1
|
Wang N, Zhao Z, Zhang X, Liu S, Zhang K, Hu M. Plant growth, salt removal capacity, and forage nutritive value of the annual euhalophyte Suaeda salsa irrigated with saline water. FRONTIERS IN PLANT SCIENCE 2023; 13:1040520. [PMID: 36733586 PMCID: PMC9887187 DOI: 10.3389/fpls.2022.1040520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Sustainable agricultural development in semiarid and arid regions is severely restricted by soil and water salinization. Cultivation of the representative halophyte Suaeda salsa, which can be irrigated with saline water and cultivated on saline soils, is considered to be a potential solution to the issues of freshwater scarcity, soil salinization, and fodder shortage. However, the salt removal capacity and differences in the forage nutritive value of S. salsa under different saline water treatments remain unknown. Using the methods of field trials and randomized blocks design, we quantified salt accumulation in the aboveground biomass, and the biochemical and nutritive value of field-cultivated S. salsa in arid northwestern China under irrigation with water of different salinities [i.e., freshwater or water containing10, 20, 30, or 40 g/L NaCl). The fresh and dry weights of S. salsa increased, then decreased, with increase in salinity. The salt content of the plant's aboveground biomass increased to a constant range and, thus, the salt extraction of S. salsa was relatively stable under different salinities of irrigation water. Under the experimental conditions, the crude protein content significantly increased to 9.45% dry weight (DW) and then decreased to 6.85% DW, with an increase in salinity (p < 0.05). The neutral detergent fiber (42.93%-50.00% DW) and acid detergent fiber (34.76%-39.70% DW) contents were suitable for forage. The contents of trace elements, such as copper and zinc, were significantly increased after irrigation with saline water (p < 0.05). The forage of S. salsa is of high nutritive value for livestock, and contains low concentrations of anti-nutrients. Therefore, S. salsa can be considered for cultivation in saline soils irrigated with saline water. In addition, it provides a viable additional source of fodder in arid regions, where the availability of freshwater and non-saline arable land is limited.
Collapse
Affiliation(s)
- Ning Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Zhenyong Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xinyi Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Sihai Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Ke Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mingfang Hu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
2
|
Sharavdorj K, Byambadorj SO, Jang Y, Cho JW. Application of Magnesium and Calcium Sulfate on Growth and Physiology of Forage Crops under Long-Term Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3576. [PMID: 36559688 PMCID: PMC9785884 DOI: 10.3390/plants11243576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Soil salinity is major threat to crop growth and reducing cultivated land areas and salt-resistant crops have been required to sustain agriculture in salinized areas. This original research was performed to determine the effectiveness of MgSO4 (MS) and CaSO4 (CS) for each species and assess changes in the physiology and growth of fodder crops after short and long-term salt stress. Six treatments (CON (control); NaCl (NaCl 100 mM); 1 MS (1 mM MgSO4 + 100 mM NaCl); 2 MS (2 mM MgSO4 + 100 mM NaCl); 7.5 CS (7.5 mM CaSO4 + 100 mM NaCl); and 10 CS (10 mM CaSO4 + 100 mM NaCl)) were applied to Red clover (Trifolium pratense) and Tall fescue (Festuca arundinacea) under greenhouse conditions. Cultivars were evaluated based on their dry weights, physiological parameters, forage quality, and ion concentrations. The biomass of both species decreased significantly under NaCl treatments and increased under the MS and CS treatments compared to solely salinity treatments. Salinity caused a decrease in the photosynthetic rate, but compared to CON, the MS and CS treatments yielded superior results. Moreover, the Na+/K+ ratio increased as Na+ concentration increased but crop quality (CP, NDF, ADF) did not show significant differences under salinity. Overall, we concluded that these T. pratense and F. arundinacea species demonstrated various responses to salinity, MS, and CS by different physiological and morphological parameters and it turned out to be efficient under salinity stress.
