1
|
Al-Amshawee SKA, Yunus MYBM. Electrodialysis desalination: The impact of solution flowrate (or Reynolds number) on fluid dynamics throughout membrane spacers. ENVIRONMENTAL RESEARCH 2023; 219:115115. [PMID: 36574794 DOI: 10.1016/j.envres.2022.115115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/13/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The incorporation of a spacer among membranes has a major influence on fluid dynamics and performance metrics. Spacers create feed channels and operate as turbulence promoters to increase mixing and reduce concentration/temperature polarization effects. However, spacer geometry remains unoptimized, and studies continue to investigate a wide range of commercial and custom-made spacer designs. The in-depth discussion of the present systematic review seeks to discover the influence of Reynolds number or solution flowrate on flow hydrodynamics throughout a spacer-filled channel. A fast-flowing solution sweeping one membrane's surface first, then the neighboring membrane's surface produces good mixing action, which does not happen commonly at laminar solution flowrates. A sufficient flowrate can suppress the polarization layer, which may normally require the utilization of a simple feed channel rather than complex spacer configurations. When a recirculation eddy occurs, it disrupts the continuous flow and effectively curves the linear fluid courses. The higher the flowrate, the better the membrane performance, the higher the critical flux (or recovery rate), and the lower the inherent limitations of spacer design, spacer shadow effect, poor channel hydrodynamics, and high concentration polarization. In fact, critical flow achieves an acceptable balance between improving flow dynamics and reducing the related trade-offs, such as pressure losses and the occurrence of concentration polarization throughout the cell. If the necessary technical flowrate is not used, the real concentration potential for transport is relatively limited at low velocities than would be predicted based on bulk concentrations. Electrodialysis stack therefore may suffer from the dissociation of water molecules. Next studies should consider that applying a higher flowrate results in greater process efficiency, increased mass transfer potential at the membrane interface, and reduced stack thermal and electrical resistance, where pressure drop should always be indicated as a consequence of the spacer and circumstances used, rather than a problem.
Collapse
Affiliation(s)
| | - Mohd Yusri Bin Mohd Yunus
- Centre for Sustainability of Ecosystem & Earth Resources (Earth Centre), Universiti Malaysia Pahang, 26300, Pahang, Malaysia; Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Pahang, Malaysia
| |
Collapse
|
2
|
Helical-Ridge-Membranes from PVDF for enhanced gas–liquid mass transfer. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
Study of hydrodynamics and mass transfer in the bench-scale membrane testing devices. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Rotation-in-a-Spinneret integrates static mixers inside hollow fiber membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Sutariya B, Sargaonkar A, Markam BK, Raval H. 3D CFD study and optimisation of static mixer type feed spacer for reverse osmosis. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Sutariya B, Sargaonkar A, Raval H. Methods of visualizing hydrodynamics and fouling in membrane filtration systems: recent trends. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2089585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bhaumik Sutariya
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aabha Sargaonkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Cleaner Technology and Modelling Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Hiren Raval
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Koo JW, Ho JS, Tan YZ, Tan WS, An J, Zhang Y, Chua CK, Chong TH. Fouling mitigation in reverse osmosis processes with 3D printed sinusoidal spacers. WATER RESEARCH 2021; 207:117818. [PMID: 34749103 DOI: 10.1016/j.watres.2021.117818] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Feed spacers are an essential part of spiral wound modules for reverse osmosis (RO). They create flow channels between membrane sheets and manipulate hydrodynamic conditions to control membrane fouling. In this work, additive manufacturing (Polyjet) was used to print novel sinusoidal spacers with wavy axial filaments connected by perpendicular (ST) or slanted (SL) transverse filaments. When tested with 2 g/L NaCl solution, conventional and SL spacers had similar flux while the ST spacer had about 5-7% lower flux. The pressure losses for ST and SL spacers increased by up to 3 folds depending on the flow condition. In the colloidal silica fouling and biofouling tests, the sinusoidal spacers showed lower membrane permeability decrease of 46% for ST, 41% for SL vs 56% for conventional and 26% for ST, 22% for SL vs 33% for conventional, respectively. Optical coherence tomography images from colloidal silica fouling and confocal images from biofouling tests revealed that fouling patterns were closely associated with the local hydrodynamic conditions. Overall, sinusoidal spacers showed promising results in controlling membrane fouling, but there is potential for further optimizations to reduce channel pressure loss.
