1
|
Rosenkranz AA, Slastnikova TA, Durymanov MO, Georgiev GP, Sobolev AS. Exploiting active nuclear import for efficient delivery of Auger electron emitters into the cell nucleus. Int J Radiat Biol 2023; 99:28-38. [PMID: 32856963 DOI: 10.1080/09553002.2020.1815889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND The most attractive features of Auger electrons (AEs) in cancer therapy are their extremely short range and sufficiently high linear energy transfer (LET) for a majority of them. The cytotoxic effects of AE emitters can be realized only in close vicinity to sensitive cellular targets and they are negligible if the emitters are located outside the cell. The nucleus is considered the compartment most sensitive to high LET particles. Therefore, the use of AE emitters could be most useful in specific recognition of a cancer cell and delivery of AE emitters into its nucleus. PURPOSE This review describes the studies aimed at developing effective anticancer agents for the delivery of AE emitters to the nuclei of target cancer cells. The use of peptide-based conjugates, nanoparticles, recombinant proteins, and other constructs for AE emitter targeted intranuclear delivery as well as their advantages and limitations are discussed. CONCLUSION Transport from the cytoplasm to the nucleus along with binding to the cancer cell is one of the key stages in the delivery of AE emitters; therefore, several constructs for exploitation of this transport have been developed. The transport is carried out through a nuclear pore complex (NPC) with the use of specific amino acid nuclear localization sequences (NLS) and carrier proteins named importins, which are located in the cytosol. Therefore, the effectiveness of NLS-containing delivery constructs designed to provide energy-dependent transport of AE emitter into the nuclei of cancer cells also depends on their efficient entry into the cytosol of the target cell.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Alexander S Sobolev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Gill MR, Walker MG, Able S, Tietz O, Lakshminarayanan A, Anderson R, Chalk R, El-Sagheer AH, Brown T, Thomas JA, Vallis KA. An 111In-labelled bis-ruthenium(ii) dipyridophenazine theranostic complex: mismatch DNA binding and selective radiotoxicity towards MMR-deficient cancer cells. Chem Sci 2020; 11:8936-8944. [PMID: 33815738 PMCID: PMC7989384 DOI: 10.1039/d0sc02825h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Theranostic radionuclides that emit Auger electrons (AE) can generate highly localised DNA damage and the accompanying gamma ray emission can be used for single-photon emission computed tomography (SPECT) imaging. Mismatched DNA base pairs (mismatches) are DNA lesions that are abundant in cells deficient in MMR (mismatch mediated repair) proteins. This form of genetic instability is prevalent in the MMR-deficient subset of colorectal cancers and is a potential target for AE radiotherapeutics. Herein we report the synthesis of a mismatch DNA binding bis-ruthenium(ii) dipyridophenazine (dppz) complex that can be radiolabelled with the Auger electron emitting radionuclide indium-111 (111In). Greater stabilisation accompanied by enhanced MLCT (metal to ligand charge-transfer) luminescence of both the bis-Ru(dppz) chelator and non-radioactive indium-loaded complex was observed in the presence of a TT mismatch-containing duplex compared to matched DNA. The radioactive construct [111In]In-bisRu(dppz) ([111In][In-2]4+) targets cell nuclei and is radiotoxic towards MMR-deficient human colorectal cancer cells showing substantially less detrimental effects in a paired cell line with restored MMR function. Additional cell line studies revealed that [111In][In-2]4+ is preferentially radiotoxic towards MMR-deficient colorectal cancer cells accompanied by increased DNA damage due to 111In decay. The biodistribution of [111In][In-2]4+ in live mice was demonstrated using SPECT. These results illustrate how a Ru(ii) polypyridyl complex can incorporate mismatch DNA binding and radiometal chelation in a single molecule, generating a DNA-targeting AE radiopharmaceutical that displays selective radiotoxicity towards MMR-deficient cancer cells and is compatible with whole organism SPECT imaging.
