1
|
du Toit CJL, van Niekerk WA, Meissner HH, Erasmus LJ, Coertze RJ. Methane emissions from sheep fed Eragrostis curvula hay substituted with Lespedeza cuneata. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Reducing emissions of greenhouse gases from livestock production systems is a global research priority. Forages that contain condensed tannins, such as the perennial legume Lespedeza cuneata, may help to reduce ruminant methane (CH4) emissions.
Aims
The objective of this study was to investigate the effect of feeding different levels of L. cuneata hay on feed intake and enteric CH4 emissions of sheep fed a basal diet of subtropical Eragrostis curvula hay.
Methods
Four adult ruminally cannulated Dohne Merino wethers with initial bodyweight of 65.5 ± 3.5 kg were used in the experiment in a 4 × 4 Latin square design. The four experimental treatments were E. curvula hay substituted with 0%, 30%, 60% and 90% L. cuneata hay. Each of four experimental periods lasted 27 days, which consisted of a 14-day adaptation period, a 7-day digestibility trial, and a 6-day CH4-measurement period. During the 6-day CH4-measurement period, CH4 emissions were measured continuously over a 24-h period by using an open circuit respiration system.
Key results
Dry matter intake (DMI, g/kg W0.75) was higher (P < 0.05) for sheep receiving 60% and 90% L. cuneata than 0% and 30% L. cuneata (77.33 and 84.67 g/kg W0.75 vs 62.96 and 62.71 g/kg W0.75). The increase in DMI corresponded with a linear increase in DM digestibility of the experimental treatments from 38% to 45% as the level of L. cuneata substitution increased. Methane yield was not influenced (P > 0.05) by 30% inclusion of L. cuneata (17.6 g CH4/kg DMI) but decreased (P < 0.05) as the inclusion level increased to 60% and 90% (13.8 and 14.3 g CH4/kg DMI).
Conclusions
Inclusion of L. cuneata hay in a diet based on E. curvula hay improved diet digestibility, and led to increased concentrations of crude protein, neutral detergent fibre and non-fibre carbohydrates. Substituting E. curvula hay with 60% L. cuneata on a DM basis resulted in the greatest reduction in CH4 yield of 21.4% compared with a diet of 100% E. curvula.
Implications
The results suggest that L. cuneata has the potential to reduce CH4 yield and possibly increase production from sheep by improving diet DM digestibility and through improved DMI.
Collapse
|
2
|
Warner D, Bannink A, Hatew B, van Laar H, Dijkstra J. Effects of grass silage quality and level of feed intake on enteric methane production in lactating dairy cows. J Anim Sci 2018; 95:3687-3700. [PMID: 28805897 DOI: 10.2527/jas.2017.1459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to determine the effect of level of feed intake and quality of ryegrass silage as well as their interaction on enteric methane (CH) emission from dairy cows. In a randomized block design, 56 lactating dairy cows received a diet of grass silage, corn silage, and a compound feed meal (70:10:20 on DM basis). Treatments consisted of 4 grass silage qualities prepared from grass harvested from leafy through late heading stage, and offered to dairy cows at 96 ± 2.4 (mean ± SEM) days in milk (namely, high intake) and 217 ± 2.4 d in milk (namely, low intake). Grass silage CP content varied between 124 and 286 g/kg of DM, and NDF content between 365 and 546 g/kg of DM. After 12 d of adaptation, enteric CH production of cows was measured in open-circuit climate-controlled respiration chambers for 5 d. No interaction between DMI and grass quality on CH emission, or on milk production, diet digestibility, and energy, and N retention was found ( ≥ 0.17). Cows had a greater DMI (16.6 vs. 15.5 kg/d; SEM 0.46) and greater fat- and protein-corrected milk (FPCM) yield (29.9 vs. 25.4 kg/d; SEM 1.24) at high than low intake (both ≤ 0.001). Apparent total-tract nutrient digestibility was not affected ( ≥ 0.08) by DMI level. Total enteric CH production (346 ± 10.9 g/d) was not affected ( = 0.15) by DMI level. A small, significant ( = 0.025) decrease at high compared with low intake occurred for CH yield (21.8 ± 0.59 g/kg of DMI; -4%). Methane emission intensity (12.8 ± 0.56 g/kg of FPCM; -12%) was considerably smaller ( ≤ 0.001) at high intake as a result of greater milk yields realized in early lactation. As grass quality decreased from leafy through late heading stage, FPCM yield and apparent total-tract OM digestibility declined (-12%; ≤ 0.015), whereas total CH production (+13%), CH yield (+21%), and CH emission intensity (+28%) increased ( ≤ 0.001). Our results suggest that improving grass silage quality by cutting grass at an earlier stage considerably reduces enteric CH emissions from dairy cows, independent of DMI. In contrast, losses of N in manure increased for the earlier cut grass silage treatments. The small increase in DMI at high intake was associated with a small to moderate reduction in CH emission per unit of DMI and GE intake. This study confirmed that enteric CH emissions from dairy cows at distinct levels of feed intake depend on the nutritive value and chemical composition of the grass silage.