Collapse
Affiliation(s)
- Jing Wee Koo
- Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141, Singapore; Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jia Shin Ho
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141, Singapore
| | - Yong Zen Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Wen See Tan
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yi Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chee Kai Chua
- Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
8
|
Baitalow K, Wypysek D, Leuthold M, Weisshaar S, Lölsberg J, Wessling M. A mini-module with built-in spacers for high-throughput ultrafiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Enfrin M, Lee J, Fane AG, Dumée LF. Mitigation of membrane particulate fouling by nano/microplastics via physical cleaning strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147689. [PMID: 34022574 DOI: 10.1016/j.scitotenv.2021.147689] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Membrane fouling by nano/microplastics (NP/MPs) is an emerging concern threatening the performance of water and wastewater treatment facilities. The NP/MPs can lead to surface adsorption, fouling and potential mechanical abrasion of the membranes. In this work, periodic gas scouring was applied during the filtration of nano/microplastics across ultrafiltration membranes to investigate the impact of shear forces on the adsorption of nano/microplastics. A series of surface energy and chemistry-modified membranes were also used including acrylic acid, cyclopropylamine and hexamethyldisiloxane plasma-modified membranes, allowing for a set of materials with controlled hydrophilicity, roughness and surface charge. Bubbling gas within the system at a gas flow rate of 0.5 to 1 L·min-1 and a water flow rate of 2 L·min-1 was found to limit the water flux decline across the pristine and hydrophobic membranes compared to the filtration experiments performed without cleaning from 38 to 22 and 23%, respectively. The adsorption of nano/microplastics onto the surface of the membranes was also simultaneously decreased from 40 to 25 and 19%, respectively. Interestingly, for the hydrophilised membranes no enhancement in permeance was observed when performing gas scouring due to the already low tendency for selective adsorption of the nano/microplastics onto their surface. The correlation of a dimensionless fouling number to the shear stress number suggested that the shear forces induced by gas scouring reduced nano/microplastics adsorption up to a gas injection ratio (volume fraction of gas) of 0.3, where the wall shear stress at the surface of the membrane was limited. This work offers an advanced physical strategy to reduce and control membrane fouling by nano/microplastics, with potential for this strategy to be adapted for more complex water matrices and plastic particles.
Collapse
Affiliation(s)
- Marie Enfrin
- University of Surrey, Chemical and Process Engineering, Guildford, Surrey, GU2 7XH, United Kingdom; Deakin University, Institute for Frontier Materials, Waurn Ponds 3216, Victoria, Australia.
| | - Judy Lee
- University of Surrey, Chemical and Process Engineering, Guildford, Surrey, GU2 7XH, United Kingdom.
| | - Anthony G Fane
- University of New South Wales, UNESCO Centre for Membranes, School of Chemical Engineering, Sydney 2052, New South Wales, Australia
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Lin W, Zhang Y, Li D, Wang XM, Huang X. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement. WATER RESEARCH 2021; 198:117146. [PMID: 33945947 DOI: 10.1016/j.watres.2021.117146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Membrane technologies have been widely applied in water treatment, wastewater reclamation and seawater desalination. Feed spacer present in spiral wound membrane (SWM) modules plays a pivotal role in creating flow channels, promoting fluid mixing and enhancing mass transfer. However, it induces the increase of feed channel pressure (FCP) drop and localized stagnant zones that provokes membrane fouling. For the first time, we comprehensively review the research evolvement on feed spacer in SWM modules for water treatment over the last 20 years, to reveal the impacts of feed spacer on the hydrodynamics and biofouling in the spacer-filled channel, and to discuss the potential approaches and current limitations for the modification of feed spacer. The research process can be divided into three phases, with research focus shifting from hydrodynamics in Phase Ⅰ (the year of 2001-2008), to biofouling in Phase Ⅱ (the year of 2009-2015), and then to novel spacer designs in Phase Ⅲ (the year of 2016-2020). The spacer configuration has a momentous impact on the hydraulic performance regarding flow velocity field, shear stress, mass transfer and FCP drop. Biofouling initially occurs on feed spacer, especially around spacer filaments and the contact zones with membrane surface, and ultimately degrades the overall membrane performance indicating the importance of controlling spacer biofouling. The modification of feed spacer is mainly achieved by altering surface chemistry or introducing novel configurations. However, the stability of spacer coating and the economy and practicality of 3D-printed spacer remain a predicament to be tackled. Future studies are suggested to focus on the standardization of testing conditions for spacer evaluation, the effect of hydrodynamics on membrane fouling control, the design and fabrication of novel feed spacer adaptable for SWM modules, the application of feed spacer for drinking water production, organic fouling control in spacer-filled channel and the role of permeate spacer on membrane performance.