Collapse
Affiliation(s)
- Martin R Gill
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
- Department of Chemistry , Swansea University , Swansea , Wales , UK .
| | - Michael G Walker
- Department of Chemistry , University of Sheffield , Sheffield , UK
| | - Sarah Able
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
| | - Ole Tietz
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
| | - Abirami Lakshminarayanan
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK
| | - Rachel Anderson
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
| | - Rod Chalk
- Structural Genomics Consortium , University of Oxford , Oxford , UK
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK
- Chemistry Branch , Department of Science and Mathematics , Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK
| | - Jim A Thomas
- Department of Chemistry , University of Sheffield , Sheffield , UK
| | - Katherine A Vallis
- Oxford Institute for Radiation Oncology , Department of Oncology , University of Oxford , Oxford , UK .
| |
Collapse
|
3
|
Jackson MR, Bavelaar BM, Waghorn PA, Gill MR, El-Sagheer AH, Brown T, Tarsounas M, Vallis KA. Radiolabeled Oligonucleotides Targeting the RNA Subunit of Telomerase Inhibit Telomerase and Induce DNA Damage in Telomerase-Positive Cancer Cells. Cancer Res 2019; 79:4627-4637. [PMID: 31311806 PMCID: PMC7611324 DOI: 10.1158/0008-5472.can-18-3594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/01/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Telomerase is expressed in the majority (>85%) of tumors, but has restricted expression in normal tissues. Long-term telomerase inhibition in malignant cells results in progressive telomere shortening and reduction in cell proliferation. Here we report the synthesis and characterization of radiolabeled oligonucleotides that target the RNA subunit of telomerase, hTR, simultaneously inhibiting enzymatic activity and delivering radiation intracellularly. Oligonucleotides complementary (Match) and noncomplementary (Scramble or Mismatch) to hTR were conjugated to diethylenetriaminepentaacetic dianhydride (DTPA), allowing radiolabeling with the Auger electron-emitting radionuclide indium-111 (111In). Match oligonucleotides inhibited telomerase activity with high potency, which was not observed with Scramble or Mismatch oligonucleotides. DTPA-conjugation and 111In-labeling did not change telomerase inhibition. In telomerase-positive cancer cells, unlabeled Match oligonucleotides had no effect on survival, however, 111In-labeled Match oligonucleotides significantly reduced clonogenic survival and upregulated the DNA damage marker γH2AX. Minimal radiotoxicity and DNA damage was observed in telomerase-negative cells exposed to 111In-Match oligonucleotides. Match oligonucleotides localized in close proximity to nuclear Cajal bodies in telomerase-positive cells. In comparison with Match oligonucleotides, 111In-Scramble or 111In-Mismatch oligonucleotides demonstrated reduced retention and negligible impact on cell survival. This study indicates the therapeutic activity of radiolabeled oligonucleotides that specifically target hTR through potent telomerase inhibition and DNA damage induction in telomerase-expressing cancer cells and paves the way for the development of novel oligonucleotide radiotherapeutics targeting telomerase-positive cancers. SIGNIFICANCE: These findings present a novel radiolabeled oligonucleotide for targeting telomerase-positive cancer cells that exhibits dual activity by simultaneously inhibiting telomerase and promoting radiation-induced genomic DNA damage.
Collapse
Affiliation(s)
- Mark R Jackson
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Bas M Bavelaar
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip A Waghorn
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Martin R Gill
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Tom Brown
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Madalena Tarsounas
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Katherine A Vallis
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Violet JA, Farrugia G, Skene C, White J, Lobachevsky P, Martin R. Triple targeting of Auger emitters using octreotate conjugated to a DNA-binding ligand and a nuclear localizing signal. Int J Radiat Biol 2016; 92:707-715. [DOI: 10.3109/09553002.2016.1157278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- John A. Violet
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Gabriella Farrugia
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Colin Skene
- School of Chemistry and Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan White
- School of Chemistry and Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Pavel Lobachevsky
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Roger Martin
- Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Martin RF, Feinendegen LE. The quest to exploit the Auger effect in cancer radiotherapy - a reflective review. Int J Radiat Biol 2016; 92:617-632. [PMID: 26926313 DOI: 10.3109/09553002.2015.1136854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To identify the emergence of the recognition of the potential of the Auger effect for clinical application, and after tracing the salient milestones towards that goal, to evaluate the status quo and future prospects. It was not until 40 years after the discovery of Auger electrons, that the availability of radioactive DNA precursors enabled the biological power, and the clinical potential, of the Auger effect to be appreciated. Important milestones on the path to clinical translation have been identified and reached, but hurdles remain. Nevertheless the potential is still evident, and there is reasonable optimism that the goal of clinical translation is achievable.