Collapse
Affiliation(s)
- Khulan Sharavdorj
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yeongmi Jang
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Woong Cho
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Jiang K, Yang Z, Sun J, Liu H, Chen S, Zhao Y, Xiong W, Lu W, Wang ZY, Wu X. Evaluation of the tolerance and forage quality of different ecotypes of seashore paspalum. FRONTIERS IN PLANT SCIENCE 2022; 13:944894. [PMID: 36247632 PMCID: PMC9559843 DOI: 10.3389/fpls.2022.944894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Seashore paspalum is a halophytic, warm-season grass with wide applications. It is noted for its superior salt tolerance in saline environments; however, the nutritive value of seashore paspalum and the effect of salinity remains to be determined. Therefore, this study aimed to evaluate the relationship between agronomic traits and forage quality and identified the effects of short-term high-salt stress (1 week, 700 mM NaCl) on the growth and forage nutritive value of 16 ecotypes of seashore paspalum. The salt and cold tolerances of the seashore paspalum ecotypes were assessed based on the survival rate following long-term high-salt stress (7 weeks, 700 mM NaCl) and exposure to natural low temperature stress. There were significant genetic (ecotype-specific) effects on plant height, leaf-stem ratio, and survival rate of seashore paspalum following salt or low temperature stress. Plant height was significantly negatively correlated with the leaf-stem ratio (r = -0.63, P<0.01), but the heights and leaf-stem ratios were not significantly correlated with the fresh weight (FW) and dry weight (DW) of the shoots. High salinity decreased the FW and DW of the shoots by 50.6% and 23.6%, respectively, on average. Seashore paspalum exhibited outstanding salt tolerance and forage quality at high salinity. The survival rate of the different ecotypes of seashore paspalum varied from 6.5% to 49.0% following treatment with 700 mM NaCl for 7 weeks. The crude protein (CP) content of the control and treatment groups (700 mM NaCl) was 17.4% and 19.3%, respectively, of the DW on average, and the CP content of most ecotypes was not significantly influenced by high salinity. The average ether extract (EE) content ranged from 4.6% to 4.4% of the DW under control and saline conditions, respectively, indicating that the influence was not significant. The neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of the control group were 57.4% and 29.8%, respectively, of the DW on average. Salt stress reduced the content of NDF and ADF to 50.2% and 25.9%, respectively, of the DW on average. Altogether, the results demonstrated that stress did not have any significant effects on the CP and EE content of most ecotypes, but reduced the NDF and ADF content and improved relative feed value (RFV). The results obtained herein support the notion that seashore paspalum is a good candidate for improving the forage potential of saline soils and can provide useful guidelines for livestock producers.
Collapse
Affiliation(s)
- Kai Jiang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zhimin Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Juan Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Huancheng Liu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Shenmiao Chen
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yongzhuo Zhao
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wangdan Xiong
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wenjie Lu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zeng-Yu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Xueli Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Evaluation of Different Shallow Groundwater Tables and Alfalfa Cultivars for Forage Yield and Nutritional Value in Coastal Saline Soil of North China. Life (Basel) 2022; 12:life12020217. [PMID: 35207504 PMCID: PMC8880483 DOI: 10.3390/life12020217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
Freshwater shortage and soil salinization are the major constraints for alfalfa (Medicago sativa L.) growth in coastal salt–alkali soil of North China. In this study, we analyzed the effects of shallow groundwater tables and alfalfa cultivars on forage yield and nutritional value. A field simulation experiment was conducted during the growing season of 2019–2021 with three groundwater depths (80, 100, and 120 cm) and five alfalfa cultivars (Magnum 551, Phabulous, Zhongmu No. 1, Zhongmu No. 3, and WL525HQ) under subsurface pipe systems. Alfalfa forage was harvested six times in total during the growing season. Results revealed significant variation among alfalfa cultivars for forage yield at each shallow groundwater depth. The greatest forage yield was recorded in cultivar Phabulous (32.2 and 35.9 t ha−1 in 2020 and 2021) when planted at 100 cm shallow groundwater depth. Forage yield during the first harvest was 24.6–25.7%, exhibiting the highest ratio of the total annual yield. The effects of shallow groundwater depth, cultivar, and their interaction were significant (p < 0.01) on the turn-green ratio of alfalfa. Cultivar Zhongmu No. 1 had the highest turn-green ratio at the 100 cm groundwater depth, while cultivar WL525HQ showed the lowest turn-green ratio at each groundwater depth. Moreover, crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) content were also significantly affected by shallow groundwater depth, cultivars, and their interaction at different harvests. Cultivars Magnum551, Zhongmu No. 1, Zhongmu No. 3, and Phabulous furnished the highest CP, while cultivar WL525HQ performed the poorest in terms of CP in this study. These results propose that planting the cultivar Phabulous at a groundwater depth of 100 cm could be a suitable agronomic practice for alfalfa forage production in the coastal salt–alkali area of North China.
