 ± 2.5 min; PDM, 56.4 ± 1.6 min; P < 0.01; and pure-bred: BL, 58.1 ± 1.5 min; M, 53.2 ± 1.3 min; P < 0.01). The quadratic relationship of glucose concentration over time during cold exposure differed with lamb breed. PDBL exhibited higher peak glucose concentrations than did PDM (11.0 mmol/L and 8.9 mmol/L, respectively; P < 0.01). BL took longer to reach peak glucose concentration (50 min) than did M (40 min) and this peak value was higher (BL, 9.4 mmol/L; M, 7.7 mmol/L; P < 0.001). In conclusion, variations in birthweight and glucose metabolism are associated with breed differences in thermogenesis of neonatal lambs.
Collapse
|
11
|
Intracerebroventricular administration of leptin increase physical activity but has no effect on thermogenesis in cold-acclimated rats. Sci Rep 2015; 5:11189. [PMID: 26053156 PMCID: PMC4459185 DOI: 10.1038/srep11189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/17/2015] [Indexed: 12/03/2022] Open
Abstract
Most small homotherms display low leptin level in response to chronic cold exposure. Cold-induced hypoleptinemia was proved to induce hyperphagia. However, it is still not clear whether hypoleptinemia regulates energy expenditure in cold condition. We try to answer this question in chronic cold-acclimated rats. Results showed that 5-day intracerebroventricular(ICV) infusion of leptin (5 μg/day) had no effects on basal and adaptive thermogenesis and uncoupling protein 1 expression. Physical activity was increased by leptin treatment. We further determined whether ghrelin could reverse the increasing effect of leptin on physical activity. Coadministration of ghrelin (1.2 μg/day) completely reversed the effect of leptin on physical activity. Collectively, this study indicated the regulation of leptin on energy expenditure during cold acclimation may be mainly mediated by physical activity but not by thermogenesis. Our study outlined behavioral role of leptin during the adaptation to cold, which adds some new knowledge to promote our understanding of cold-induced metabolic adaptation.
Collapse
|
12
|
Wan-long Z, Zheng-kun W. Seasonal changes in body mass, serum leptin levels and hypothalamic neuropeptide gene expression in male Eothenomys olitor. Comp Biochem Physiol A Mol Integr Physiol 2015; 184:83-9. [PMID: 25700741 DOI: 10.1016/j.cbpa.2015.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 01/27/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
The present study examined seasonal changes in body mass and energy metabolism in the Chaotung vole (Eothenomys olitor) and the physiological mechanisms underpinning these changes. Seasonal changes in the following parameters were measured in male E. olitor, body mass, food intake, thermogenesis, enzyme activity, masses of tissues and organs, hormone concentrations and expression of hypothalamic arcuate nucleus energy balance genes including neuropeptide Y (NPY), agouti-related protein (AgRP), pro-opiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART). Body mass was constant over the year, but the masses of tissues and organs differed significantly between seasons. There were significant changes in body fat mass and serum leptin levels over the four seasons. E. olitor showed significant seasonal changes in food intake and thermogenesis, uncoupling protein 1 (UCP1) content, enzyme activity, and serum tri-iodothyronine (T3) and thyroxine (T4) levels. Moreover, mRNA expression in the hypothalamus showed significant seasonal changes. All of our results suggested that E. olitor had constant body mass over the year, which was inconsistent with the prediction of the 'set-point' hypothesis. However, body fat mass and serum leptin levels were significantly different among the four seasons, providing support for the 'set-point' hypothesis. The changes in leptin, NPY, AgRP, POMC, and CART mRNA levels may play a role in the regulation of energy intake in E. olitor. Furthermore, the role of leptin and hypothalamic neuropeptide gene in the regulation of energy metabolism and body mass may be different in animals that are acclimated to different seasons.
Collapse
Affiliation(s)
- Zhu Wan-long
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science of Yunnan Normal University, Kunming 650500, China
| | - Wang Zheng-kun
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science of Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
13
|
Ikegami K, Atsumi Y, Yorinaga E, Ono H, Murayama I, Nakane Y, Ota W, Arai N, Tega A, Iigo M, Darras VM, Tsutsui K, Hayashi Y, Yoshida S, Yoshimura T. Low temperature-induced circulating triiodothyronine accelerates seasonal testicular regression. Endocrinology 2015; 156:647-59. [PMID: 25406020 PMCID: PMC4298317 DOI: 10.1210/en.2014-1741] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 11/12/2014] [Indexed: 11/19/2022]
Abstract
In temperate zones, animals restrict breeding to specific seasons to maximize the survival of their offspring. Birds have evolved highly sophisticated mechanisms of seasonal regulation, and their testicular mass can change 100-fold within a few weeks. Recent studies on Japanese quail revealed that seasonal gonadal development is regulated by central thyroid hormone activation within the hypothalamus, depending on the photoperiodic changes. By contrast, the mechanisms underlying seasonal testicular regression remain unclear. Here we show the effects of short day and low temperature on testicular regression in quail. Low temperature stimulus accelerated short day-induced testicular regression by shutting down the hypothalamus-pituitary-gonadal axis and inducing meiotic arrest and germ cell apoptosis. Induction of T3 coincided with the climax of testicular regression. Temporal gene expression analysis over the course of apoptosis revealed the suppression of LH response genes and activation of T3 response genes involved in amphibian metamorphosis within the testis. Daily ip administration of T3 mimicked the effects of low temperature stimulus on germ cell apoptosis and testicular mass. Although type 2 deiodinase, a thyroid hormone-activating enzyme, in the brown adipose tissue generates circulating T3 under low-temperature conditions in mammals, there is no distinct brown adipose tissue in birds. In birds, type 2 deiodinase is induced by low temperature exclusively in the liver, which appears to be caused by increased food consumption. We conclude that birds use low temperature-induced circulating T3 not only for adaptive thermoregulation but also to trigger apoptosis to accelerate seasonal testicular regression.