Collapse
Affiliation(s)
- Roger F Martin
- a Molecular Radiation Biology Laboratory , Peter MacCallum Cancer Centre.,b The Sir Peter MacCallum Department of Oncology , The University of Melbourne.,c School of Chemistry and Bio-21 Molecular Science and Biotechnology Institute , University of Melbourne , Melbourne , Australia
| | - Ludwig E Feinendegen
- d Heinrich-Heine-University Düsseldorf , Germany.,e Brookhaven National Laboratory , Upton , NY , USA
| |
Collapse
|
6
|
Gijs M, Aerts A, Impens N, Baatout S, Luxen A. Aptamers as radiopharmaceuticals for nuclear imaging and therapy. Nucl Med Biol 2015; 43:253-71. [PMID: 26746572 DOI: 10.1016/j.nucmedbio.2015.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/24/2015] [Accepted: 09/10/2015] [Indexed: 12/27/2022]
Abstract
Today, radiopharmaceuticals belong to the standard instrumentation of nuclear medicine, both in the context of diagnosis and therapy. The majority of radiopharmaceuticals consist of targeting biomolecules which are designed to interact with a disease-related molecular target. A plethora of targeting biomolecules of radiopharmaceuticals exists, including antibodies, antibody fragments, proteins, peptides and nucleic acids. Nucleic acids have some significant advantages relative to proteinaceous biomolecules in terms of size, production, modifications, possible targets and immunogenicity. In particular, aptamers (non-coding, synthetic, single-stranded DNA or RNA oligonucleotides) are of interest because they can bind a molecular target with high affinity and specificity. At present, few aptamers have been investigated preclinically for imaging and therapeutic applications. In this review, we describe the use of aptamers as targeting biomolecules of radiopharmaceuticals. We also discuss the chemical modifications which are needed to turn aptamers into valuable (radio-)pharmaceuticals, as well as the different radiolabeling strategies that can be used to radiolabel oligonucleotides and, in particular, aptamers.
Collapse
Affiliation(s)
- Marlies Gijs
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium; Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Nathalie Impens
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - André Luxen
- Cyclotron Research Centre, University of Liège, Liège, Belgium.
| |
Collapse
|
7
|
Dahmen V, Kriehuber R. Cytotoxic effects and specific gene expression alterations induced by I-125-labeled triplex-forming oligonucleotides. Int J Radiat Biol 2012; 88:972-9. [PMID: 22694342 PMCID: PMC3518296 DOI: 10.3109/09553002.2012.702298] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE Triplex-forming oligonucleotides (TFO) bind to the DNA double helix in a sequence-specific manner. Therefore, TFO seem to be a suitable carrier for Auger electron emitters to damage exclusively targeted DNA sequences, e.g., in tumor cells. We studied the influence of I-125 labeled TFO with regard to cell survival and induction of DNA double-strand breaks (DSB) using TFO with different genomic targets and target numbers. Furthermore, the ability of TFO to alter the gene expression of targeted genes was examined. MATERIALS AND METHODS TFO were labeled with I-125 using the primer extension method. DNA triplex formation and sequence-specific DSB were demonstrated in vitro. Cell survival was analyzed by colony-forming assay and DNA damage was assessed by microscopic quantification of protein 53 binding protein 1 (53BP1) foci in the human squamous carcinoma cell line II (SCL-II). Quantitative real-time polymerase-chain-reaction (qRT-PCR) was performed to analyze gene expression alterations. RESULTS The sequence-specific induction of a single DSB in a 1695 bp long DNA double stranded fragment was demonstrated in vitro. I-125-labeled TFO binding to single and multiple targets were shown to induce a pronounced decrease in cell survival and an increase of DSB. TFO targeting multiple sites differing in the total target number showed a significant different cell killing per decay that is also in good accordance with the observed induction of DSB. Single gene targeting I-125-labeled TFO significantly decreased cell survival and altered gene expression in the targeted gene. CONCLUSIONS I-125-labeled TFO enable specific targeting of DNA in vitro as well as in a cellular environment and thus induce sequence-specific complex DNA lesions. Therefore I-125-labeled TFO might be a very useful tool for basic DNA repair research.