Collapse
Affiliation(s)
- Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuting Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics. MEMBRANES 2021; 11:membranes11050353. [PMID: 34068812 PMCID: PMC8150347 DOI: 10.3390/membranes11050353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 11/23/2022]
Abstract
A three-dimensional model for the simulation of concentration polarisation in a full-scale spiral wound reverse osmosis (RO) membrane element was developed. The model considered the coupled effect of complex spacer geometry, pressure drop and membrane filtration. The simulated results showed that, at a salt concentration of 10,000 mg/L and feed pressure of 10.91 bar, permeate flux decreased from 27.6 L/(m2 h) (LMH) at the module inlet to 24.1 LMH at the module outlet as a result of salt accumulation in the absence of a feed spacer. In contrast, the presence of the spacer increased pressure loss along the membranes, and its presence created vortices and enhanced fluid velocity at the boundary layer and led to a minor decrease in flux to 26.5 LMH at the outlet. This paper underpins the importance of the feed spacer’s role in mitigating concentration polarisation in full-scale spiral wound modules. The model can be used by both the industry and by academia for improved understanding and accurate presentation of mass transfer phenomena of full-scale RO modules by different commercial manufacturers that cannot be achieved by experimental characterization of the mass transfer coefficient or by CFD modelling of simplified 2D flow channels.
Collapse
|
12
|
Lou J, Johnston J, Cath TY, Martinand D, Tilton N. Computational fluid dynamics simulations of unsteady mixing in spacer-filled direct contact membrane distillation channels. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Park S, Jeong YD, Lee JH, Kim J, Jeong K, Cho KH. 3D printed honeycomb-shaped feed channel spacer for membrane fouling mitigation in nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Kong X, Xu P, Fu K, Gong D, Chen X, Qiu M, Fan Y. Critical gas velocity of hydrophobic ceramic membrane contactors for SO2 absorption. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Hole-Type Spacers for More Stable Shale Gas-Produced Water Treatment by Forward Osmosis. MEMBRANES 2021; 11:membranes11010034. [PMID: 33401564 PMCID: PMC7824311 DOI: 10.3390/membranes11010034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022]
Abstract
An appropriate spacer design helps in minimizing membrane fouling which remains the major obstacle in forward osmosis (FO) systems. In the present study, the performance of a hole-type spacer (having holes at the filament intersections) was evaluated in a FO system and compared to a standard spacer design (without holes). The hole-type spacer exhibited slightly higher water flux and reverse solute flux (RSF) when Milli-Q water was used as feed solution and varied sodium chloride concentrations as draw solution. During shale gas produced water treatment, a severe flux decline was observed for both spacer designs due to the formation of barium sulfate scaling. SEM imaging revealed that the high shear force induced by the creation of holes led to the formation of scales on the entire membrane surface, causing a slightly higher flux decline than the standard spacer. Simultaneously, the presence of holes aided to mitigate the accumulation of foulants on spacer surface, resulting in no increase in pressure drop. Furthermore, a full cleaning efficiency was achieved by hole-type spacer attributed to the micro-jets effect induced by the holes, which aided to destroy the foulants and then sweep them away from the membrane surface.