Collapse
|
3
|
Nutrient utilization and methane emissions in Murrah buffalo calves fed on diets with different methanogenic potential. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Silva FAS, Filho SCV, Detmann E, Santos SA, Godoi LA, Silva BC, Pacheco MVC, Alhadas HM, Rotta PP. Effect of different forage types and concentrate levels on energy conversion, enteric methane production, and animal performance of Holstein × Zebu heifers. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an16093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this study was to evaluate the effect of diets containing corn silage (CS) or sugarcane (SC) with 300 or 500 g/kg of concentrate (on a DM basis) on energy conversion, enteric methane (CH4) production, and the animal performance of Holstein × Zebu heifers. An experiment was conducted while using comparative slaughter. Twenty Holstein × Zebu heifers with an average age of 12 ± 1.0 months and an average bodyweight of 218 ± 36.5 kg were used. Four heifers were assigned to a baseline group, whereas the remaining 16 heifers were distributed in a completely randomised design using a 2 × 2 factorial scheme (n = 4), with two types of roughage (CS or SC) and two levels of concentrate (300 or 500 g/kg) on a DM basis of the diet over the course of 112 days. For the evaluation of the apparent total-tract digestibility of diets and energy losses, a digestibility assay was performed by using the total collection of faeces and urine over three consecutive days. The enteric CH4 production was quantified by continuous analysis of regular samples of air excreted by the animals throughout the day. The greatest (P < 0.05) average daily gain was observed for heifers that were fed CS-based diets or with 500 g/kg of concentrate. Greater (P < 0.05) daily CH4 emissions were observed for heifers that were fed 500 g/kg of concentrate; CH4 production as a function of DM intake was greater (P < 0.05) for heifers that were fed SC-based diets. The efficiency of the conversion from digestible energy (DE) to metabolisable energy (ME) was not influenced (P > 0.05) by variables that were analysed in this study. However, the mean value that was observed in the present study was above those values proposed by the main evaluation systems of feedstuffs and nutrient requirements of ruminants. Therefore, we concluded that CS-based diets allow for better animal performance of Holstein × Zebu heifers in relation to SC-based diets. Also, the increased concentrate improves the performance of growing heifers. A greater inclusion of concentrate in SC-based diets can allow for a reduction of CH4 emissions per consumed unit and per gain unit. The mean suggested value for the ME : DE ratio based on this study is 0.86. However, more studies are necessary to validate this result.
Collapse
|
5
|
Gidlund H, Hetta M, Krizsan SJ, Lemosquet S, Huhtanen P. Effects of soybean meal or canola meal on milk production and methane emissions in lactating dairy cows fed grass silage-based diets. J Dairy Sci 2015; 98:8093-106. [PMID: 26364100 DOI: 10.3168/jds.2015-9757] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2023]
Abstract
This study evaluated the effects of soybean meal (SBM) and heat-moisture-treated canola meal (TCM) on milk production and methane emissions in dairy cows fed grass silage-based diets. Twenty-eight Swedish Red cows were used in a cyclic change-over experiment with 4 periods of 21 d and with treatments in 2 × 4 factorial arrangement (however, the control diet without supplementary protein was not fed in replicate). The diets were fed ad libitum as a total mixed ration containing 600 g/kg of grass silage and 400 g/kg of concentrates on a dry matter (DM) basis. The concentrate without supplementary protein consisted of crimped barley and premix (312 and 88 g/kg of DM), providing 130 g of dietary crude protein (CP)/kg of DM. The other 6 concentrates were formulated to provide 170, 210, or 250 g of CP/kg of DM by replacing crimped barley with incremental amounts of SBM (50, 100, or 150 g/kg of diet DM) or TCM (70, 140, or 210 g/kg of diet DM). Feed intake was not influenced by dietary CP concentration, but tended to be greater in cows fed TCM diets compared with SBM diets. Milk and milk protein yield increased linearly with dietary CP concentration, with greater responses in cows fed TCM diets compared with SBM diets. Apparent N efficiency (milk N/N intake) decreased linearly with increasing dietary CP concentration and was lower for cows fed SBM diets than cows fed TCM diets. Milk urea concentration increased linearly with increased dietary CP concentration, with greater effects in cows fed SBM diets than in cows fed TCM diets. Plasma concentrations of total AA and essential AA increased with increasing dietary CP concentration, but no differences were observed between the 2 protein sources. Plasma concentrations of Lys, Met, and His were similar for both dietary protein sources. Total methane emissions were not influenced by diet, but emissions per kilogram of DM intake decreased quadratically, with the lowest value observed in cows fed intermediate levels of protein supplementation. Methane emissions per kilogram of energy-corrected milk decreased more when dietary CP concentration increased in TCM diets compared with SBM diets. Overall, replacing SBM with TCM in total mixed rations based on grass silage had beneficial effects on milk production, N efficiency, and methane emissions across a wide range of dietary CP concentrations.