Collapse
|
5
|
Feng Q, Song S, Yang Y, Amee M, Chen L, Xie Y. Comparative physiological and metabolic analyzes of two Italian ryegrass (Lolium multiflorum) cultivars with contrasting salinity tolerance. PHYSIOLOGIA PLANTARUM 2021; 172:1688-1699. [PMID: 33611798 DOI: 10.1111/ppl.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Italian ryegrass (Lolium multiflorum) is a widely cultivated forage with high nutritional value and good palatability. Salinity, however, is a negative factor to lessen output and quality in Italian ryegrass. The aim of this study was to elucidate the salt tolerance mechanism of two Italian ryegrass cultivars, 'Abundant' and 'Angus'. Under hydroponic conditions, two cultivars of Italian ryegrass with different salt tolerance were exposed to 0 and 300 mM NaCl solution for 1 week, respectively. The results showed that salt stress decreased relative growth rate and relative water content, especially in salt-sensitive 'Angus'. The salt-tolerant 'Abundant' cultivar alleviated reactive oxygen species (ROS) induced burst and cell damage. However, 'Angus' exhibited a greater activity of superoxide dismutase (SOD) and peroxidase (POD) than 'Abundant'. Additionally, 'Abundant' exhibited higher photosynthetic efficiency than 'Angus' under salt stress condition. Salt treatment significantly increased the Na/K, Na/Mg, and Na/Ca ratios in the leaves and roots of both cultivars, with a pronounced effect in salt-sensitive 'Angus'. The metabolite analysis of leaf polar extracts revealed 41 salt responsive metabolites in both cultivars, mainly consisting of amino acids, organic acids, fatty acids, and sugars. Following exposure to salt conditions, salt-sensitive 'Angus' had a higher level of metabolites and more uniquely upregulated metabolites were detected. Based on these findings, we conclude that the 'Abundant' cultivar emerged as a favorite in saline-alkali soil, while the 'Angus' cultivar is suitable for planting in normal soil. It appears that the high salt tolerance of 'Abundant' is partly to prevent the plant from ionic homeostasis disruption.
Collapse
Affiliation(s)
- Qijia Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shurui Song
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Yang
- School of Physical Education, Changsha University, Changsha, China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Shao A, Sun Z, Fan S, Xu X, Wang W, Amombo E, Yin Y, Li X, Wang G, Wang H, Fu J. Moderately low nitrogen application mitigate the negative effects of salt stress on annual ryegrass seedlings. PeerJ 2020; 8:e10427. [PMID: 33344081 PMCID: PMC7719293 DOI: 10.7717/peerj.10427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/03/2020] [Indexed: 01/21/2023] Open
Abstract
Appropriate application of nitrogen (N) can alleviate the salt stress-induced damage on plants. This study explores the changes of nitrogen requirement in feeding annual ryegrass seedlings under mild salt concentrations (50 mM, 100 mM) plus its underlying mitigation mechanism. Results showed that low salt concentration decreased N requirement as observed from the increment in plant height and biomass at a relative low N level (2.0 mM not 5.0 mM). Under salt treatment, especially at 50 mM NaCl, the OJIP (Chl a fluorescence induction transient) curve and a series of performance indexes (PIABS, RC/CS0, ET0/CS0, ϕE0, ϕ0) peaked whereas DI0/RC, Vj and M0 were the lowest under moderately low N level (2.0 mM). In addition, under salt stress, moderately low N application could maintain the expression of NR (nitrate reductase) and GS (glutamine synthetase) encoding genes at a relatively stable level but had no effect on the expression of detected NRT (nitrate transporter) gene. The seedlings cultured at 2.0 mM N also exhibited the highest activity of CAT and POD antioxidant enzymes and the lowest MDA content and EL under relative low level of salt treatment. These results indicated that mild salt treatment of annual ryegrass seedlings might reduce N requirement while moderately low N application could promote their growth via regulating photosynthesis, alleviating ROS-induced (reactive oxygen species) damage and maintenance of N metabolism. These results also can provide useful reference for nitrogen application in moderation rather than in excess on annual ryegrass in mild or medium salinity areas through understanding the underlying response mechanisms.