Collapse
Affiliation(s)
- Volker Dahmen
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | |
Collapse
|
8
|
Auger Emitting Radiopharmaceuticals for Cancer Therapy. RADIATION DAMAGE IN BIOMOLECULAR SYSTEMS 2012. [DOI: 10.1007/978-94-007-2564-5_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Morgenroth A, Vogg AT, Mottaghy FM, Schmaljohann J. Targeted endoradiotherapy using nucleotides. Methods 2011; 55:203-14. [PMID: 21782950 DOI: 10.1016/j.ymeth.2011.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 11/15/2022] Open
Abstract
Increased cellular proliferation is an integral part of the cancer phenotype. Hence, the sustained and continued demand on supply of DNA building blocks during the DNA replication presents a potential target for therapeutic intervention. For this propose, the α and Auger electron emitting nucleotides analogs are attractive for targeted endoradiotherapy, given that DNA of malignant cells is selectively addressed. This review summarizes development and preclinical and clinical studies of endoradiotherapeutic acting nucleoside analogs with a special focus on thymidine analogs.
Collapse
Affiliation(s)
- Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH, Pauwelsstraße 30, D-52074 Aachen, Germany.
| | | | | | | |
Collapse
|
10
|
Costantini DL, Hu M, Reilly RM. Update:Peptide Motifs for Insertion of Radiolabeled Biomolecules into Cells and Routing to the Nucleus for Cancer Imaging or Radiotherapeutic Applications. Cancer Biother Radiopharm 2008; 23:3-24. [DOI: 10.1089/cbr.2007.0430] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Danny L. Costantini
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Meiduo Hu
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Raymond M. Reilly
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Grafström G, Jönsson BA, El Hassan AM, Tennvall J, Strand SE. Rat testis as a radiobiological in vivo model for radionuclides. RADIATION PROTECTION DOSIMETRY 2006; 118:32-42. [PMID: 16046556 DOI: 10.1093/rpd/nci328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The radiobiological effect of intracellularly localised radionuclides emitting low energy electrons (Auger electrons) has received much attention. Most in vivo studies reported have been performed in the mouse testis. We have investigated the rat testis as an in vivo radiobiological model, with sperm-head survival, testis weight loss and also alteration in the blood plasma hormone levels of FSH and LH as radiobiological endpoints. Validation of the rat testis model was evaluated by using mean absorbed doses of up to 10 Gy from intratesticularly (i.t.) injected (111)In oxine or local X-ray irradiation. Biokinetics of the i.t. injected radionuclide was analysed by scintillation camera imaging and used in the absorbed dose estimation. By the analysis of the autoradiographs, the activity distribution was revealed. Cell fractionation showed (111)In to be mainly associated with the cell nuclei. External irradiations were monitored by thermoluminescence dosimeters. The sperm-head survival was the most sensitive radiobiological parameter correlated to the mean absorbed dose, with a D(37) of 2.3 Gy for (111)In oxine and 1.3 Gy for X rays. The levels of plasma pituitary gonadal hormones FSH and LH were elevated for absorbed doses >7.7 Gy. This investigation shows that the radiobiological model based on the rat testis has several advantages compared with the previously commonly used mouse testis model. The model is appropriate for further investigations of basic phenomena such as radiation geometry, intracellular kinetics and heterogeneity, crucial for an understanding of the biological effect of low-energy electrons.