Collapse
|
16
|
Bogler A, Kastl A, Spinnler M, Sattelmayer T, Be’er A, Bar-Zeev E. Where, when and why? Quantifying the relation of particle deposition to crossflow velocity and permeate water flux in forward osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Liu X, Du D, Tu G, Li W. Unraveling effects of Dean vortices on membrane fouling in a sinusoidally curved channel. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Wang Q, Liu X, Wu X, Yang C, Qiu T. A multi-scale approach to optimize vapor-liquid mass transfer layer in structured catalytic packing. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Qamar A, Bucs S, Picioreanu C, Vrouwenvelder J, Ghaffour N. Hydrodynamic flow transition dynamics in a spacer filled filtration channel using direct numerical simulation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
A 3D CFD comparative study between torsioned and non-torsioned net-type feed spacer in reverse osmosis. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1098-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
CFD Investigation of Spacer-Filled Channels for Membrane Distillation. MEMBRANES 2019; 9:membranes9080091. [PMID: 31349583 PMCID: PMC6722816 DOI: 10.3390/membranes9080091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
Abstract
The membrane distillation (MD) process for water desalination is affected by temperature polarization, which reduces the driving force and the efficiency of the process. To counteract this phenomenon, spacer-filled channels are used, which enhance mixing and heat transfer but also cause higher pressure drops. Therefore, in the design of MD modules, the choice of the spacer is crucial for process efficiency. In the present work, different overlapped spacers are investigated by computational fluid dynamics (CFD) and results are compared with experiments carried out with thermochromic liquid crystals (TLC). Results are reported for different flow attack angles and for Reynolds numbers (Re) ranging from ~200 to ~800. A good qualitative agreement between simulations and experiments can be observed for the areal distribution of the normalized heat transfer coefficient. Trends of the average heat transfer coefficient are reported as functions of Re for the geometries investigated, thus providing the basis for CFD-based correlations to be used in higher-scale process models.
Collapse
|
22
|
Bhattacharjee C, Saxena VK, Dutta S. Static turbulence promoters in cross-flow membrane filtration: a review. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1587610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chiranjit Bhattacharjee
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - V. K. Saxena
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Suman Dutta
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
23
|
Zhang Y, Zhang L, Hou L, Kuang S, Yu A. Modeling of the variations of permeate flux, concentration polarization, and solute rejection in nanofiltration system. AIChE J 2018. [DOI: 10.1002/aic.16475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaqin Zhang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou, 310027 China
- ARC Research Hub for Computational Particle Technology, Dept. of Chemical Engineering Monash University Melbourne Victoria, 3800 Australia
| | - Lin Zhang
- College of Chemical and Biological Engineering Zhejiang University Hangzhou, 310027 China
| | - Lian Hou
- College of Chemical and Biological Engineering Zhejiang University Hangzhou, 310027 China
| | - Shibo Kuang
- ARC Research Hub for Computational Particle Technology, Dept. of Chemical Engineering Monash University Melbourne Victoria, 3800 Australia
| | - Aibing Yu
- ARC Research Hub for Computational Particle Technology, Dept. of Chemical Engineering Monash University Melbourne Victoria, 3800 Australia
| |
Collapse
|
24
|
Impact of Modified Spacer on Flow Pattern in Narrow Spacer-Filled Channels for Spiral-Wound Membrane Modules. ENVIRONMENTS 2018. [DOI: 10.3390/environments5110116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A modified spacer, which was constructed with arched filaments and zigzag filaments, was designed to improve vortex shedding and generate a directional change in flow patterns of membrane modules, especially in the vicinity of the feed spacer filament, which is most affected by fouling. A unit cell was investigated by using a three-dimensional computational fluid dynamics (CFD) model for hydrodynamic simulation. The results of CFD simulations were carried out for the fluid flow in order to understand the effect of the modified spacer on vortices to the performance of arched filaments at different distances. From 2D velocity vectors and shear stress contour mixing, the flow pattern and dead zone flushing were depicted. The ratio of low shear stress area to the total area increased with the inlet velocity closed to 20%. The energy consumption with respect to flow direction for the arched filament was 80% lower than that in the zigzag filament. Compared with previous commercial spacers’ simulation, the friction factor was lower when the main flow was normal to the arched filament and the modified friction factor was close to the commercial spacers. The homogenization was realized through the flow pattern created by the modified spacer.
Collapse
|
25
|
Kerdi S, Qamar A, Vrouwenvelder JS, Ghaffour N. Fouling resilient perforated feed spacers for membrane filtration. WATER RESEARCH 2018; 140:211-219. [PMID: 29715645 DOI: 10.1016/j.watres.2018.04.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 05/27/2023]
Abstract
The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50%-61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L m-2.h-1 and 6.6 L m-2.h-1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those observed with other perforated spacers, resulting in the cleanest membrane surface.