Collapse
Affiliation(s)
- An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Zhichao Sun
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Hongli Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
7
|
Morphological, Physiological, and Genetic Responses to Salt Stress in Alfalfa: A Review. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040577] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alfalfa (Medicago sativa L.) is an important legume forage crop. However, its genetic improvement for salt tolerance is challenging, as alfalfa’s response to salt stress is genetically and physiologically complex. A review was made to update the knowledge of morphological, physiological, biochemical, and genetic responses of alfalfa plants to salt stress, and to discuss the potential of applying modern plant technologies to enhance alfalfa salt-resistant breeding, including genomic selection, RNA-Seq analysis, and cutting-edge Synchrotron beamlines. It is clear that alfalfa salt tolerance can be better characterized, genes conditioning salt tolerance be identified, and new marker-based tools be developed to accelerate alfalfa breeding for salt tolerance.
Collapse
|
8
|
Evaluation of Some Rhodes Grass (Chloris gayana) Genotypes for Their Salt Tolerance, Biomass Yield and Nutrient Composition. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9010143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The livestock productivity in Ethiopia is seriously constrained by the shortage of fodder due to increasing soil salinization. Therefore, restoration of salt-affected lands into productive soils through salt-tolerant forages and improved irrigation and crop management practices is crucial for enhancing the productivity of the livestock sector in Ethiopia. In this three-year study, pot trials were conducted to evaluate the impact of five different soil salinity levels (i.e., 0, 5, 10, 15, and 20 dS m−1) on plant growth, biomass production, and nutrient quality attributes of three Rhodes grass (Chloris gayana) genotypes (ILRI-6633, ILRI-7384, CV-massaba). Increasing soil salinity negatively affected germination percentage (GP) and mean germination time (MGT) of all genotypes. For all salinity levels, the highest GP was observed for ILRI-6633 and the lowest for CV-massaba. Plant height and chlorophyll content for ILRI-6633 was higher than the other two genotypes. The crude protein (CP) content was higher in low dry matter-producing genotype (ILRI-7384). The performance of ILRI-6633 at all salinity levels was superior to the other two genotypes. CV-massaba genotype performed better under low to medium soil salinity conditions. Therefore, ILRI-6633 and CV-massaba genotypes have excellent potential to increase forage production in salt-affected areas of Ethiopia.
Collapse
|
9
|
Temel S. Tuzlu-Alkali Meralarda Yaygın Olarak Yetişen Çorak Çimi (Puccinellia distans) ve Sahil Ayrığı (Aeluropus littoralis) Bitkilerinin Farklı Gelişme Dönemlerindeki Besin İçeriklerinin Belirlenmesi. ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2018. [DOI: 10.24180/ijaws.440309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Li X, Han S, Wang G, Liu X, Amombo E, Xie Y, Fu J. The Fungus Aspergillus aculeatus Enhances Salt-Stress Tolerance, Metabolite Accumulation, and Improves Forage Quality in Perennial Ryegrass. Front Microbiol 2017; 8:1664. [PMID: 28936200 PMCID: PMC5595160 DOI: 10.3389/fmicb.2017.01664] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/17/2017] [Indexed: 01/22/2023] Open
Abstract
Perennial ryegrass (Lolium perenne) is an important forage grass with high yield and superior quality in temperate regions which is widely used in parks, sport field, and other places. However, perennial ryegrass is moderately tolerant to salinity stress compared to other commercial cultivars and salt stress reduces their growth and productivity. Aspergillus aculeatus has been documented to participate in alleviating damage induced by salinity. Therefore, the objective of this study was to investigate the mechanisms underlying A. aculeatus-mediated salt tolerance, and forage quality of perennial ryegrass exposed to 0, 200, and 400 mM NaCl concentrations. Physiological markers and forage quality of perennial ryegrass to salt stress were evaluated based on the growth rate, photosynthesis, antioxidant enzymes activity, lipid peroxidation, ionic homeostasis, the nutritional value of forage, and metabolites. Plants inoculated with A. aculeatus exhibited higher relative growth rate (RGR), turf and forage quality under salt stress than un-inoculated plants. Moreover, in inoculated plants, the fungus remarkably improved plant photosynthetic efficiency, reduced the antioxidant enzymes activity (POD and CAT), and attenuated lipid peroxidation (decreased H2O2 and MDA accumulation) induced by salinity, compared to un-inoculated plants. Furthermore, the fungus also acts as an important role in maintaining the lower Na/K ratio and metabolites and lower the amino acids (Alanine, Proline, GABA, and Asparagine), and soluble sugars (Glucose and Fructose) for inoculated plants than un-inoculated ones. Our results suggest that A. aculeatus may be involved in modulating perennial ryegrass tolerance to salinity in various ways.