Collapse
Affiliation(s)
- G Grafström
- Departament of Medical Radiation Physics, Lund University, S-221 85 Lund, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Lobachevsky PN, Martin RF. DNA Breakage by Decay of Auger Electron Emitters: Experiments with123I-iodoHoechst 33258 and Plasmid DNA. Radiat Res 2005; 164:766-73. [PMID: 16296882 DOI: 10.1667/rr3469.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Auger electron-emitting isotope 123I is of interest in the context of potential exploitation of Auger electron emitters in radioimmunotherapy. The efficiency of induction of cytotoxic lesions by decay of DNA-associated 125I, the prototype Auger electron emitter, is well established, but its long half-life (60 days) is a limitation. However, the advantage of the much shorter half-life of 123I (13.2 h) might be outweighed by its "weaker" Auger electron cascade with an average of 8-11 Auger electrons, compared to about 15-21 electrons for 125I. Accordingly, the efficiency of DNA breakage for DNA-associated 123I was investigated by incubation of 123I-iodoHoechst 33258 with plasmid DNA. The efficiency of double-strand break induction by decay of 123I was 0.62 compared to 0.82 per decay of 125I in the same experimental system. In the presence of dimethylsulfoxide, the values were 0.54 and 0.65 for decay of 123I and 125I, respectively. The results also showed that at a very low ligand/plasmid molar ratio (<1), the majority of cleavage seemed to occur at a particular site on the plasmid molecule, indicating preferential binding of the 123I-ligand to a unique site or a cluster of neighboring sites.
Collapse
Affiliation(s)
- Pavel N Lobachevsky
- Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
| | | |
Collapse
|
13
|
Panyutin IG, Neumann RD. The potential for gene-targeted radiation therapy of cancers. Trends Biotechnol 2005; 23:492-6. [PMID: 16125814 DOI: 10.1016/j.tibtech.2005.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/23/2005] [Accepted: 08/11/2005] [Indexed: 01/08/2023]
Abstract
Targeted cancer therapy is the mantra now chanted by oncologists of all types. Everyone hopes that the rapid expansion in the knowledge of cancer cell genetics, signaling, regulatory factors and other changes that underlie malignant transformation and metastasis will lead to innovative approaches for the treatment of cancers. To date, successful targeted therapies have been derived from pharmaceutical chemistry - designing chemical compounds intended to disrupt a crucial pathway for malignant cells to survive, grow and metastasize. Radiotherapy also has a goal of more-selective targeting of therapeutic radiation effects to only tumor cells. In this review, we describe our efforts to create a form of gene-targeted radiation therapy by using the unique radiation effects of radionuclides that decay by the Auger process attached to oligonucleotide carrier-molecules that are capable of forming triplex DNA structures with target sequences in the genome of the human cancer cell.
Collapse
Affiliation(s)
- Igor G Panyutin
- Nuclear Medicine Department, Clinical Center, NIH, Bethesda, MD 20892-1180, USA.
| | | |
Collapse
|
14
|
Haefliger P, Agorastos N, Renard A, Giambonini-Brugnoli G, Marty C, Alberto R. Cell Uptake and Radiotoxicity Studies of an Nuclear Localization Signal Peptide−Intercalator Conjugate Labeled with [99mTc(CO)3]+. Bioconjug Chem 2005; 16:582-7. [PMID: 15898725 DOI: 10.1021/bc0500084] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A trifunctional bioconjugate consisting of the SV40 nuclear localization signal (NLS) peptide, an aliphatic triamine ligand, and the DNA intercalating pyrene has been synthesized and quantitatively labeled with [(99m)Tc(OH(2))(3)(CO)(3)](+). The radiotoxicity of the resulting nucleus-targeting radiopharmaceutical on B16F1 mouse melanoma cells has been investigated to evaluate the activity of Auger and Coster-Kronig electrons on the viability of cells. We found a dose-dependent significant radiotoxicity of the nucleus-targeting radiopharmaceutical clearly related to the low energy decay of (99m)Tc. These principal results imply a possible therapeutic strategy based on the use of the low-energy Auger electron-emitting (99m)Tc radionuclide attached to nucleus-targeting molecules and comprising an intercalator. Highly efficient DNA targeting vectors could complement the usual role of (99m)Tc in diagnostic applications. The Auger electrons emitted by the (99m)Tc nuclide induce DNA damage leading ultimately, through a mitotic catastrophe pathway, to necrotic cell death. Non-DNA-targeting (99m)Tc complexes display much lower radiotoxicity.
