1
|
Rivera-Hernández G, Tijerina-Castro GD, Cortés-Pérez S, Ferrera-Cerrato R, Alarcón A. Evaluation of functional plant growth-promoting activities of culturable rhizobacteria associated to tunicate maize ( Zea mays var. tunicata A. St. Hil), a Mexican exotic landrace grown in traditional agroecosystems. Front Microbiol 2024; 15:1478807. [PMID: 39417083 PMCID: PMC11480017 DOI: 10.3389/fmicb.2024.1478807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Tunicate maize (Zea mays var. tunicata A. St. Hil) is a landrace that constitutes a fundamental aspect of the socio-cultural identity of Ixtenco, Tlaxcala (Mexico) and represents an exotic phenotype whose kernels are enclosed in leaflike glumes. Despite multiple studies conducted worldwide on plant growth-promoting-rhizobacteria (PGPR) in commercial maize varieties grown under monoculture systems, very little is known about bacteria inhabiting native maize landraces in agroecosystems, but for tunicate maize such knowledge is non-existent. This research described and profiled functional groups of culturable rhizobacteria from tunicate maize at two phenological stages (tasseling and maturity/senescence) in a polyculture system, highlighting potential PGPR for biotechnological purposes. Ninety-five rhizobacteria were isolated and molecularly identified, and their physiological activities such as plant growth promotion, production of exogenous lytic enzymes, and antagonism against fungal pathogens were determined. The culturable rhizobacterial community associated to tunicate maize comprised 42 genera, dominated by Bacillaceae, Comamonadaceae, Microbacteriaceae, Micrococcaceae, Oxalobacteraceae, Pseudomonadaceae, and Rhizobaceae families. At tasseling stage, the identified bacteria corresponded to Arthrobacter, Priestia, Herbaspirillum, Pseudomonas, and Rhizobium, and exhibited redundant capabilities for stimulating plant growth and nutrition, and inhibiting fungal phytopathogens. At maturity/senescence stage, the main genera Arthrobacter and Microbacterium displayed lytic capabilities to support mineralization process. We recorded potential novel rhizosphere functional bacteria such as Rhizobium, Sphingobium, and Arthrobacter which are not previously described associated to maize landraces, as well as their bioprospection as PGPR detected at plant phenological stages poorly explored (like maturity/senescence). This taxonomic and functional diversity was attributed to the application of agricultural practices as well as the rhizosphere effect during specific phenological stages. Results described the diversity and functionality of culturable rhizosphere bacteria from tunicate maize in polyculture systems that allowed us the detection of potential rhizobacteria for further developing of biofertilizers and biocontrollers directed as biotechnology for sustainable agriculture, and for generating strategies for conservation of native plants and their microbial genetic resources.
Collapse
|
2
|
Flores Clavo R, Valladolid-Suyón E, Reinoza-Farroñan K, Asmat Ortega C, Riboldi Monteiro PH, Apaza-Castillo GA, Zuñiga-Valdera G, Fantinatti Garboggini F, Iglesias-Osores S, Carreño-Farfán CR. Rhizobacterial Isolates from Prosopis limensis Promote the Growth of Raphanus sativus L. Under Salt Stress. Curr Microbiol 2023; 80:269. [PMID: 37402857 DOI: 10.1007/s00284-023-03379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023]
Abstract
Microbial biotechnology employes techniques that rely based on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing agricultural crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments. In this study, bacterial isolates were obtained from soil and roots of Prosopis limensis Bentham from the department of Lambayeque, Peru. This region has high salinity levels, therefore, the collected samples were used to isolate plant growth-promoting rhizobacteria (PGPR), which were identified through morphological, and physical-biochemical characteristics. These salt tolerant bacteria were screened phosphate solubilization, indole acetic acid, deaminase activity and molecular characterization by 16S rDNA sequencing. Eighteen samples from saline soils of the Prosopis limensis plants in the northern coastal desert of San Jose district, Lambayeque, Peru. The bacterial isolates were screened for salt tolerance ranging from 2 to 10%, a total of 78 isolates were found. Isolates 03, 13 and 31 showed maximum salt tolerance at 10%, in vitro ACC production, phosphate solubilization and IAA production. The three isolates were identified by sequencing the amplified 16S rRNA gene and were found to be Pseudomonas sp. 03 (MW604823), Pseudomonas sp. 13 (MW604824) and Bordetella sp. 31 (MW604826). These microorganisms promoted the germination of radish plants and increased the germination rates for treatments T2, T3 and T4 by 129, 124 and 118% respectively. The beneficial effects of salt tolerant PGPR isolates isolated from saline environments can be new species, used to overcome the detrimental effects of salt stress on plants. The biochemical response and inoculation of the three isolates prove the potential of using these strains as a source of products that can be employed for the development of new compounds proving their potential as biofertilizers for saline environments.
Collapse
Affiliation(s)
- Rene Flores Clavo
- Cesar Vallejo University, Lambayeque, Perú.
- Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Pasaje Real Street No 174, Chiclayo, Lambayeque, Perú.
