1
|
Galarce N, Sánchez F, Escobar B, Lapierre L, Cornejo J, Alegría-Morán R, Neira V, Martínez V, Johnson T, Fuentes-Castillo D, Sano E, Lincopan N. Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals (Basel) 2021; 11:ani11071845. [PMID: 34206206 PMCID: PMC8300192 DOI: 10.3390/ani11071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens that cause food-borne diseases in humans, where cattle and derived products play a key role as reservoirs and vehicles. We analyzed the genomic data of STEC strains circulating at the livestock-food-human interface in South America, extracting clinically and epidemiologically relevant information (serotypes, virulome, resistance genes, sequence types, and phylogenomics). This study included 130 STEC genomes obtained from cattle (n = 51), beef (n = 48), and human (n = 31) samples. The successful expansion of O157:H7 (ST11) and non-O157 (ST16, ST21, ST223, ST443, ST677, ST679, ST2388) clones is highlighted, suggesting common activities, such as multilateral trade and travel. Circulating STEC strains analyzed exhibit high genomic diversity and harbor several genetic determinants associated with severe illness in humans, highlighting the need to establish official surveillance of this pathogen that should be focused on detecting molecular determinants of virulence and clonal relatedness, in the whole beef production chain. Abstract Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens responsible for causing food-borne diseases in humans. While South America has the highest incidence of human STEC infections, information about the genomic characteristics of the circulating strains is scarce. The aim of this study was to analyze genomic data of STEC strains isolated in South America from cattle, beef, and humans; predicting the antibiotic resistome, serotypes, sequence types (STs), clonal complexes (CCs) and phylogenomic backgrounds. A total of 130 whole genome sequences of STEC strains were analyzed, where 39.2% were isolated from cattle, 36.9% from beef, and 23.8% from humans. The ST11 was the most predicted (20.8%) and included O-:H7 (10.8%) and O157:H7 (10%) serotypes. The successful expansion of non-O157 clones such as ST16/CC29-O111:H8 and ST21/CC29-O26:H11 is highlighted, suggesting multilateral trade and travel. Virulome analyses showed that the predominant stx subtype was stx2a (54.6%); most strains carried ehaA (96.2%), iha (91.5%) and lpfA (77.7%) genes. We present genomic data that can be used to support the surveillance of STEC strains circulating at the livestock-food-human interface in South America, in order to control the spread of critical clones “from farm to table”.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Correspondence:
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Javiera Cornejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Pedro de Valdivia, Santiago 8370007, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Víctor Martínez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Danny Fuentes-Castillo
- Departamento de Patología, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil;
| | - Elder Sano
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| |
Collapse
|
2
|
Genetic diversity of the intimin gene (eae) in non-O157 Shiga toxin-producing Escherichia coli strains in China. Sci Rep 2020; 10:3275. [PMID: 32094410 PMCID: PMC7040016 DOI: 10.1038/s41598-020-60225-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. The increasing incidence of non-O157 STEC has posed a great risk to public health. Besides the Shiga toxin (Stx), the adherence factor, intimin, coded by eae gene plays a critical role in STEC pathogenesis. In this study, we investigated the prevalence and polymorphisms of eae gene in non-O157 STEC strains isolated from different sources in China. Among 735 non-O157 STEC strains, eae was present in 70 (9.5%) strains. Eighteen different eae genotypes were identified in 62 eae-positive STEC strains with the nucleotide identities ranging from 86.01% to 99.97%. Among which, seven genotypes were newly identified in this study. The eighteen eae genotypes can be categorized into five eae subtypes, namely β1, γ1, ε1, ζ3 and θ. Associations between eae subtypes/genotypes and serotypes as well as origins of strains were observed in this study. Strains belonging to serotypes O26:H11, O103:H2, O111:H8 are associated with particular eae subtypes, i.e., β1, ε1, θ, respectively. Most strains from diarrheal patients (7/9, 77.8%) carried eae-β1 subtype, while most isolates from cattle (23/26, 88.5%) carried eae-ζ3 subtype. This study demonstrated a genetic diversity of eae gene in non-O157 STEC strains from different sources in China.