Collapse
Affiliation(s)
- Pascal Haefliger
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Panyutin IG, Sedelnikova OA, Karamychev VN, Neumann RD. Antigene radiotherapy: targeted radiodamage with 125i-labeled triplex-forming oligonucleotides. Ann N Y Acad Sci 2004; 1002:134-40. [PMID: 14751831 DOI: 10.1196/annals.1281.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antigene radiotherapy is based upon damaging selected genes by a high dose of radiation from radionuclides delivered to this gene by a sequence-specific DNA-binding molecule. Here we describe our recent trials of antigene radiotherapy using the human mdr1 gene over-expressed in KB-V1 cells as a model. As a delivery molecule, we used a triplex-forming oligonucleotide (TFO) with a binding site in intron 14 of mdr1. This TFO was labeled with an Auger-electron-emitting radionuclide 125I. Decay of 125I releases a shower of low energy electrons that produce DNA strand breaks mostly within 10 bp from the decay site. Targeting in situ was assessed by restriction enzyme digestion of the DNA recovered from the TFO-treated cells followed by Southern hybridization with DNA probes flanking the target sequence. Double-strand breaks in the target sequence were detected in purified nuclei and digitonin-permeabilized cells, but not in the intact cells when TFO were delivered with liposomes. On the basis of these observations we hypothesized that there are cytoplasmic factors that bind such TFO and deliver them into the nucleus, but do not release them inside the nucleus, thus preventing TFO from binding their genomic targets. To test this hypothesis we (i) delivered TFO along with an excess of unlabeled oligonucleotide with an arbitrary sequence ("ballast") and (ii) conjugated TFO with a nuclear localization sequence peptide (NLS). We have found that TFO/NLS conjugates cleaved the target in a concentration-dependent manner regardless of the presence of the "ballast" oligonucleotide. In contrast, TFO without NLS cleaved the target only in the presence of an excess of the "ballast." These results may provide a new insight into the mechanism of intracellular transport of oligonucleotides.
Collapse
Affiliation(s)
- I G Panyutin
- Department of Nuclear Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
16
|
He Y, Panyutin IG, Karavanov A, Demidov VV, Neumann RD. Sequence-specific DNA strand cleavage by 111In-labeled peptide nucleic acids. Eur J Nucl Med Mol Imaging 2004; 31:837-45. [PMID: 14762696 DOI: 10.1007/s00259-003-1446-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
Peptide nucleic acids (PNAs) bind tightly and sequence-specifically to single- and double-stranded nucleic acids, and are hence of interest in the design of gene-targeted radiotherapeutics that could deliver the radiodamage to designated DNA and/or RNA sites. As a first step towards this goal, we developed a procedure for incorporation of Auger electron-emitting radionuclide (indium-111) into PNA oligomers and studied the efficiency of PNA-directed cleavage of single-stranded DNA targets. Accordingly, diethylene triamine penta-acetic acid (DTPA) was conjugated to the lysine-appended mixed-base PNAs and sequence-homologous DNA oligomer with a proper linker for comparative studies. By chelation of PNA-DTPA and DNA-DTPA conjugates with (111)In(3+) in acidic aqueous solutions, (111)In-labeled PNA and DNA oligomers were obtained. Targeting of single-stranded DNA with PNA-DTPA-[(111)In] conjugates yielded highly localized DNA strand cleavage; the distribution of breaks along the target DNA strand has two maxima corresponding to both termini of PNA oligomer. After 10-14 days, the overall yield of breaks thus generated within the PNA-targeted DNA by (111)In decay was 5-7% versus < or =2% in the case of control oligonucleotide DNA-DTPA-[(111)In]. The estimated yield of DNA strand breaks per nuclear decay is ~0.1 for the PNA-directed delivery of (111)In, which is three times more than for the DNA-directed delivery of this radionuclide. This in vitro study shows that (111)In-labeled PNAs are much more effective than radiolabeled DNA oligonucleotides for site-specific damaging of DNA targets. Accordingly, we believe that PNA oligomers are promising radionuclide delivery tools for future antisense/antigene radiotherapy trials.