Collapse
Affiliation(s)
- Keisuke Ikegami
- Laboratory of Animal Physiology (K.I., Y.A., E.Y., H.O., I.M., Y.N., W.O., T.Y.), Avian Bioscience Research Center (Y.A., T.Y.), Graduate School of Bioagricultural Sciences, Department of Genetics (Y.H.), Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, and Institute of Transformative Bio-molecules (T.Y.), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Department of Applied Biochemistry (N.A., A.T., M.I.), Faculty of Agriculture, Center for Bioscience Research and Education (M.I.), Utsunomiya University, Utsunomiya 321-8505, Japan; Utsunomiya University Center for Optical Research and Education (M.I.), Utsunomiya, Tochigi 321-8585, Japan; Department of Biology and Center for Medical Life Science (K.T.), Waseda University, Tokyo 162-8480, Japan; Division of Germ Cell Biology (S.Y.), National Institute for Basic Biology, Okazaki 444-8787, Japan; Division of Seasonal Biology (T.Y.), National Institute for Basic Biology, Okazaki 444-8585, Japan; and Animal Physiology and Neurobiology Section (V.M.D.), Department of Biology, Laboratory of Comparative Endocrinology, KU Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhu WL, Wang ZK. Resting metabolic rate and energetics of reproduction in lactating Eothenomys miletus from Hengduan mountain region. Zool Stud 2014. [DOI: 10.1186/s40555-014-0041-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Zhu WL, Mu Y, Zhang H, Gao WR, Zhang L, Wang ZK. Effects of random food deprivation on body mass, behavior and serum leptin levels inEothenomys miletus(Mammalia: Rodentia: Cricetidae). ACTA ACUST UNITED AC 2014. [DOI: 10.1080/11250003.2014.902511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Zhu WL, Yang G, Zhang L, Wang ZK. Effects of photoperiod and temperature on the body mass, thermogenesis, and serum leptin levels of Apodemus draco (Rodentia: Muridae) in the Hengduan Mountain region, China. Zool Stud 2013. [DOI: 10.1186/1810-522x-52-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Leptin increases blood pressure and markers of endothelial activation during pregnancy in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:298401. [PMID: 24167814 PMCID: PMC3792531 DOI: 10.1155/2013/298401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/13/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022]
Abstract
Raised leptin levels have been reported in the placentae and serum of women with elevated blood pressure and proteinuria during pregnancy. The role of leptin in this however remains unknown. This study investigates the effect of leptin administration on systolic blood pressure (SBP) and proteinuria and serum markers of endothelial activation during pregnancy in Sprague Dawley rats. From day 1 of pregnancy, 24 rats were randomised into those given either saline (group 1) or leptin at 60 or 120 μ g/kg/body weight/day (groups 2 and 3 resp.). SBP was measured every 5 days and 24-h urinary protein was measured at days 0 and 20 of pregnancy. Animals were euthanised on day 20 of pregnancy, and serum was collected for estimation of E-selectin and ICAM-1. Compared to group 1, SBP during the latter part of the pregnancy was significantly higher in the leptin-treated group (P < 0.01). Urinary protein excretion, serum E-selectin, and ICAM-1 were significantly higher in leptin-treated rats (P < 0.05). It seems that leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases SBP, urinary protein excretion, and markers of endothelial activation. However, further studies are required to examine the underlying mechanism responsible for this and its relevance to preeclampsia in humans.
Collapse
|
18
|
Zhu WL, Mu Y, Zhang H, Zhang L, Wang ZK. Effects of food restriction on body mass, thermogenesis and serum leptin level inApodemus chevrieri(Mammalia: Rodentia: Muridae). ACTA ACUST UNITED AC 2013. [DOI: 10.1080/11250003.2013.796409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Zhao ZJ, Song DG, Su ZC, Wei WB, Liu XB, Speakman JR. Limits to sustained energy intake. XVIII. Energy intake and reproductive output during lactation in Swiss mice raising small litters. J Exp Biol 2013; 216:2349-58. [DOI: 10.1242/jeb.078436] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SUMMARY
Limits to sustained energy intake (SusEI) during lactation in Swiss mice have been suggested to reflect the secretory capacity of the mammary glands. However, an alternative explanation is that milk production and food intake are regulated to match the limited growth capacity of the offspring. In the present study, female Swiss mice were experimentally manipulated in two ways – litter sizes were adjusted to be between 1 and 9 pups and mice were exposed to either warm (21°C) or cold (5°C) conditions from day 10 of lactation. Energy intake, number of pups and litter mass, milk energy output (MEO), thermogenesis, mass of the mammary glands and brown adipose tissue cytochrome c oxidase activity of the mothers were measured. At 21 and 5°C, pup mass at weaning was almost independent of litter size. Positive correlations were observed between the number of pups, litter mass, asymptotic food intake and MEO. These data were consistent with the suggestion that in small litters, pup requirements may be the major factor limiting milk production. Pups raised at 5°C had significantly lower body masses than those raised at 21°C. This was despite the fact that milk production and energy intake at the same litter sizes were both substantially higher in females raising pups at 5°C. This suggests that pup growth capacity is lower in the cold, perhaps due to pups allocating ingested energy to fuel thermogenesis. Differences in observed levels of milk production under different conditions may then reflect a complex interplay between factors limiting maternal performance (peripheral limitation and heat dissipation: generally better when it is cooler) and factors influencing maximum pup growth (litter size and temperature: generally better when it is hotter), and may together result in an optimal temperature favouring reproduction.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325027, China
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - De-Guang Song
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Zhen-Cheng Su
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Wen-Bo Wei