Collapse
Affiliation(s)
- H Gidlund
- Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - M Hetta
- Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - S J Krizsan
- Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - S Lemosquet
- INRA, UMR1348 Pegase, F-35590 Saint-Gilles, France; Agrocampus Ouest, UMR1348 Pegase, F-35000 Rennes, France
| | - P Huhtanen
- Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| |
Collapse
|
6
|
Cao Z, Gong Y, Liao X, Liang J, Yu B, Wu Y. Effect of dietary fiber on methane production in Chinese Lantang gilts. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ramin M, Krizsan SJ, Jančík F, Huhtanen P. Short communication: measurements of methane emissions from feed samples in filter bags or dispersed in the medium in an in vitro gas production system. J Dairy Sci 2013; 96:4643-6. [PMID: 23628246 DOI: 10.3168/jds.2013-6556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/07/2013] [Indexed: 11/19/2022]
Abstract
The objective of this study was to compare methane (CH4) emissions from different feeds when incubated within filter bags for in vitro analysis or directly dispersed in the medium in an automated gas in vitro system. Four different concentrates and 4 forages were used in this study. Two lactating Swedish Red cows were used for the collection of rumen fluid. Feed samples were milled to pass a 1.0-mm screen. Aliquots (0.5 g) of samples were weighed directly in the bottles or within the F 0285 filter bags that were placed in the bottles. Gas samples were taken during 24 and 48 h of incubation, and CH4 concentration was determined. The data were analyzed using a general linear model. Feeds differed significantly in CH4 emission both at 24 and at 48 h of incubation. The interaction between feed and method on methane emission in vitro was significant, indicating that the ranking of feeds was not consistent between the methods. Generally, greater amounts of CH4 were emitted from samples directly dispersed in the medium compared with those incubated within the filter bags, which could be a result of lower microbial activity within the filter bags. The ratio of CH4 to total gas was greater when the feeds were incubated within bags compared with samples directly dispersed in the medium. Incubating samples in filter bags during 48 h of incubation cannot be recommended for determination of CH4 emission of feeds in vitro.
Collapse
Affiliation(s)
- M Ramin
- Swedish University of Agricultural Sciences, Department of Agricultural Research for Northern Sweden, S-901 83 Umeå, Sweden.
| | | | | | | |
Collapse
|
8
|
In vitroindications for favourable non-additive effects on ruminal methane mitigation between high-phenolic and high-quality forages. Br J Nutr 2012; 109:615-22. [DOI: 10.1017/s0007114512001742] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Feeding plants containing elevated levels of polyphenols may reduce ruminal CH4emissions, but at the expense of nutrient utilisation. There might, however, be non-additive effects when combining high-phenolic plants with well-digestible, high-nutrient feeds. To test whether non-additive effects exist, the leaves ofCarica papaya(high in dietary quality, low in polyphenols),Clidemia hirta(high in hydrolysable tannins),Swietenia mahagoni(high in condensed tannins) andEugenia aquea(high in non-tannin phenolics) were tested alone and in all possible mixtures (n15 treatments). An amount of 200 mg DM of samples was incubatedin vitro(24 h; 39oC) with buffered rumen fluid using the Hohenheim gas test apparatus. After the incubation, total gas production, CH4concentration and fermentation profiles were determined. The levels of absolute CH4, and CH4:SCFA and CH4:total gas ratios were lower (P< 0·05) when incubating a combination ofC. papayaand any high-phenolic plants (C. hirta,S. mahagoniandE. aquea) than when incubatingC. papayaalone. Additionally, mixtures resulted in non-additive effects for all CH4-related parameters of the order of 2–15 % deviation from the expected value (P< 0·01). This means that, by combining these plants, CH4in relation to the fermentative capacity was lower than that predicted when assuming the linearity of the effects. Similar non-additive effects of combiningC. papayawith the other plants were found for NH3concentrations but not for SCFA concentrations. In conclusion, using mixtures of high-quality plants and high-phenolic plants could be one approach to CH4mitigation; however, this awaitsin vivoconfirmation.