Collapse
Affiliation(s)
- Xiaoning Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Shijuan Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Xiaoying Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,University of Chinese Academy of SciencesBeijing, China
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan City, China.,School of Resources and Environmental Engineering, Ludong UniversityYantai, China
| |
Collapse
|
11
|
Arshad M, Gruber MY, Wall K, Hannoufa A. An Insight into microRNA156 Role in Salinity Stress Responses of Alfalfa. FRONTIERS IN PLANT SCIENCE 2017; 8:356. [PMID: 28352280 PMCID: PMC5348497 DOI: 10.3389/fpls.2017.00356] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/01/2017] [Indexed: 05/21/2023]
Abstract
Salinity is one of the major abiotic stresses affecting alfalfa productivity. Developing salinity tolerant alfalfa genotypes could contribute to sustainable crop production. The functions of microRNA156 (miR156) have been investigated in several plant species, but so far, no studies have been published that explore the role of miR156 in alfalfa response to salinity stress. In this work, we studied the role of miR156 in modulating commercially important traits of alfalfa under salinity stress. Our results revealed that overexpression of miR156 increased biomass, number of branches and time to complete growth stages, while it reduced plant height under control and salinity stress conditions. We observed a miR156-related reduction in neutral detergent fiber under non-stress, and acid detergent fiber under mild salinity stress conditions. In addition, enhanced total Kjeldahl nitrogen content was recorded in miR156 overexpressing genotypes under severe salinity stress. Furthermore, alfalfa genotypes overexpressing miR156 exhibited an altered ion homeostasis under salinity conditions. Under severe salinity stress, miR156 downregulated SPL transcription factor family genes, modified expression of other important transcription factors, and downstream salt stress responsive genes. Taken together, our results reveal that miR156 plays a role in mediating physiological and transcriptional responses of alfalfa to salinity stress.
Collapse
Affiliation(s)
| | | | - Ken Wall
- Agriculture and Agri-Food Canada, Swift CurrentSK, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, LondonON, Canada
- *Correspondence: Abdelali Hannoufa,
| |
Collapse
|
12
|
Hamouda I, Badri M, Mejri M, Cruz C, Siddique KHM, Hessini K. Salt tolerance of Beta macrocarpa is associated with efficient osmotic adjustment and increased apoplastic water content. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:369-75. [PMID: 26588061 DOI: 10.1111/plb.12419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/13/2015] [Indexed: 05/12/2023]
Abstract
The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na(+) and Cl(-) in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment.