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xian-Bin Liu
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China
| | - John R. Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100100, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
20
|
Zhao ZJ, Zhu QX, Chen KX, Wang YK, Cao J. Energy budget, behavior and leptin in striped hamsters subjected to food restriction and refeeding. PLoS One 2013; 8:e54244. [PMID: 23372694 PMCID: PMC3553171 DOI: 10.1371/journal.pone.0054244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 12/10/2012] [Indexed: 01/28/2023] Open
Abstract
Food restriction induces a loss of body mass that is often followed by rapid regaining of the lost weight when the restriction ends, consequently increasing a risk of development of obesity. To determine the physiological and behavioral mechanisms underlining the regaining, striped hamsters were restricted to 85% of initial food intake for 4 weeks and refed ad libitum for another 4 weeks. Changes in body mass, energy budget, activity, body composition and serum leptin level were measured. Body mass, body fat mass and serum leptin level significantly decreased in food-restricted hamsters, and increased when the restriction ended, showing a short “compensatory growth” rather than over-weight or obesity compared with ad libitum controls. During restriction, the time spent on activity increased significantly, which was opposite to the changes in serum leptin level. Food intake increased shortly during refeeding, which perhaps contributed to the rapid regaining of body mass. No correlation was observed between serum leptin and energy intake, while negative correlations were found in hamsters that were refed for 7 and 28 days. Exogenous leptin significantly decreased the time spent on activity during food restriction and attenuated the increase in food intake during refeeding. This suggests that low leptin in restricted animals may function as a starvation signal to induce an increase in activity behavior, and high leptin likely serves as a satiety signal to prevent activity during refeeding. Leptin may play a crucial role in controlling food intake when the restriction ends, and consequently preventing overweight.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China.
| | | | | | | | | |
Collapse
|
21
|
Sprent J, Jones SM, Nicol SC. Does leptin signal adiposity in the egg-laying mammal, Tachyglossus aculeatus? Gen Comp Endocrinol 2012; 178:372-9. [PMID: 22750512 DOI: 10.1016/j.ygcen.2012.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 06/17/2012] [Accepted: 06/20/2012] [Indexed: 11/15/2022]
Abstract
Leptin is a peptide hormone best known for its role in feedback regulation of adiposity in eutherian mammals. Normally an increase in adipose tissue mass leads to an increase in circulating leptin which increases energy expenditure and limits food intake, but in hibernating eutherian mammals this relationship may change to allow prehibernatory fattening. The echidna (Tachyglossus aculeatus) is a monotreme mammal which accumulates significant fat reserves before entering hibernation, and mates immediately at the end of hibernation. We hypothesised that echidnas would show a strong relationship between body mass and plasma leptin for most of the year which would change during the pre-hibernatory period. We measured plasma leptin and body mass in free-ranging echidnas over several reproductive and hibernation cycles. There were significant seasonal variations in plasma leptin in both sexes, with the highest levels occurring in hibernation and in mating females. The lowest levels were found in males when they were foraging maximally after the reproductive period. We used mass%, body mass at the time of sampling as a percentage of long term mean mass, as a proxy for adiposity. There was a weak negative relationship between mass% and plasma leptin, from which we infer a weak negative relationship between adiposity and plasma leptin as has been found in reptiles and birds, rather than the strong positive relationship found in other mammals.
Collapse
Affiliation(s)
- Jenny Sprent
- School of Zoology, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | |
Collapse
|
22
|
Energy metabolism, thermogenesis and body mass regulation in tree shrew (Tupaia belangeri) during subsequent cold and warm acclimation. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:437-42. [DOI: 10.1016/j.cbpa.2012.04.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 12/16/2022]
|
23
|
Zhu WL, Huang CM, Zhang LIN, Cai JH, Wang ZK. Changes of energy metabolism, thermogenesis and body mass in the tree shrew (Tupaia belangeri chinensisTupaiidae, Scandebtia) during cold exposure. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/11250003.2011.650227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Wan-long Z, Jin-hong C, Xiao L, Zheng-kun W. Adaptive characters of energy metabolism, thermogenesis and body mass in Eothenomys miletus during cold exposure and rewarming. ANIM BIOL 2012. [DOI: 10.1163/157075611x618200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Environmental cues play important roles in the regulation of an animal’s physiology and behavior. The purpose of the present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake and thermogenic capacity, associated with changes in serum leptin levels inEothenomys miletus. We found thatE. miletusincreased resting metabolic rate (RMR) and energy intake and decreased body mass when exposed to cold while it showed a significant increase in body mass after rewarming. The increase in body mass after rewarming was associated with the higher energy intake compared with the control. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) increased in the cold and reversed after rewarming. Serum leptin levels decreased in the cold while increased after rewarming, associated with the opposite changes in energy intake. Further, serum leptin levels were positively correlated with body mass and body fat mass. Together, these data supported our hypothesis that ambient temperature was a cue to induce changes in body mass and metabolism. Serum leptin, as a starvation signal in the cold and satiety signal in rewarming, was involved in the processes of thermogenesis and body mass regulation inE. miletus.