Collapse
Affiliation(s)
- Yujian He
- Department of Nuclear Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892-1180, USA
| | | | | | | | | |
Collapse
|
17
|
Bodei L, Kassis AI, Adelstein SJ, Mariani G. Radionuclide Therapy with Iodine-125 and Other Auger–Electron-Emitting Radionuclides: Experimental Models and Clinical Applications. Cancer Biother Radiopharm 2003; 18:861-77. [PMID: 14969599 DOI: 10.1089/108497803322702833] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Auger-electron emitters represent an attractive alternative to beta-particle emitters for cancer therapy if they can be placed intracellularly, especially in close proximity to (or within) nuclear DNA. Based on investigations in animal tumor models, including those for ovarian cancer, bladder cancer, and brain and spinal cord tumors, in which the thymidine analog 5-radioiodo-2'-deoxyuridine (*IUdR) has been shown to be therapeutically efficacious, it is hypothesized that iodine-125 and other Auger-electron-emitting radionuclides might be valuable in the treatment of certain malignant diseases, assuming that uptake of the radiopharmaceutical by tumor cells exceeds that by normal dividing cells. Preliminary patient studies have shown that this requirement can be met partially by the locoregional administration of the radiopharmaceutical and metabolic modulation of its uptake by tumor cells. Investigators continue to seek molecules that can carry Auger-electron emitters to nuclear DNA, especially those radionuclides with higher Auger-electron yields and varying half-lives.
Collapse
Affiliation(s)
- Lisa Bodei
- Nuclear Medicine Division, European Institute of Oncology, Milan, Italy
| | | | | | | |
Collapse
|
18
|
Ziemba AJ, Reed MW, Raney KD, Byrd AB, Ebbinghaus SW. A bis-alkylating triplex forming oligonucleotide inhibits intracellular reporter gene expression and prevents triplex unwinding due to helicase activity. Biochemistry 2003; 42:5013-24. [PMID: 12718544 DOI: 10.1021/bi0273112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triplex forming oligonucleotides (TFOs) have the ability to site specifically modulate gene expression through the formation of triple helix DNA. The HER-2/neu promoter contains a strategically located triplex target sequence, and has been successfully targeted in vitro, with little success in vivo. A TFO was conjugated at both its 5' and 3' ends to an alkylating agent (phenylacetate mustard) in an attempt to stabilize the triple helix intracellularly. In vitro assays demonstrated that the bis-conjugate bound the duplex and alkylated the target guanine residues with high efficiency. The bis-conjugate suppressed promoter activity by 60-70% in cancer cells using a plasmid with a preformed triple helix, and the suppression was minimal when the nitrogen mustard was conjugated at only one end. Helicase assays demonstrated that helicase activity can unwind the TFO at the unalkylated end of the triple helix, which may leave the unwound oligonucleotide susceptible to nuclease degradation or ineffective at inhibiting transcription initiation. Our findings indicate that dual alkylation of the target sequence is required to suppress the intracellular activity of a reporter plasmid with a preformed triple helix, likely due to greater stability of the triple helix within cells and inhibition of helicase activity.
Collapse
Affiliation(s)
- Amy J Ziemba
- Arizona Cancer Center, University of Arizona, Tucson, USA
| | | | | | | | | |
Collapse
|
19
|
Odersky A, Panyutin IV, Panyutin IG, Schunck C, Feldmann E, Goedecke W, Neumann RD, Obe G, Pfeiffer P. Repair of sequence-specific 125I-induced double-strand breaks by nonhomologous DNA end joining in mammalian cell-free extracts. J Biol Chem 2002; 277:11756-64. [PMID: 11821407 DOI: 10.1074/jbc.m111304200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, nonhomologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair. Rejoining of DSB produced by decay of (125)I positioned against a specific target site in plasmid DNA via a triplex-forming oligonucleotide (TFO) was investigated in cell-free extracts from Chinese hamster ovary cells. The efficiency and quality of NHEJ of the "complex" DSB induced by the (125)I-TFO was compared with that of "simple" DSB induced by restriction enzymes. We demonstrate that the extracts are indeed able to rejoin (125)I-TFO-induced DSB, although at approximately 10-fold decreased efficiency compared with restriction enzyme-induced DSB. The resulting spectrum of junctions is highly heterogeneous exhibiting deletions (1-30 bp), base pair substitutions, and insertions and reflects the heterogeneity of DSB induced by the (125)I-TFO within its target site. We show that NHEJ of (125)I-TFO-induced DSB is not a random process that solely depends on the position of the DSB but is driven by the availability of microhomology patches in the target sequence. The similarity of the junctions obtained with the ones found in vivo after (125)I-TFO-mediated radiodamage indicates that our in vitro system may be a useful tool to elucidate the mechanisms of ionizing radiation-induced mutagenesis and repair.