Collapse
|
3
|
Peirano V, Bianco MN, Navarro A, Schelotto F, Varela G. Diarrheagenic Escherichia coli Associated with Acute Gastroenteritis in Children from Soriano, Uruguay. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2018; 2018:8387218. [PMID: 30515254 PMCID: PMC6234443 DOI: 10.1155/2018/8387218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/07/2018] [Accepted: 10/04/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Acute diarrheal disease still deserves worldwide attention due to its high morbidity and mortality, especially in developing countries. While etiologic determination is not mandatory for management of all individual cases, it is needed for generating useful epidemiologic knowledge. Diarrheagenic Escherichia coli (DEC) are relevant enteropathogens, and their investigation requires specific procedures to which resources and training should be dedicated in reference laboratories. METHODOLOGY Following the hypothesis that enteric pathogens affecting children in towns located in the interior of Uruguay may be different from those found in Montevideo, we conducted a diagnostic survey on acute diarrheal disease in 83 children under 5 years of age from populations in the south of the country. RESULTS DEC pathotypes were the only bacterial pathogens found in diarrheal feces (20.48%), followed by rotavirus (14.45%) and enteric adenovirus (4.81%). Atypical EPEC (aEPEC) was the most frequent DEC pathotype identified, and unexpectedly, it was associated with bloody diarrheal cases. These patients were of concern and provided with early consultation, as were children who presented with vomiting, which occurred most frequently in rotavirus infections. aEPEC serotypes were diverse and different from those previously reported in Montevideo children within the same age group and different from serotypes identified in regional and international studies. Enteroinvasive (EIEC) O96 : H19, associated with large outbreaks in Europe, was also isolated from two patients. Antibiotic susceptibility of pathogenic bacteria identified in this study was higher than that observed in previous national studies, which had been mainly carried out in children from Montevideo. CONCLUSION The reduced number of detected species, the marked prevalence of aEPEC, the scarce resistance traits, and the diverse range of serotypes in the virulent DEC identified in this study confirm that differences exist between enteropathogens affecting children from interior towns of Uruguay and those circulating among children in Montevideo.
Collapse
Affiliation(s)
- Vivian Peirano
- Bacteriology and Virology Department, Hygiene Institute, Medicine Faculty, Universidad de la República, Uruguay
- Mercedes Hospital Laboratory, State Health Services Administration (ASSE), Uruguay
| | - María Noel Bianco
- Bacteriology and Virology Department, Hygiene Institute, Medicine Faculty, Universidad de la República, Uruguay
| | - Armando Navarro
- Public Health Department, Medicine Faculty, UNAM (Universidad Nacional Autónoma de Mexico), Mexico City, Mexico
| | - Felipe Schelotto
- Bacteriology and Virology Department, Hygiene Institute, Medicine Faculty, Universidad de la República, Uruguay
| | - Gustavo Varela
- Bacteriology and Virology Department, Hygiene Institute, Medicine Faculty, Universidad de la República, Uruguay
| |
Collapse
|
4
|
Enteropathogens associated with acute diarrhea in children from households with high socioeconomic level in uruguay. Int J Microbiol 2015; 2015:592953. [PMID: 25861274 PMCID: PMC4377524 DOI: 10.1155/2015/592953] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 01/11/2023] Open
Abstract
Infectious diarrhea, a common disease of children, deserves permanent monitoring in all social groups. To know the etiology and clinical manifestations of acute diarrhea in children up to 5 years of age from high socioeconomic level households, we conducted a descriptive, microbiological, and clinical study.
Stools from 59 children with acute community-acquired diarrhea were examined, and their parents were interviewed concerning symptoms and signs. Rotavirus, adenovirus, and norovirus were detected by commercially available qualitative immunochromatographic lateral flow rapid tests. Salmonella, Campylobacter, Yersinia, and Shigella were investigated by standard bacteriological methods and diarrheagenic E. coli by PCR assays. We identified a potential enteric pathogen in 30 children. The most frequent causes of diarrhea were enteropathogenic E. coli (EPEC), viruses, Campylobacter, Salmonella, and Shiga-toxin-producing E. coli (STEC). Only 2 patients showed mixed infections. Our data suggest that children with viral or Campylobacter diarrhea were taken to the hospital earlier than those infected with EPEC. One child infected with STEC O26 developed “complete” HUS.
The microbiological results highlight the importance of zoonotic bacteria such as atypical EPEC, Campylobacter, STEC, and Salmonella as pathogens associated with acute diarrhea in these children. The findings also reinforce our previous communications about the regional importance of non-O157 STEC strains in severe infant food-borne diseases.
Collapse
|