Collapse
Affiliation(s)
- Zhu Wan-long
- School of Life Science of Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, The Key Laboratory of Biomass Energy and Environmental Biotechnology in Yunnan Province, Kunming, 650092, China
| | - Cai Jin-hong
- School of Life Science of Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, The Key Laboratory of Biomass Energy and Environmental Biotechnology in Yunnan Province, Kunming, 650092, China
| | - Lian Xiao
- School of Life Science of Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, The Key Laboratory of Biomass Energy and Environmental Biotechnology in Yunnan Province, Kunming, 650092, China
| | - Wang Zheng-kun
- School of Life Science of Yunnan Normal University, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, The Key Laboratory of Biomass Energy and Environmental Biotechnology in Yunnan Province, Kunming, 650092, China
| |
Collapse
|
25
|
Wan-long Z, Sheng-chang Y, Lin Z, Zheng-kun W. Seasonal variations of body mass, thermogenesis and digestive tract morphology in Apodemus chevrieri in Hengduan mountain region. ANIM BIOL 2012. [DOI: 10.1163/157075612x650140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Seasonal changes in an animal’s morphology, physiology, and behavior are considered to be an adaptive strategy for survival and reproductive success. We hypothesize that Apodemus chevrieri will change their thermogenesis seasonally and serum leptin will change with body mass or body fat mass. Seasonal variations in body mass (BM), basal metabolic rate (BMR), nonshivering thermogenesis (NST), digestive tract morphology, serum leptin and uncoupling protein 1 (UCP1) were measured in wild-trapped A. chevrieri in Hengduan mountain region. The results showed that the body weight of A. chevrieri was lowest in winter and highest in summer. Decreased BM in the winter was accompanied by increased energy intake and enhanced NST and UCP1 as well as by decreased body fat mass, adjusted digestive tract morphology and reduced levels of circulating leptin. Further, serum leptin were positively correlated with body weight and body fat mass, and negatively correlated with energy intake and UCP1 contents. These data suggest that wild A. chevrieri do not depend on a decrease in BM, but instead increase their thermogenic capacity to cope with cold stress. Leptin may be involved in the seasonal regulation in energy balance and thermogenesis in field A. chevrieri.
Collapse
Affiliation(s)
- Zhu Wan-long
- School of Life Science of Yunnan Normal University, Kunming 650500, China
| | - Yang Sheng-chang
- School of Life Science of Yunnan Normal University, Kunming 650500, China
| | - Zhang Lin
- School of Life Science of Yunnan Normal University, Kunming 650500, China
| | - Wang Zheng-kun
- School of Life Science of Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
26
|
Yang DB, Xu YC, Wang DH. Partial removal of brown adipose tissue enhances humoral immunity in warm-acclimated Mongolian gerbils (Meriones unguiculatus). Gen Comp Endocrinol 2012; 175:144-52. [PMID: 22080042 DOI: 10.1016/j.ygcen.2011.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 11/28/2022]
Abstract
Temperate rodent species experience marked seasonal fluctuations in environmental temperatures. High thermoregulatory demands during winter usually weaken immune function. Brown adipose tissue (BAT) plays a crucial role in adaptive thermoregulatory process. Thus, we proposed the hypothesis that BAT might participate in the regulation of seasonal changes in immune function. The present study examined the trade-off between thermoregulation and immune function and the potential role of BAT in regulating seasonal changes in immune function in Mongolian gerbils. Specifically, surgical removal of interscapular BAT (34% of total BAT) was performed in male gerbils, and subsequently acclimated to either warm (23 ± 1 °C) or cold (4 ± 1 °C) conditions. Gerbils were then challenged with innocuous antigens and the immune responses were measured. Resting metabolic rate (RMR) and nonshivering thermogenesis (NST) were increased under cold conditions. However, the cost of thermoregulation during cold acclimation did not suppress T-cell mediated immunity and humoral immunity or decrease spleen mass, thymus mass and white blood cells. Partial removal of BAT significantly enhanced humoral immunity in warm-acclimated, but not in cold-acclimated gerbils. T-cell mediated immunity, white blood cells and immune organs were not affected by BAT removal under both warm and cold conditions. Collectively, our results imply that BAT has a suppressive effect on humoral immunity in warm-acclimated gerbils and differential effects of BAT on humoral immunity under different temperatures (e.g., summer and winter) might be benefit to their survival.
Collapse
Affiliation(s)
- Deng-Bao Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
27
|
Zhao ZJ. Serum leptin, energy budget, and thermogenesis in striped hamsters exposed to consecutive decreases in ambient temperatures. Physiol Biochem Zool 2011; 84:560-72. [PMID: 22030849 DOI: 10.1086/662553] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Leptin has been found to be a direct participant in the regulation of both energy intake and energy expenditure in small mammals showing seasonal declines in body mass (M(b)) and fat mass, but its roles in an animal exhibiting seasonally increased thermogenesis and unchanged M(b) remain unclear. Serum leptin levels, energy budget, and thermogenesis were measured in striped hamsters exposed to consecutive decreases in ambient temperatures ranging from 23° to -23°C. Cold-exposed hamsters had significant increases in gross energy intake (GEI), the rate of basal metabolism, nonshivering thermogenesis, and activity of cytochrome c oxidase (COX) in brown adipose tissue (BAT), compared with control hamsters, indicating a cold-induced elevation of thermogenesis. Body mass and fat content were decreased in cold-exposed animals, and serum leptin levels were increased in hamsters exposed to temperatures of -8°C and below in inverse proportion to body fat content. Serum leptin levels were positively correlated with GEI and BAT COX activity in cold-exposed hamsters, but no such relationships were observed in control animals. These findings suggest that cold-exposed hamsters increase food consumption to meet the energy requirements for increased BAT thermogenesis. The increases in serum leptin levels are likely involved in increased thermogenesis in hamsters under cold stress. Cold-exposed hamsters may become leptin resistant, which is associated with impaired regulation of food intake. This new natural model of leptin resistance may also provide insight into the dynamic long-term control of energy homeostasis for animals that do not exhibit seasonal decline in M(b).
