1
|
Xu L, Lei Z, Wang Q, Jiang Q, Xing B, Li X, Guo X, Wang Z, Li S, Huang Y, Lei T. Androgen Receptor Mediates Dopamine Agonist Resistance by Regulating Intracellular Reactive Oxygen Species in Prolactin-Secreting Pituitary Adenoma. Antioxid Redox Signal 2024. [PMID: 39360800 DOI: 10.1089/ars.2024.0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Aims: Dopamine agonists (DAs) are the first-line treatment for patients with prolactin-secreting pituitary adenoma (PRL adenoma). However, a subset of individuals exhibits poor responses, known as DA resistance. Previous studies have reported that DA resistance is more prevalent in male patients. This study aims to investigate the relationship between androgen receptor (AR) expression and DA resistance, as well as to explore underlying mechanisms of AR-mediated DA resistance. Results: Our results demonstrated that patients with higher AR expression exhibit greater resistance to DA in our cohort of DA-resistant PRL adenoma. Furthermore, AR was found to be involved in cell proliferation, PRL secretion, and resistance to bromocriptine (BRC) both in vitro and in vivo. Mechanistically, we demonstrated that intracellular reactive oxygen species (ROS) function as upstream mediators of apoptosis and ferroptosis following BRC treatment. As a ligand-dependent transcription factor, AR could translocate to the nucleus and transcriptionally promote NFE2-like bZIP transcription factor 2 (NRF2) expression, which regulates intracellular ROS levels, thereby enhancing cell viability and conferring DA resistance to pituitary adenoma (PA) cells. Finally, AR targeting agents were used to inhibit AR signaling, downregulate NRF2 transcription, and sensitize PA cells to BRC treatment. Conclusion and Innovation: We demonstrated that AR plays a crucial role in mediating DA resistance in PRL adenoma. Mechanistically, AR promotes cell proliferation and PRL secretion and confers drug resistance by transcriptionally regulating NRF2 expression to maintain redox homeostasis in PA cells. Finally, combining AR targeting agents with BRC shows promise as a therapeutic strategy for treating PRL adenomas. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Linpeng Xu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuowei Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Quanji Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Biao Xing
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xingbo Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Guo
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Zihan Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Sihan Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Huang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Trifunović S, Manojlović-Stojanoski M, Ajdžanović V, Nestorović N, Ristić N, Medigović I, Milošević V. Effects of genistein on stereological and hormonal characteristics of the pituitary somatotrophs in rats. Endocrine 2014; 47:869-77. [PMID: 24752394 DOI: 10.1007/s12020-014-0265-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/01/2014] [Indexed: 01/08/2023]
Abstract
The hypothalamic-pituitary somatotropic system plays a pivotal role in the regulation of physiological processes and metabolism, which is modulated by gonadal steroids. Considering that genistein belongs to the phytoestrogen family and acts via similar mechanisms to estrogens, the present study was designed to demonstrate whether genistein modulates the morphofunctional characteristic of somatotrophs [growth hormone (GH) cells] in adult rats in comparison with the effects of estradiol. In the study, the orchidectomized adult rats were used as an appropriate model system for testing the effects of this hormone-like substance. Changes in the pituitary somatotrophs were evaluated histologically and stereologically, while GH level was determined biochemically. Using immunolabelling and stereological methods, we showed that orchidectomy (Orx) provoked the decrease of GH cell volume density. After estradiol treatment of Orx rats, the most prominent change concerned the pituitary relative intensity of GH fluorescence and circulating GH level, which were elevated 77 % and 4.7-fold, respectively. Clearly, in contrast to orchidectomy, estradiol treatment enhanced the GH cells activity. Genistein treatment increased pituitary weight and volume, GH cell volume density, the total number of GH cells, and GH blood concentration (1.3-fold) in comparison to the Orx group. Although identical tendencies followed estradiol and genistein administration, the changes observed after genistein treatment were milder compared to estradiol treatment.
Collapse
|
3
|
Scheithauer BW, Kovacs K, Zorludemir S, Lloyd RV, Erdogan S, Slezak J. Immunoexpression of androgen receptor in the nontumorous pituitary and in adenomas. Endocr Pathol 2008; 19:27-33. [PMID: 18228161 DOI: 10.1007/s12022-007-9012-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Little information is available regarding androgen receptor immunoexpression (AR) in the normal and neoplastic human pituitary. Available experimental data links it to primarily gonadotroph cells. We undertook an immunohistochemical study of 41 autopsy-derived normal glands from patients of both sexes and all ages as well as 79 fully characterized pituitary adenomas of all types, the focus being upon AR expression in normal and neoplastic gonadotrophs. Nuclear AR immunoreactivity was noted in gonadotrophs and other normal adeno- and neurohypophysial cells. In addition to its presence in 74% of gonadotroph and 55% of null cell adenomas, lesser proportions of other adenoma types (adrenocorticotropic hormone 50%, prolactin 38%, growth hormone 33%) also exhibited AR immunoreactivity. No staining of thyroid-stimulating hormone adenomas was noted. The physiologic significance of our findings remains to be explored. The literature regarding AR expression in animal and human pituitaries is reviewed.
Collapse
Affiliation(s)
- Bernd W Scheithauer
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev 2004; 25:521-42. [PMID: 15294880 DOI: 10.1210/er.2003-0029] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Normal reproductive function in mammals requires precise control of LH synthesis and secretion by gonadotropes of the anterior pituitary. Synthesis of LH requires expression of two genes [alpha-glycoprotein subunit (alphaGSU) and LHbeta] located on different chromosomes. Hormones from the hypothalamus and gonads modulate transcription of both genes as well as secretion of the biologically active LH heterodimer. In males and females, the transcriptional tone of the genes encoding alphaGSU and LHbeta reflects dynamic integration of a positive signal provided by GnRH from hypothalamic neurons and negative signals emanating from gonadal steroids. Although alphaGSU and LHbeta genes respond transcriptionally in the same manner to changes in hormonal input, different combinations of regulatory elements orchestrate their response. These hormone-responsive regulatory elements are also integral members of much larger combinatorial codes responsible for targeting expression of alphaGSU and LHbeta genes to gonadotropes. In this review, we will profile the genomic landscape of the promoter-regulatory region of both genes, depicting elements and factors that contribute to gonadotrope-specific expression and hormonal regulation. Within this context, we will highlight the different combinatorial codes that control transcriptional responses, particularly those that mediate the opposing effects of GnRH and one of the sex steroids, androgens. We will use this framework to suggest that GnRH and androgens attain the same transcriptional endpoint through combinatorial codes unique to alphaGSU and LHbeta. This parallelism permits the dynamic and coordinate regulation of two genes that encode a single hormone.
Collapse
Affiliation(s)
- Joan S Jorgensen
- Department of Veterinary Biosciences, University of Illinois, Urbana 61802, USA
| | | | | |
Collapse
|