Monnier N, Barth-Jaeggi T, Knopp S, Steinmann P. Core components, concepts and strategies for parasitic and vector-borne disease elimination with a focus on schistosomiasis: A landscape analysis.
PLoS Negl Trop Dis 2020;
14:e0008837. [PMID:
33125375 PMCID:
PMC7598467 DOI:
10.1371/journal.pntd.0008837]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Efforts to control and eliminate human schistosomiasis have accelerated over the past decade. In a number of endemic countries and settings, interruption of schistosome transmission has been achieved. In others, Schistosoma infections continue to challenge program managers at different levels, from the complexity of the transmission cycle, over limited treatment options and lack of field-friendly accurate diagnostics, to controversy around adequate intervention strategies. We conducted a landscape analysis on parasitic and vector-borne disease elimination approaches with the aim to identify evidence-based strategies, core components and key concepts for achieving and sustaining schistosomiasis control and for progressing elimination efforts towards interruption of transmission in sub-Saharan Africa. A total of 118 relevant publications were identified from Web of Science, Pubmed and the grey literature and reviewed for their content. In addition, we conducted in-depth interviews with 23 epidemiologists, program managers, policymakers, donors and field researchers. Available evidence emphasizes the need for comprehensive, multipronged and long-term strategies consisting of multiple complementary interventions that must be sustained over time by political commitment and adequate funding in order to reach interruption of transmission. Based on the findings of this landscape analysis, we propose a comprehensive set of intervention strategies for schistosomiasis control and elimination. Before deployment, the proposed interventions will require review, evaluation and validation in the frame of an expert consultation as a step towards adaptation to specific contexts, conditions and settings. Field testing to ensure local relevance and effectiveness is paramount given the diversity of socio-ecological and epidemiological contexts.
This landscape analysis explored successful concepts, approaches and interventions of past and ongoing parasitic and vector-borne disease elimination efforts and programs with regard to relevance for progress in the elimination of human schistosome infections. Schistosomiasis is a disabling, water borne parasitic disease of public health concern with an estimated 250 million people infected worldwide. The long-term morbidity of this neglected tropical disease significantly impacts growth, cognition and socioeconomic development at all ages. Despite increased global efforts to control morbidity and advance elimination, challenges in view of the complex life cycle which involves freshwater sources, intermediate snail hosts and humans, remain. This calls for targeted interventions and concerted programs. According to the evidence from the literature and as proposed by a wide range of key informants, comprehensive, multipronged and long-term strategies supported by strong political commitment and adequate funding are required in order to achieve and sustain the set goals. Based on the findings, we propose here a comprehensive set of intervention strategies for schistosomiasis control and elimination for review and evaluation to inform implementation research needs and elimination program design.
Collapse