Collapse
Affiliation(s)
- Sarah Kerdi
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Adnan Qamar
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Johannes S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
26
|
Luelf T, Rall D, Wypysek D, Wiese M, Femmer T, Bremer C, Michaelis JU, Wessling M. 3D-printed rotating spinnerets create membranes with a twist. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Lohaus T, Herkenhoff N, Shankar R, Wessling M. Feed flow patterns of combined Rayleigh-Bénard convection and membrane permeation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.11.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Karabelas AJ, Koutsou CP, Sioutopoulos DC. Comprehensive performance assessment of spacers in spiral-wound membrane modules accounting for compressibility effects. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
|
30
|
Zhang W, Ruan X, Ma Y, Jiang X, Zheng W, Liu Y, He G. Modeling and simulation of mitigating membrane fouling under a baffle-filled turbulent flow with permeate boundary. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Siddiqui A, Lehmann S, Bucs SS, Fresquet M, Fel L, Prest EIEC, Ogier J, Schellenberg C, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. WATER RESEARCH 2017; 110:281-287. [PMID: 28027527 DOI: 10.1016/j.watres.2016.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Feed spacers are an essential part of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane modules. Geometric modification of feed spacers is a potential option to reduce the impact of biofouling on the performance of membrane systems. The objective of this study was to evaluate the biofouling potential of two commercially available reference feed spacers and four modified feed spacers. The spacers were compared on hydraulic characterization and in biofouling studies with membrane fouling simulators (MFSs). The virgin feed spacer was characterized hydraulically by their resistance, measured in terms of feed channel pressure drop, performed by operating MFSs at varying feed water flow rates. Short-term (9 days) biofouling studies were carried out with nutrient dosage to the MFS feed water to accelerate the biofouling rate. Long-term (96 days) biofouling studies were done without nutrient dosage to the MFS feed water. Feed channel pressure drop was monitored and accumulation of active biomass was quantified by adenosine tri phosphate (ATP) determination. The six feed spacers were ranked on pressure drop (hydraulic characterization) and on biofouling impact (biofouling studies). Significantly different trends in hydraulic resistance and biofouling impact for the six feed spacers were observed. The same ranking for biofouling impact on the feed spacers was found for the (i) short-term biofouling study with nutrient dosage and the (ii) long-term biofouling study without nutrient dosage. The ranking for hydraulic resistance for six virgin feed spacers differed significantly from the ranking of the biofouling impact, indicating that hydraulic resistance of clean feed spacers does not predict the hydraulic resistance of biofouled feed spacers. Better geometric design of feed spacers can be a suitable approach to minimize impact of biofouling in spiral wound membrane systems.
Collapse
Affiliation(s)
- A Siddiqui
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - S Lehmann
- LANXESS BU Liquid Purification Technologies, R&D Membranes, 06803, Bitterfeld-Wolfen, Germany.
| | - Sz S Bucs
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - M Fresquet
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands.
| | - L Fel
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands.
| | - E I E C Prest
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands.
| | - J Ogier
- LANXESS BU Liquid Purification Technologies, R&D Membranes, 06803, Bitterfeld-Wolfen, Germany.
| | - C Schellenberg
- LANXESS BU Liquid Purification Technologies, R&D Membranes, 06803, Bitterfeld-Wolfen, Germany.
| | - M C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands.
| | - J C Kruithof
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
| | - J S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia; Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
| |
Collapse
|
32
|
Kavianipour O, Ingram GD, Vuthaluru HB. Investigation into the effectiveness of feed spacer configurations for reverse osmosis membrane modules using Computational Fluid Dynamics. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.12.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Liu X, Li W, Chong TH, Fane AG. Effects of spacer orientations on the cake formation during membrane fouling: Quantitative analysis based on 3D OCT imaging. WATER RESEARCH 2017; 110:1-14. [PMID: 27974248 DOI: 10.1016/j.watres.2016.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Spacer design plays an important role in improving the performance of membrane processes for water/wastewater treatment. This work focused on a fundamental issue of spacer design, i.e., investigating the effects of spacer orientations on the fouling behavior during a membrane process. A series of fouling experiments with different spacer orientation were carried out to in situ characterize the formation of a cake layer in a spacer unit cell via 3D optical coherence tomography (OCT) imaging. The cake layers formed at different times were digitalized for quantitatively analyzing the variation in the cake morphology as a function of time. In particular, the local deposition rates were evaluated to determine the active regions where the instantaneous changes in deposit thickness were significant. The characterization results indicate that varying the spacer orientation could substantially change the evolution of membrane fouling by particulate foulants and thereby result in a cake layer with various morphologies; the competition between growth and erosion at different locations would instantaneously respond to the micro-hydrodynamic environment that might change with time. This work confirms that the OCT-based characterization method is a powerful tool for exploring novel spacer design.