Collapse
Affiliation(s)
- I Hamouda
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - M Badri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - M Mejri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - C Cruz
- Departamento de Biologia Vegetal, Faculdade de Ciencias de Lisboa, Centro de Biologia Ambiental-CBA, Campo Grande, Lisbon, Portugal
| | - K H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - K Hessini
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
- Biology Department, Faculty of Science, Taif University, Al-Haweiah, Taif, Saudi Arabia
| |
Collapse
|
13
|
Benes SE, Robinson PH, Cun GS. Depletion of selenium in blood, liver and muscle from beef heifers previously fed forages containing high levels of selenium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:603-608. [PMID: 26247689 DOI: 10.1016/j.scitotenv.2015.07.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 06/04/2023]
Abstract
Beef heifers which had grazed 'Jose' tall wheatgrass (TWG; Thinopyrum ponticum var. 'Jose'; 10 heifers) and creeping wildrye (CWR; Leymus triticoides var. 'Rio'; 10 heifers) with high levels of Se (>2 mg/kg DM) due to growth in saline soils, accumulated high Se levels in blood, liver and muscle (Juchem et al., 2012). We determined the decrease in Se levels in blood, liver and muscle from these heifers, particularly the decrease of Se in muscle, in order to determine the maximum feeding length of a low Se diet (LSeD) required sustaining Se-enriched beef. Immediately after grazing, all heifers were fed a LSeD containing <0.30 mg/kg DM for 209 d. Blood, liver and muscle samples, as well as body weight (BW), were collected at the beginning and end of the LSeD feeding period and at intermediate times. After grazing, CWR and TWG heifers had similar BW, but TWG heifers had higher levels of Se in whole blood (1.19 versus 0.81 mg/L), liver (2.67 versus 2.12 mg/kg wet weight (WW)), and muscle tissue (0.87 versus 0.63 mg/kg WW) than CWR heifers. The Se levels decreased with exposure time to the LSeD and, at 82 d of feeding the LSeD, Se levels were 77 (liver), 49 (blood) and 31% (muscle) lower. The BW gains for both groups were ~0.5 kg/d during the first 82 d of feeding, but increased thereafter. Levels of Cu in serum (0.28 versus 0.50 mg/L) and liver (1.14 versus 22.9 mg/kg WW) were lower at the end of grazing in TWG heifers, and suggested a potential Cu deficiency. Grazing forages with high Se levels can result in Se-enriched beef, but a LSeD feeding period of <82 d is required to maintain enrichment.
Collapse
Affiliation(s)
- Sharon E Benes
- Department of Plant Science, California State University, Fresno, CA 93740, USA
| | - Peter H Robinson
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Grace S Cun
- Department of Plant Science, California State University, Fresno, CA 93740, USA; Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
14
|
Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California. SUSTAINABILITY 2013. [DOI: 10.3390/su5093839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Performance, carcass, and meat characteristics of beef steers finished on 2 different forages or on a high-concentrate diet. ACTA ACUST UNITED AC 2012. [DOI: 10.15232/s1080-7446(15)30340-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Juchem SO, Benes SE, Robinson PH, Grattan SR, Vasquez P, Chilibroste P, Brito M. Grazing as an alternative for utilization of saline-sodic soils in the San Joaquin Valley: selenium accretion and performance of beef heifers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 419:44-53. [PMID: 22285079 DOI: 10.1016/j.scitotenv.2011.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 05/31/2023]
Abstract
Two experiments were conducted to evaluate Se accumulation and health of non-pregnant, non-breeding beef cattle grazing on forages with a high Se content due to irrigation with saline drainage water. Heifers grazed experimental pastures of "Jose" tall wheatgrass (TWG; Thinopyrum ponticum var. "Jose") and creeping wildrye (CWR; Leymus triticoides var. "Rio") for 190 days in Experiment 1 (2007) and for 165 days in Experiment 2 (2008). In experiment 1, mean Se concentrations were similar in TWG and CWR herbage (4.0 versus 3.7 ± 0.26 mg/kg dry weight; p=0.34) as was crude protein (113 versus 114 ± 7.9 g/kg dry weight; p=0.94). Concentrations of Se in blood increased by 300% during the grazing period, and were similar for heifers grazing the TWG or CWR pastures (0.94 versus 0.87 ± 0.03 mg/kg; p=0.89). Heifers grazing on TWG gained more body weight than did heifers grazing on CWR (0.59 versus 0.27 ± 0.07 kg/days; p<0.01). In experiment 2, concentration of Se (4.0 versus 2.8 mg/kg ± 0.19 mg/kg dry weight; p<0.01) and crude protein (79 versus 90 ± 5.6 g/kg dry weight; p<0.01) differed, for TWG and CWR, respectively. Within 20 days, Se concentrations in blood had increased by 300% and by nearly 200% in heifers grazing on TWG or CWR. All data cited are least square means ± standard error of the mean. Data from our two grazing seasons are consistent in demonstrating the safety of grazing beef cattle for a period of up to 6 months on TWG and CWR forages having high levels of Se due to irrigation with saline drainage water. This suggests that forage production using saline drainage water is a viable alternative for saline soils with limited potential for producing high value, salt-sensitive, crops.