- Division of Microbial Resources of Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato No 999, Campinas, Paulínia, São Paulo, Brazil.
| | - Esteban Valladolid-Suyón
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| | - Karin Reinoza-Farroñan
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| | | | - Pedro Henrique Riboldi Monteiro
- Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Pasaje Real Street No 174, Chiclayo, Lambayeque, Perú
- Division of Microbial Resources of Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato No 999, Campinas, Paulínia, São Paulo, Brazil
| | - Gladys A Apaza-Castillo
- Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Pasaje Real Street No 174, Chiclayo, Lambayeque, Perú
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil
| | - Gabriel Zuñiga-Valdera
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| | - Fabiana Fantinatti Garboggini
- Division of Microbial Resources of Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas (UNICAMP), Alexandre Cazellato No 999, Campinas, Paulínia, São Paulo, Brazil
| | - Sebastian Iglesias-Osores
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| | - Carmen Rosa Carreño-Farfán
- Microbial Biotechnology Research Laboratory, Department of Microbiology and Parasitology, Pedro Ruiz Gallo National University, Juan XXIII No 391 Street, Chiclayo, Lambayeque, Peru
| |
Collapse
|
3
|
Abstract
Knowledge of the agricultural soil microbiota, of the microbial consortia that comprise it, and the promotion of agricultural practices that maintain and encourage them, is a promising way to improve soil quality for sustainable agriculture and to provide food security. Although numerous studies have demonstrated the positive effects of beneficial soil microorganisms on crop yields and quality, the use of microbial consortia in agriculture remains low. Microbial consortia have more properties than an individual microbial inoculum, due to the synergy of the microorganisms that populate them. This review describes the main characteristics, ecosystem functions, crop benefits, and biotechnological applications of microbial consortia composed of arbuscular mycorrhizal fungi (AMF), plant growth-promoting rhizobacteria (PGPR), and Actinobacteria, to promote the restoration of agricultural soils and, consequently, the quality and health of agricultural crops. The aim is to provide knowledge that will contribute to the development of sustainable and sufficiently productive agriculture, which will adapt in a good way to the pace of the growing human population and to climate change.
Collapse
|
4
|
Cisneros Rojas CA, Sánchez de Prager M, Menjivar Flores JC. Identificación de bacterias solubilizadoras de fosfatos en un Andisol de la región cafetera colombiana. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2017. [DOI: 10.15446/rev.colomb.biote.v19n1.65966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El fósforo es un elemento esencial para el cultivo de café, sin embargo la mayoría de los suelos en Colombia presentan niveles bajos de este nutriente. La presencia de microorganismos solubilizadores de fosfatos (MSF) es una de las estrategias para suplir su demanda, en ese sentido se aislaron 26 bacterias rizosféricas de Typic melanudans de Cajibío (Cauca, Colombia), en tres agroecosistemas: café sin sombra, café con sombra y relicto de bosque secundario, evaluándoles la eficiencia solubilizadora de P (ESF) en Ca-P, Al-P, Fe-P en medios Pikovskaya sólido y líquido, obteniendo la secuencia de solubilización Ca-P > Al-P > Fe-P. Los dos aislamientos bacterianos con mayor ESF se identificaron por extracción del ADN y análisis del gen 16S rRNA como Kocuria sp, y Bacillus subtilis. Posteriormente se cuantificaron e identificaron los ácidos orgánicos presentes en las tres fuentes de fosforo por HPLC, siendo ellos los ácidos cítrico, glucónico, D- y L-málico, D- y L-láctico con mayor presencia en Ca-P- Kocuria sp. En todas las condiciones, se observó que ocurrió acidificación de los medios, siendo más fuerte en Fe-P y Al-P.
Collapse
|
5
|
Sanchez Lopez DB, Pérez Pazos JV, David Hinestroza HA. Efecto de las PGPB sobre el crecimiento Pennisetum clandestinum bajo condiciones de estrés salino. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n1.50413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>Esta investigación tuvo como objetivo el aislamiento y caracterización de bacterias con potencial para promover el crecimiento del pasto Pennisetum clandestinum en suelos salinos simulados. De muestras de suelo rizosférico de P. clandestinum se aislaron 92 bacterias Gram positivas, diez aislados crecieron en agar nutritivo suplementado con NaCl (2,578 M). Los aislados se evaluaron bajo condiciones de invernadero; las cepas identificadas como KISA 34 y KISA 71 fueron seleccionadas como las mejores con base a la prueba estadística de Dunnet (p≤ 0,05) y fueron identificadas molecularmente como Bacillus amyloliquefaciens KISA 34 y Bacillus subtilis KISA 71. Estas cepas tienen la capacidad de producir; amonio, exopolisacáridos y celulosa, y tanto en presencia como ausencia de NaCl, produjeron índoles totales y solubilización de fósforo. La evaluación de las cepas en invernadero evidenció que el T6 - KISA 34 + KISA 71+ 25 % (Roca Fosfórica RF) con respecto al T2- testigo químico completo incrementaron de manera significativa la biomasa y el desarrollo de la planta (p≤ 0.05). Los resultados de esta investigación demostraron que las cepas aisladas tienen la capacidad de crecer en suelos salinos conservando sus características como promotoras de crecimiento vegetal con efectos positivos sobre P. clandestinum.</p>
Collapse
|