Collapse
|
9
|
Žnidaršič T, Verbič J, Babnik D, Velikonja-Bolta Š. The effect of supplementing highly wilted grass silage with maize silage, fodder beet or molasses on degradation of the diets and the efficiency of microbial protein synthesis in the rumen of sheep. ITALIAN JOURNAL OF ANIMAL SCIENCE 2010. [DOI: 10.4081/ijas.2010.e86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Sar C, Mwenya B, Santoso B, Takaura K, Morikawa R, Isogai N, Asakura Y, Toride Y, Takahashi J. Effect of Escherichia coli wild type or its derivative with high nitrite reductase activity on in vitro ruminal methanogenesis and nitrate/nitrite reduction. J Anim Sci 2007; 83:644-52. [PMID: 15705761 DOI: 10.2527/2005.833644x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of two kinds of Escherichia coli strains, wild-type E. coli W3110 or E. coli nir-Ptac, which has enhanced nitrite reduction activity, on in vitro CH4 production and nitrate and nitrite reduction in cultures of mixed ruminal microorganisms was investigated using continuous incubation systems. Escherichia coli nir-Ptac, a derivative of wild-type E. coli W3110, was constructed by replacing self promoter of nir BD operon encoding subunits of nitrite reductase in E. coli W3110 by tac promoter to make the expression of nir BD higher and constitutive. The nitrite reductase activity of E. coli nir-Ptac was approximately twice as high as E. coli W3110. The culture media consisted of 400 mL of strained ruminal fluid taken from two nonlactating Holstein cows receiving a basal diet of orchardgrass hay at maintenance level (55 g of DM/kg of BW0.75 daily), and 400 mL of autoclaved artificial saliva. Treatments were arranged in two separate 3 x 3 factorials consisting of nitrate (NaNO3; 0, 5, or 10 mM) without E. coli or inoculated with E. coli W3110 or E. coli nir-Ptac, or nitrite (NaNO2; 0, 1 or 2 mM) without E. coli or inoculated with E. coli W3110 or E. coli nir-Ptac. The control culture contained no chemical or microbial additives. Escherichia coli cells were inoculated into in vitro mixed ruminal cultures at approximately 2 x 10(8) to 10(9) cells/mL. Methane production by ruminal microorganisms was decreased markedly (P < 0.001) by the addition of nitrate and nitrite, and by the inoculation of cultures with E. coli W3110 or E. coli nir-Ptac (P < 0.01). With mixed nitrite-containing cultures, E. coli nir-Ptac inhibited (P < 0.001) in vitro nitrite accumulation and CH4 production more than E. coli W3110, which may be due to the tac promoter-enhanced nitrite reductase activity of E. coli nir-Ptac accelerating electrons to be consumed for nitrite reduction rather than CH4 biosynthesis. In conclusion, anaerobic cultures of E. coli W3110 or E. coli nir-Ptac may decrease CH4 production in the rumen. The inoculation of E. coli W3110 or, especially, E. coli nir-Ptac to mixed ruminal microorganisms may decrease nitrite toxicity when ruminants consume high-nitrate-containing forages and when nitrite is applied to abate ruminal CH4 production.