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- School of Agricultural Science, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
28
|
Zhu WL, Cai JH, Xiao L, Wang ZK. Effects of photoperiod on energy intake, thermogenesis and body mass in Eothenomys miletus in Hengduan Mountain region. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Chen JF, Zhong WQ, Wang DH. Seasonal changes in body mass, energy intake and thermogenesis in Maximowiczi’s voles (Microtus maximowiczii) from the Inner Mongolian grassland. J Comp Physiol B 2011; 182:275-85. [DOI: 10.1007/s00360-011-0608-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 02/03/2023]
|
30
|
Variations in thermal physiology and energetics of the tree shrew (Tupaia belangeri) in response to cold acclimation. J Comp Physiol B 2011; 182:167-76. [DOI: 10.1007/s00360-011-0606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
31
|
Thermogenesis, energy intake and serum leptin in Apodemus chevrieri in Hengduan Mountains region during cold acclimation. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2011.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Seasonal changes of thermogenic capacity in Melano-bellied oriental voles (Eothenomys melanogaster). ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.chnaes.2010.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Speakman JR, Król E. Limits to sustained energy intake. XIII. Recent progress and future perspectives. J Exp Biol 2011; 214:230-41. [DOI: 10.1242/jeb.048603] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Summary
Several theories have been proposed to explain limits on the maximum rate at which animals can ingest and expend energy. These limits are likely to be intrinsic to the animal, and potentially include the capacity of the alimentary tract to assimilate energy – the ‘central limitation’ hypothesis. Experimental evidence from lactating mice exposed to different ambient temperatures allows us to reject this and similar ideas. Two alternative ideas have been proposed. The ‘peripheral limitation’ hypothesis suggests that the maximal sustained energy intake reflects the summed demands of individual tissues, which have their own intrinsic limitations on capacity. In contrast, the ‘heat dissipation limit’ (HDL) theory suggests that animals are constrained by the maximal capacity to dissipate body heat. Abundant evidence in domesticated livestock supports the HDL theory, but data from smaller mammals are less conclusive. Here, we develop a novel framework showing how the HDL and peripheral limitations are likely to be important in all animals, but to different extents. The HDL theory makes a number of predictions – in particular that there is no fixed limit on sustained energy expenditure as a multiple of basal metabolic rate, but rather that the maximum sustained scope is positively correlated with the capacity to dissipate heat.
Collapse
Affiliation(s)
- John R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Elżbieta Król
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Mammal Research Institute PAS, 17-230 Białowieża, Poland
| |
Collapse
|
34
|
Cui JG, Tang GB, Wang DH, Speakman JR. Effects of leptin infusion during peak lactation on food intake, body composition, litter growth, and maternal neuroendocrine status in female Brandt's voles (Lasiopodomys brandtii). Am J Physiol Regul Integr Comp Physiol 2010; 300:R447-59. [PMID: 21123757 DOI: 10.1152/ajpregu.00121.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During lactation, female small mammals frequently reduce their fat reserves to very low levels. The function of this reduction is unclear, as calculations suggest that the contribution of the withdrawn energy from fat to the total energy balance of lactation is trivial. An alternative hypothesis is that reducing fat leads to a reduction in circulating adipokines, such as leptin, that play a role in stimulating the hyperphagia of lactation. We investigated the role of circulating leptin in lactation by repleting leptin levels using miniosmotic pumps during the last 7 days of lactation in Brandt's voles (Lasiopodomys brandtii), a model small wild mammal we have extensively studied in the context of lactation energy demands. Repletion of leptin resulted in a dose-dependent reduction of body mass and food intake in lactating voles. Comparisons to nonreproducing individuals suggests that the reduced leptin in lactation, due to reduced fat stores, may account for ∼16% of the lactational hyperphagia. Reduced leptin in lactation may, in part, cause lactational hyperphagia via stimulatory effects on hypothalamic orexigenic neuropeptides (neuropeptide Y and agouti-related peptide) and inhibition of the anorexigenic neuropeptide (proopiomelanocortin). These effects were reversed by the experimental repletion of leptin. There was no significant effect of leptin treatment on daily energy expenditure, milk production or pup growth, but leptin repletion did result in a reversal of the suppression of uncoupling protein-1 levels in brown adipose tissue, indicating an additional role for reducing body fat and leptin during peak lacation.
Collapse
Affiliation(s)
- Jian-Guo Cui
- Institute of Zoology, Chinese Academy of Sciences, Benchen Xilu, Chaoyang, Beijing 100101, China
| | | | | | | |
Collapse
|
35
|
Zhu WL, Cai JH, Lian X, Wang ZK. Adaptive character of metabolism in Eothenomys miletus in Hengduan Mountains region during cold acclimation. J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Kordonowy LL, McMurtry JP, Williams TD. Variation in plasma leptin-like immunoreactivity in free-living European starlings (Sturnus vulgaris). Gen Comp Endocrinol 2010; 166:47-53. [PMID: 19796643 DOI: 10.1016/j.ygcen.2009.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 09/04/2009] [Accepted: 09/05/2009] [Indexed: 11/27/2022]
Abstract
Leptin, a protein hormone secreted by fat cells, is best known for its role as an adiposity signal; however, leptin has diverse physiological roles ranging from regulation of feeding behavior and body weight, to effects on reproduction and immune function. Although leptin has been extensively studied in mammals, the identification and function of leptin in birds remains controversial, and studies have focused on captive or domesticated species. Here, we describe changes in plasma leptin-like immunoreactivity during the reproductive and non-reproductive seasons in free-living female European starlings (Sturnus vulgaris). Plasma leptin-like immunoreactivity was high during egg-laying (27.8+/-2.4 ng/mL) and clutch completion (23.8+/-1.6 ng/mL), decreased during incubation (13.0+/-1.6 ng/mL) and chick-rearing (12.0+/-1.3 ng/mL), but was elevated again in non-breeders in November (23.7+/-1.1 ng/mL). Although there was marked and consistent variation in total body mass and body composition with breeding stage and season in this population, plasma leptin-like immunoreactivity did not parallel changes in body mass or body composition. These data suggest that the strong positive relationship between plasma leptin-like immunoreactivity and body mass reported for captive birds and mammals does not hold for free-living birds. Rather, among free-living female European starlings, variation in plasma leptin-like immunoreactivity is associated with breeding stage or seasonal variation per se, and we discuss possible mechanisms underlying this variation, focusing on ovarian function and egg production.