Collapse
Affiliation(s)
- Sérgio O Juchem
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Escaray FJ, Menendez AB, Gárriz A, Pieckenstain FL, Estrella MJ, Castagno LN, Carrasco P, Sanjuán J, Ruiz OA. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:121-33. [PMID: 22118623 DOI: 10.1016/j.plantsci.2011.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/16/2011] [Accepted: 03/24/2011] [Indexed: 05/04/2023]
Abstract
The genus Lotus comprises around 100 annual and perennial species with worldwide distribution. The relevance of Lotus japonicus as a model plant has been recently demonstrated in numerous studies. In addition, some of the Lotus species show a great potential for adaptation to a number of abiotic stresses. Therefore, they are relevant components of grassland ecosystems in environmentally constrained areas of several South American countries and Australia, where they are used for livestock production. Also, the fact that the roots of these species form rhizobial and mycorrhizal associations makes the annual L. japonicus a suitable model plant for legumes, particularly in studies directed to recognize the mechanisms intervening in the tolerance to abiotic factors in the field, where these interactions occur. These properties justify the increased utilization of some Lotus species as a strategy for dunes revegetation and reclamation of heavy metal-contaminated or burned soils in Europe.
Collapse
Affiliation(s)
- Francisco J Escaray
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús UNSAM/CONICET, 7130, Camino circunvalación laguna km 6, Chascomús, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wegner LH, Stefano G, Shabala L, Rossi M, Mancuso S, Shabala S. Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na(+) and K(+) transport into xylem vessels. PLANT, CELL & ENVIRONMENT 2011; 34:859-869. [PMID: 21332511 DOI: 10.1111/j.1365-3040.2011.02291.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Early events in NaCl-induced root ion and water transport were investigated in maize (Zea mays L) roots using a range of microelectrode and imaging techniques. Addition of 100 mm NaCl to the bath resulted in an exponential drop in root xylem pressure, rapid depolarization of trans-root potential and a transient drop in xylem K(+) activity (A(K+) ) within ∼1 min after stress onset. At this time, no detectable amounts of Na(+) were released into the xylem vessels. The observed drop in A(K+) was unexpected, given the fact that application of the physiologically relevant concentrations of Na(+) to isolated stele has caused rapid plasma membrane depolarization and a subsequent K(+) efflux from the stelar tissues. This controversy was explained by the difference in kinetics of NaCl-induced depolarization between cortical and stelar cells. As root cortical cells are first to be depolarized and lose K(+) to the environment, this is associated with some K(+) shift from the stelar symplast to the cortex, resulting in K(+) being transiently removed from the xylem. Once Na(+) is loaded into the xylem (between 1 and 5 min of root exposure to NaCl), stelar cells become more depolarized, and a gradual recovery in A(K+) occurs.
Collapse
Affiliation(s)
- Lars H Wegner
- Plant Bioelectrics Group, Institute of Pulsed Power and Microwave Technology and Institute of Botany 1, Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Health and performance of Omani sheep fed salt-tolerant sorghum (Sorghum bicolor) forage or Rhodes grass (Chloris gayana). Small Rumin Res 2010. [DOI: 10.1016/j.smallrumres.2009.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Suyama H, Benes S, Robinson P, Getachew G, Grattan S, Grieve C. Biomass yield and nutritional quality of forage species under long-term irrigation with saline-sodic drainage water: Field evaluation. Anim Feed Sci Technol 2007. [DOI: 10.1016/j.anifeedsci.2006.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
|