Collapse
Affiliation(s)
- C Sar
- Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
de Oliveira SG, Berchielli TT, Pedreira MDS, Primavesi O, Frighetto R, Lima MA. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Anim Feed Sci Technol 2007. [DOI: 10.1016/j.anifeedsci.2006.07.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Sar C, Mwenya B, Pen B, Takaura K, Morikawa R, Tsujimoto A, Kuwaki K, Isogai N, Shinzato I, Asakura Y, Toride Y, Takahashi J. Effect of ruminal administration ofEscherichia coliwild type or a genetically modified strain with enhanced high nitrite reductase activity on methane emission and nitrate toxicity in nitrate-infused sheep. Br J Nutr 2007; 94:691-7. [PMID: 16277770 DOI: 10.1079/bjn20051517] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of two kinds ofEscherichia coli(E. coli) strain, wild-typeE. coliW3110 andE. colinir-Ptac, which has enhanced NO2reduction activity, on oral CH4emission and NO3toxicity in NO3-treated sheep were assessed in a respiratory hood system in a 4×6 Youden square design. NO3(1·3g NaNO3/kg0·75body weight) and/orE. colistrains were delivered into the rumen through a fistula as a single dose 30min after the morning meal.Escherichia colicells were inoculated for sheep to provide an initialE. colicell density of optical density at 660nm of 2, which corresponded to 2×1010cells/ml. The six treatments consisted of saline,E. coliW3110,E. colinir-Ptac, NO3, NO3plusE. coliW3110, and NO3plusE. colinir-Ptac. CH4emission from sheep was reduced by the inoculation ofE. coliW3110 orE. colinir-Ptac by 6% and 12%, respectively. NO3markedly inhibited CH4emission from sheep. Compared with sheep given NO3alone, the inoculation ofE. coliW3110 to NO3-infused sheep lessened ruminal and plasma toxic NO2accumulation and blood methaemoglobin production, while keeping ruminal methanogenesis low. Ruminal and plasma toxic NO2accumulation and blood methaemoglobin production in sheep were unaffected by the inoculation ofE. colinir-Ptac. These results suggest that ruminal methanogenesis may be reduced by the inoculation ofE. coliW3110 orE. colinir-Ptac. The inoculation ofE. coliW3110 may abate NO3toxicity when NO3is used to inhibit CH4emission from ruminants.
Collapse
Affiliation(s)
- C Sar
- Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lovett DK, Stack LJ, Lovell S, Callan J, Flynn B, Hawkins M, O'Mara FP. Manipulating Enteric Methane Emissions and Animal Performance of Late-Lactation Dairy Cows Through Concentrate Supplementation at Pasture. J Dairy Sci 2005; 88:2836-42. [PMID: 16027198 DOI: 10.3168/jds.s0022-0302(05)72964-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine the potential of increased fiber-based concentrates to reduce methane (CH(4)) production in relation to milk yield from late-lactation dairy cows. The effect of 2 levels of concentrate supplementation (0.87 vs. 5.24 kg on a dry matter basis) on herbage voluntary intake, total dry matter intake, milk yield, milk composition, and CH(4) production were determined by way of a randomized block designed grazing trial using lactating Holstein-Friesian cows (231 +/- 44 d in milk) grazing a mixed-grass sward with a regrowth aged 36 d. Increased concentrate supplementation resulted in a significant increase in total dry matter intake, milk yield, fat-corrected milk (FCM) yield, and daily CH(4) production. However, herbage intake and milk composition were unaffected. Although daily CH(4) production increased with fibrous concentrate use the increase was not as great as that observed for milk yield. The decline in CH(4) production per kilogram of milk was nonsignificant; however, when relating CH(4) production to FCM(FCM at 35 g of fat/kg of milk), a declining trend was identified within increasing concentrate supplementation (19.26 and 16.02 g of CH(4)/kg of FCM). These results suggest that increased fibrous concentrate use at pasture, even at modest levels, could reduce enteric CH(4) production per kilogram of animal product. However, the effectiveness of such a strategy is dependent on the maintenance of production quotas and a subsequent decline in the number of livestock needed to fulfill the specified production level.
Collapse
Affiliation(s)
- D K Lovett
- Department of Animal Science, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
14
|
Sar C, Mwenya B, Santoso B, Takaura K, Morikawa R, Isogai N, Asakura Y, Toride Y, Takahashi J. Effect of Escherichia coli W3110 on ruminal methanogenesis and nitrate/nitrite reduction in vitro. Anim Feed Sci Technol 2005. [DOI: 10.1016/j.anifeedsci.2004.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Effects of supplementing galacto-oligosaccharides, Yucca schidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.livprodsci.2004.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Sar C, Santoso B, Mwenya B, Gamo Y, Kobayashi T, Morikawa R, Kimura K, Mizukoshi H, Takahashi J. Manipulation of rumen methanogenesis by the combination of nitrate with β1-4 galacto-oligosaccharides or nisin in sheep. Anim Feed Sci Technol 2004. [DOI: 10.1016/j.anifeedsci.2004.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|