Collapse
Affiliation(s)
- Lauren L Kordonowy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | | | |
Collapse
|
37
|
Zhu WL, Jia T, Lian X, Wang ZK. Effects of cold acclimation on body mass, serum leptin level, energy metabolism and thermognesis in Eothenomys miletus in Hengduan Mountains region. J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2009.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Tang GB, Cui JG, Wang DH. Role of hypoleptinemia during cold adaptation in Brandt's voles (Lasiopodomys brandtii). Am J Physiol Regul Integr Comp Physiol 2009; 297:R1293-301. [DOI: 10.1152/ajpregu.00185.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brandt's voles Lasiopodomys brandtii exhibit large increases in nonshivering thermogenesis to cope with chronic cold exposure, resulting in compensatory hyperphagia and fat mobilization. These physiological events are accompanied by a remarkable reduction in serum leptin levels. However, the role of hypoleptinemia in cold adaptation in this species is still unknown. In the present study, we tested the hypothesis that hypoleptinemia contributes to increases in food intake and brown adipose tissue (BAT) thermogenesis by modifying hypothalamic neuropeptides in cold-exposed Brandt's voles. Adult male voles were transferred to 5°C for 28 days. Accompanied by a decrease in serum leptin levels, hypothalamic agouti-related protein (AgRP) mRNA levels were significantly increased, but there were no changes in the long form of leptin receptor (Ob-Rb), suppressor of cytokine signaling 3 (SOCS3), neuropeptide Y (NPY) mRNA, proopiomelanocortin (POMC), and cocaine- and amphetamine-regulated peptide (CART) mRNA levels in the hypothalamus. When cold-exposed voles were returned to warm (23°C) for 28 days, body mass, food intake, serum leptin, and AgRP mRNA were restored to control levels. Leptin administration in cold-exposed voles decreased food intake as well as hypothalamic AgRP mRNA levels. There were no significant effects of leptin administration on hypothalamic Ob-Rb, SOCS3, NPY, POMC, CART mRNA, and uncoupling protein 1 levels under cold conditions. These results suggest that hypoleptinemia partially contributes to cold-induced hyperphagia, which might involve the elevation of hypothalamic AgRP gene expression.
Collapse
Affiliation(s)
- Gang-Bin Tang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing; and
- Graduate School of the Chinese Academy of Sciences, Yuquan Lu, Beijing, China
| | - Jian-Guo Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing; and
- Graduate School of the Chinese Academy of Sciences, Yuquan Lu, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang, Beijing; and
| |
Collapse
|
39
|
Zhao Z, Wang D. Plasticity in the Physiological Energetics of Mongolian Gerbils Is Associated with Diet Quality. Physiol Biochem Zool 2009; 82:504-15. [DOI: 10.1086/603630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Effects of fasting and refeeding on body mass, thermogenesis and serum leptin in Brandt's voles (Lasiopodomys brandtii). J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME. Folia Histochem Cytobiol 2008; 46:103-9. [DOI: 10.2478/v10042-008-0015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
42
|
Lu Q, Zhong WQ, Wang DH. Effects of photoperiod history on body mass and energy metabolism in Brandt's voles (Lasiopodomys brandtii). J Exp Biol 2007; 210:3838-47. [DOI: 10.1242/jeb.010025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Many small mammals respond to seasonal changes in photoperiod via alterations in morphology, physiology and behaviour. In the present study, we tested the hypothesis that the preweaning (from embryo to weaning) photoperiod experience can affect subsequent development in terms of body mass and thermogenesis. Brandt's voles (Lasiopodomys brandtii) were gestated and reared to weaning under either a short (SD, 8 h:16 h L:D) or a long photoperiod (LD, 16 h:8 h L:D) at a constant ambient temperature (23°C). At weaning, male juveniles were either maintained in their initial photoperiod or transferred to the alternative photoperiod for 8 weeks. Postweaning SD voles had a lower body mass but higher thermogenic capacity compared with LD voles. At the same time, preweaning photoperiod conditions had long-lasting effects on thermogenic capacity later in life. Serum leptin concentration was positively correlated with body mass and body fat mass, whereas it was negatively correlated with energy intake and uncoupling protein 1 content in brown adipose tissue. Our results suggest that postweaning development in terms of body mass and thermogenesis is predominantly influenced by the postweaning photoperiod, while the preweaning photoperiod experience could chronically modify thermogenesis but not body mass. Furthermore, serum leptin,acting as a potential adipostatic signal, may be involved in the regulation of both energy intake and energy expenditure.