Collapse
Affiliation(s)
- Xin Liu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| | - Weiyi Li
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| | - Anthony G Fane
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
34
|
Haaksman VA, Siddiqui A, Schellenberg C, Kidwell J, Vrouwenvelder JS, Picioreanu C. Characterization of feed channel spacer performance using geometries obtained by X-ray computed tomography. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Ameur H, Sahel D. Effect of the baffle design and orientation on the efficiency of a membrane tube. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2016.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Wang T, He X, Wu Z, Li J. Direct observation of flow and bubble behavior in flat sheet modules with a distributor. RSC Adv 2017. [DOI: 10.1039/c6ra25880h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The air sparging method was widely used in membrane modules to enhance performance of separation. In this article, bubble behavior in tubular and flat sheet flow module with different air sparging devices was investigated.
Collapse
Affiliation(s)
- Tao Wang
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Xinping He
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Zhen Wu
- Ordos Redbud Innovation Institute
- Ordos 017000
- China
| | - Jiding Li
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
37
|
|
38
|
Lou Y, Gogar R, Hao P, Lipscomb G, Amo K, Kniep J. Simulation of net spacers in membrane modules for carbon dioxide capture. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1220396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Ravikumar Gogar
- Department of Chemical & Environmental Engineering, The University of Toledo, Toledo, Ohio, USA
| | - Pingjiao Hao
- Membrane Technology and Research, Inc., Newark, California, USA
| | - Glenn Lipscomb
- Department of Chemical & Environmental Engineering, The University of Toledo, Toledo, Ohio, USA
| | - Karl Amo
- Membrane Technology and Research, Inc., Newark, California, USA
| | - Jay Kniep
- Membrane Technology and Research, Inc., Newark, California, USA
| |
Collapse
|
39
|
Li W, Chen KK, Wang YN, Krantz WB, Fane AG, Tang CY. A conceptual design of spacers with hairy structures for membrane processes. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Xie F, Liu J, Wang J, Chen W. Computational fluid dynamics simulation and particle image velocimetry experimentation of hydrodynamic performance of flat-sheet membrane bioreactor equipped with micro-channel turbulence promoters with micro-pores. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Min J, Zhang B. Convective mass transfer enhancement in a membrane channel by delta winglets and their comparison with rectangular winglets. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2015.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Amokrane M, Sadaoui D, Koutsou C, Karabelas A, Dudeck M. A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.11.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Ishigami T, Matsuyama H. Numerical Modeling of Concentration Polarization in Spacer-filled Channel with Permeation across Reverse Osmosis Membrane. Ind Eng Chem Res 2015. [DOI: 10.1021/ie5039665] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Toru Ishigami
- Center for Membrane
and Film Technology, Department of Chemical Science and
Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Center for Membrane
and Film Technology, Department of Chemical Science and
Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
44
|
Saeed A, Vuthaluru R, Vuthaluru HB. Investigations into the effects of mass transport and flow dynamics of spacer filled membrane modules using CFD. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2014.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Saeed A, Vuthaluru R, Vuthaluru HB. Impact of Feed Spacer Filament Spacing on Mass Transport and Fouling Propensities of RO Membrane Surfaces. CHEM ENG COMMUN 2014. [DOI: 10.1080/00986445.2013.860525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Numerical Studies of Convective Mass Transfer Enhancement in a Membrane Channel by Rectangular Winglets. Chin J Chem Eng 2014. [DOI: 10.1016/j.cjche.2014.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Wang T, Zhang Z, Ren X, Qin L, Zheng D, Li J. Direct observation of single- and two-phase flows in spacer filled membrane modules. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Jalilvand Z, Zokaee Ashtiani F, Fouladitajar A, Rezaei H. Computational fluid dynamics modeling and experimental study of continuous and pulsatile flow in flat sheet microfiltration membranes. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
49
|
Characterization of fluid dynamics in spacer-filled channels for membrane filtration using Doppler optical coherence tomography. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Wu XK, Sha HF, Zhang F, Wu FW, Zhang ZB, Wang ZX. Influence of Geometry Structures on the Transfer and Flow Characteristics of Membrane Modules. Chem Eng Technol 2013. [DOI: 10.1002/ceat.201300329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|