Collapse
Affiliation(s)
- Andrea Odersky
- Institut für Genetik FB9, Universität Essen, Universitätsstrasse 5, D-45117 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lubberink M, Lundqvist H, Tolmachev V. Production, PET performance and dosimetric considerations of 134Ce/134La, an Auger electron and positron-emitting generator for radionuclide therapy. Phys Med Biol 2002; 47:615-29. [PMID: 11900194 DOI: 10.1088/0031-9155/47/4/305] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We propose the use of the Auger electron and positron-emitting generator 134Ce/134La (half-lives 3.16 d and 6.45 min) for radionuclide therapy. It combines emission of high-energy beta particles with Auger electrons. The high-energy beta particles have similar energies as those emitted by 90Y. Many cancer patients receiving radionuclide therapy have both bulk tumours, which are best treated with high-energy beta particles, and single spread cells or micrometastasis, which are preferably treated with low-energy electrons such as Auger and conversion electrons. Furthermore, the positron-emitting 134La can be used to study kinetics and dosimetry using PET. Production and PET performance were investigated and theoretical dosimetry calculations were made. PET resolution, recovery and quantitative accuracy were slightly degraded for 134La compared to 18F. 134Ce/134La absorbed doses to single cells were higher than absorbed doses from 90Y and 111In. Absorbed doses to spheres representing bulk tumours were almost as high as for 90Y, and a factor 10 higher than for 111In. Whole-body absorbed doses, based on kinetics of the somatostatin analogue octreotide, were higher for 134Ce/134La than for 90Y because of the 134La annihilation photons. This initial study of the therapeutic possibilities of 134Ce/134La is encouraging and justifies further investigations.
Collapse
Affiliation(s)
- Mark Lubberink
- Uppsala University, Section of Biomedical Radiation Sciences, Rudbeck Laboratory, Sweden
| | | | | |
Collapse
|
21
|
Sedelnikova OA, Karamychev VN, Panyutin IG, Neumann RD. Sequence-specific gene cleavage in intact mammalian cells by 125I-labeled triplex-forming oligonucleotides conjugated with nuclear localization signal peptide. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:43-9. [PMID: 12022689 DOI: 10.1089/108729002753670256] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Triplex-forming oligonucleotides (TFO) are designed to bind sequence specifically to their DNA targets without a significant disturbance of the double helix. They have been proposed to deliver DNA-reactive agents to specific DNA sequences for gene targeting applications. We suggested the use of 125I-labeled TFO for delivery of the energy of radioiodine decay to specific genes. This approach is called antigene radiotherapy. Here we demonstrate the ability of 125I-labeled TFO to produce sequence-specific breaks within a target in the human mdrl gene in cultured cells. TFO and TFO conjugated with a nuclear localization signal peptide (NLS) were delivered into cells using cationic liposomes. This was done either alone or in the presence of an excess of a "ballast" oligonucleotide with an unrelated sequence. In all cases, nuclear localization of TFO and survival of the cells after treatment has been confirmed. Breaks in the gene target were analyzed by restriction enzyme digestion of the DNA recovered from the TFO-treated cells followed by Southern hybridization with DNA probes flanking the target sequence. We have found that TFO/NLS conjugates cleave the target in a concentration-dependent manner regardless of the presence of the "ballast" oligonucleotide. In contrast, TFO without NLS cleaved the target only in the presence of an excess of the "ballast." We hypothesize that TFO and TFO/NLS are delivered into the nucleus by different pathways. These results provide a new insight into the mechanism of intracellular transport of oligonucleotides and open new avenues for improvement of the efficacy of antigene therapies.
Collapse
Affiliation(s)
- O A Sedelnikova
- Department of Nuclear Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|