Collapse
Affiliation(s)
- Qin Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology, Chinese Academy of Sciences, Beijing 100080,China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049,China
| | - Wen-Qin Zhong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology, Chinese Academy of Sciences, Beijing 100080,China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology, Chinese Academy of Sciences, Beijing 100080,China
| |
Collapse
|
43
|
Zhang ZQ, Wang DH. Seasonal changes in thermogenesis and body mass in wild Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol A Mol Integr Physiol 2007; 148:346-53. [PMID: 17588796 DOI: 10.1016/j.cbpa.2007.05.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/13/2007] [Accepted: 05/14/2007] [Indexed: 01/23/2023]
Abstract
Seasonal adjustments in body mass (BM), nonshivering thermogenesis (NST) and several physiological, hormonal, and biochemical markers were measured in wild-trapped Mongolian gerbils (Meriones unguiculatus) from Inner Mongolia, China. Sexual differences were detected in BM, NST, brown adipose tissue (BAT) mass, and mitochondrial protein content. BM and NST in males were higher in winter (January) and spring (May) than in summer (August), and BM of females was also the highest in winter, but NST remained relatively constant throughout the year. Cytochrome c oxidase activity and mitochondrial uncoupling protein 1 (UCP1) content in BAT were enhanced in winter in males or females, respectively. Serum leptin concentration was the lowest in winter and positively correlated with BM and body fat mass but was negatively correlated with BAT UCP1 content. These data suggest that wild Mongolian gerbils do not depend on a decrease in BM, but instead increase their thermogenic capacity to cope with cold stress. Leptin may be involved in the seasonal regulation in energy balance and thermogenesis in field Mongolian gerbils.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | | |
Collapse
|
44
|
Zhao ZJ, Wang DH. Effects of diet quality on energy budgets and thermogenesis in Brandt's voles. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:168-77. [PMID: 17482858 DOI: 10.1016/j.cbpa.2007.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 03/28/2007] [Accepted: 04/02/2007] [Indexed: 11/18/2022]
Abstract
Food quality and availability play an important role in an animal's life history. The aim of this study was to examine the effect of diet quality [high-fiber diet (HF) or low-fiber diet (LF)] on energy budgets and thermogenesis in Brandt's voles (Lasiopodomys (Microtus) brandtii). Dry matter intake and gross energy intake increased and digestibility decreased in HF voles compared with LF voles, while the digestible energy intake was similar for both HF and LF voles. Nonshivering thermogenesis (NST) decreased in HF voles, while LF voles kept stable; no significant differences were detected in basal metabolic rate (BMR), BAT uncoupling protein 1 (UCP1) content and the levels of serum thyroid hormones (T3 and T4) between HF and LF voles. Although there were no differences in body fat content and serum leptin concentrations between HF and LF voles, serum leptin concentrations in HF voles were reduced to nearly half as those seen in LF voles after 4-weeks acclimation. These results support the hypothesis that Brandt's voles can compensate the poor quality diet physiologically by the means of increasing food intake and decreasing thermogenesis.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
45
|
Li XS, Wang DH. Photoperiod and Temperature Can Regulate Body Mass, Serum Leptin Concentration, and Uncoupling Protein 1 in Brandt’s Voles (Lasiopodomys brandtii) and Mongolian Gerbils (Meriones unguiculatus). Physiol Biochem Zool 2007; 80:326-34. [PMID: 17390288 DOI: 10.1086/513189] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2007] [Indexed: 11/03/2022]
Abstract
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in wild small mammals. In this study, we performed a factorial experiment (temperature x photoperiod) in which Brandt's voles and Mongolian gerbils were acclimated to different photoperiods (long photoperiod, 16L : 8D; short photoperiod, 8L : 16D) and temperatures (warm, 23 degrees C; cold, 5 degrees C) to test the hypothesis that photoperiod, temperature, or both together can trigger seasonal changes in serum leptin level, body mass, thermogenesis, and energy intake. Our data demonstrate that Brandt's voles showed a remarkable decrease in body mass in both the cold and a short photoperiod. However, no significant changes in body mass were found for gerbils exposed to similar conditions. The short photoperiod induced a decrease in serum leptin levels for both voles and gerbils that might contribute to an increase in energy intake. Furthermore, the short photoperiod induced an increase of uncoupling protein 1 (UCP1) content for both voles and gerbils, and cold can further enhance the increase in voles. No interactions between photoperiod and temperature were detected for the two species. Brandt's voles can decrease their body mass through changes in energy intake and expenditure, while Mongolian gerbils can keep body mass relatively stable by balancing energy metabolism under winterlike conditions. Leptin was potentially involved in the regulation of body mass and thermogenic capacity for the two species.
Collapse
Affiliation(s)
- Xing-Sheng Li
- State Key Laboratory of Integrative Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
46
|
Zhang XY, Wang DH. Thermogenesis, food intake and serum leptin in cold-exposed lactating Brandt's volesLasiopodomys brandtii. J Exp Biol 2007; 210:512-21. [PMID: 17234621 DOI: 10.1242/jeb.02659] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYLactation is the most energetically expensive period for mammals and is associated with increased metabolism and energy intake, but decreased thermogenic capacity. It is well known that small mammals increase both food intake and thermogenesis in the cold. The present study aimed to examine whether Brandt's voles Lasiopodomys brandtii could adjust energy intake and thermogenesis to accommodate simultaneous lactation and cold exposure. The voles were placed into two temperature treatments: warm(23±1°C) and cold (5±1°C). Animals at each temperature treatment were further divided into two groups: non-reproductive (NR) and lactating females. We found that lactating voles at peak lactation in the cold enhanced food intake by 2.6 g day–1 compared with those in the warm, and increased uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT), to the same level as the cold-exposed NR females. Serum leptin levels decreased significantly during lactation and were positively correlated with body mass and fat mass. After correcting for the effects of body mass,residual serum leptin was negatively correlated with residual gross energy intake and residual RMR. In addition, residual serum leptin levels were positively correlated with UCP1 contents in the warm, but not in the cold. Together, these data suggest that lactating voles can increase thermogenic capacity and energy intake to meet the high energetic costs of simultaneous lactation and cold exposure. Further, serum leptin appears to be involved in the energy intake regulation and thermoregulation, but the thermoregulation in the cold may be mainly mediated by other factors.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuan Xilu, Zhongguancun, Haidian, Beijing 100080, China
| | | |
Collapse
|
47
|
Wang JM, Zhang YM, Wang DH. Photoperiodic regulation in energy intake, thermogenesis and body mass in root voles (Microtus oeconomus). Comp Biochem Physiol A Mol Integr Physiol 2006; 145:546-53. [PMID: 17049448 DOI: 10.1016/j.cbpa.2006.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 08/15/2006] [Accepted: 08/27/2006] [Indexed: 11/21/2022]
Abstract
The present study was designed to examine whether photoperiod alone was effective to induce seasonal regulations in physiology in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau noted for its extreme cold environment. Root voles were randomly assigned into either long photoperiod (LD; 16L:8D) or short photoperiod (SD; 8L:16D) for 4 weeks at constant temperature (20 degrees C). At the end of acclimation, SD voles showed lower body mass and body fat coupled with higher energy intake than LD voles. SD greatly enhanced thermogenic capacities in root voles, as indicated by elevated basal metabolic rate (BMR), nonshivering thermogenesis (NST), mitochondrial protein content and uncoupling protein-1 (UCP1) content in brown adipose tissue (BAT). Although no variations in serum leptin levels were found between SD and LD voles, serum leptin levels were positively correlated with body mass and body fat mass, and negatively correlated with energy intake and UCP1 content in BAT, respectively. To summarize, SD alone is effective in inducing higher thermogenic capacities and energy intake coupled with lower body mass and body fat mass in root voles. Leptin is potentially involved in the photoperiod induced body mass regulation and thermogenesis in root voles.
Collapse
Affiliation(s)
- Jian-Mei Wang
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China
| | | | | |
Collapse
|
48
|
Wang JM, Zhang YM, Wang DH. Seasonal thermogenesis and body mass regulation in plateau pikas (Ochotona curzoniae). Oecologia 2006; 149:373-82. [PMID: 16823564 DOI: 10.1007/s00442-006-0469-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Accepted: 05/17/2006] [Indexed: 12/26/2022]
Abstract
Changes in photoperiod, ambient temperature and food availability trigger seasonal acclimatization in physiology and behavior of many animals. In the present study, seasonal adjustments in body mass and in several physiological, hormonal, and biochemical markers were examined in wild-captured plateau pikas (Ochotona curzoniae) from the Qinghai-Tibetan plateau. Our results showed that plateau pikas maintained a relatively constant body mass throughout the year and showed no seasonal changes in body fat mass and circulating levels of serum leptin. However, nonshivering thermogenesis, cytochrome c oxidase activity, and mitochondrial uncoupling protein 1 (UCP1) contents in brown adipose tissues were significantly enhanced in winter. Further, serum leptin levels were positively correlated with body mass and body fat mass while negatively correlated with UCP1 contents. Together, these data suggest that plateau pikas mainly depend on increasing thermogenic capacities, rather than decreasing body mass, to cope with cold, and leptin may play a potential role in their thermogenesis and body mass regulation.
Collapse
Affiliation(s)
- Jian-Mei Wang
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, Qinghai, 810001, China
| | | | | |
Collapse
|
49
|
Wang JM, Zhang YM, Wang DH. Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. J Comp Physiol B 2006; 176:663-71. [PMID: 16786335 DOI: 10.1007/s00360-006-0089-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 02/22/2006] [Accepted: 04/18/2006] [Indexed: 11/29/2022]
Abstract
Survival of small mammals in winter requires proper adjustments in physiology, behavior and morphology. The present study was designed to examine the changes in serum leptin concentration and the molecular basis of thermogenesis in seasonally acclimatized root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. In January root voles had lower body mass and body fat mass coupled with higher nonshivering thermogenesis (NST) capacity. Consistently, cytochrome c oxidase activity and mitochondrial uncoupling protein-1 (UCP1) protein contents in brown adipose tissues were higher in January as compared to that in July. Circulating level of serum leptin was significantly lower in winter and higher in July. Correlation analysis showed that serum leptin levels were positively related with body mass and body fat mass while negatively correlated with UCP1 protein contents. Together, these data provided further evidence for our previous findings that root voles from the Qinghai-Tibetan plateau mainly depend on higher NST coupled with lower body mass to enhance winter survival. Further, fat deposition was significantly mobilized in cold winter and leptin was potentially involved in the regulation of body mass and thermogenesis in root voles. Serum leptin might act as a starvation signal in winter and satiety signal in summer.
Collapse
Affiliation(s)
- Jian-Mei Wang
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining , 810001 Qinghai, China
| | | | | |
Collapse
|
50
|
Zhang XY, Wang DH. Energy metabolism, thermogenesis and body mass regulation in Brandt's voles (Lasiopodomys brandtii) during cold acclimation and rewarming. Horm Behav 2006; 50:61-9. [PMID: 16515788 DOI: 10.1016/j.yhbeh.2006.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/28/2022]
Abstract
Environmental cues play important roles in the regulation of an animal's physiology and behavior. The purpose of the present study was to test the hypothesis that ambient temperature was a cue to induce adjustments in body mass, energy intake and thermogenic capacity, associated with changes in serum leptin levels in Brandt's voles (Lasiopodomys brandtii). We found that Brandt's voles increased resting metabolic rate (RMR) and energy intake and kept body mass stable when exposed to the cold while showed a significant increase in body mass after rewarming. The increase in body mass after rewarming was associated with the higher energy intake compared with control. Uncoupling protein 1 (UCP1) content in brown adipose tissue (BAT) increased in the cold and reversed after rewarming. Serum leptin levels decreased in the cold while increased after rewarming, associated with the opposite changes in energy intake. Further, serum leptin levels were positively correlated with body mass and body fat mass. Together, these data supported our hypothesis that ambient temperature was a cue to induce changes in body mass and metabolism. Serum leptin, as a starvation signal in the cold and satiety signal in rewarming, was involved in the processes of thermogenesis and body mass regulation in Brandt's voles.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuan Xilu, Zhongguancun, Haidian, Beijing 100080, China
| | | |
Collapse
|