1
|
Yuan Y, Yang L, Fang Z, Chen H, Sun F, Jiang H, Zhou J. Improving Geldanamycin Production in Streptomyces geldanamycininus Through UV Mutagenesis of Protoplast. Microorganisms 2025; 13:186. [PMID: 39858954 PMCID: PMC11767647 DOI: 10.3390/microorganisms13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Geldanamycin, a benzoquinone ansa antibiotic, has been extensively applied in medical, agricultural, and health research areas due to its antitumor, antifungal, herbicidal, and antiradiation effects. In this study, an improvement of geldanamycin production by Streptomyces geldanamycininus FIM18-0592 was first performed by protoplasts combined with UV mutagenesis and ribosome engineering technology, respectively. The results showed that strains induced by UV mutagenesis of protoplasts were superior to protoplasts treated with erythromycin in terms of the positive variability, average relative titer, and maximum relative titer, with values of 51.95%, 99%, and 136%, respectively. A mutant strain that produced 3742 μg/mL geldanamycin was generated by protoplast UV mutagenesis, with a 36% higher yield than the initial strain. Multi-omic analysis revealed that the high-yielding geldanamycin in mutant strain 53 could upregulate GdmG and GdmX by 1.59 and 2.38 times in the ansamycin synthesis pathway, and downregulate pks12, pikAI, and pikAII by 0.25, 0.37, and 0.48 times in the fatty acid synthesis pathway, which was crucial for geldanamycin production. Our study provides a novel S. geldanamycininus geldanamycin production strategy and offers valuable insights for mutagenesis and breeding of other microorganisms.
Collapse
Affiliation(s)
- Yuan Yuan
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, 25 Jinbu Road, Fuzhou 350007, China; (Y.Y.); (L.Y.); (Z.F.); (H.C.); (F.S.)
| | - Lu Yang
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, 25 Jinbu Road, Fuzhou 350007, China; (Y.Y.); (L.Y.); (Z.F.); (H.C.); (F.S.)
- The School of Pharmacy, Fujian Medical University, 1 North Xuefu Road, Fuzhou 350122, China
| | - Zhikai Fang
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, 25 Jinbu Road, Fuzhou 350007, China; (Y.Y.); (L.Y.); (Z.F.); (H.C.); (F.S.)
| | - Haimin Chen
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, 25 Jinbu Road, Fuzhou 350007, China; (Y.Y.); (L.Y.); (Z.F.); (H.C.); (F.S.)
- The School of Pharmacy, Fujian Medical University, 1 North Xuefu Road, Fuzhou 350122, China
| | - Fei Sun
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, 25 Jinbu Road, Fuzhou 350007, China; (Y.Y.); (L.Y.); (Z.F.); (H.C.); (F.S.)
| | - Hong Jiang
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, 25 Jinbu Road, Fuzhou 350007, China; (Y.Y.); (L.Y.); (Z.F.); (H.C.); (F.S.)
- The School of Pharmacy, Fujian Medical University, 1 North Xuefu Road, Fuzhou 350122, China
| | - Jian Zhou
- Fujian Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, 25 Jinbu Road, Fuzhou 350007, China; (Y.Y.); (L.Y.); (Z.F.); (H.C.); (F.S.)
- The School of Pharmacy, Fujian Medical University, 1 North Xuefu Road, Fuzhou 350122, China
| |
Collapse
|
2
|
Abdullah O, Omran Z. Geldanamycins: Potent Hsp90 Inhibitors with Significant Potential in Cancer Therapy. Int J Mol Sci 2024; 25:11293. [PMID: 39457075 PMCID: PMC11509085 DOI: 10.3390/ijms252011293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Geldanamycin, an ansa-macrolide composed of a rigid benzoquinone ring and an aliphatic ansa-bridge, was isolated from Streptomyces hygroscopicus. Geldanamycin is a potent heat shock protein inhibitor with remarkable antiproliferative activity. However, it shows pronounced hepatotoxicity in animal models and unfavorable pharmacokinetic properties. Four geldanamycin analogs have progressed through various phases of clinical trials, but none have yet completed clinical evaluation or received FDA approval. To enhance the efficacy of these Hsp90 inhibitors, strategies such as prodrug approaches or nanocarrier delivery systems could be employed to minimize systemic and organ toxicity. Furthermore, exploring new drug combinations may help overcome resistance, potentially improving therapeutic outcomes. This review discusses the mechanism of action of geldanamycin, its pharmacokinetic properties, and the various approaches employed to alleviate its toxicity and maximize its clinical efficacy. The main focus is on those derivatives that have progressed to clinical trials or that have shown important in vivo activity in preclinical models.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ziad Omran
- King Abdullah International Medical Research Center, King Saud Bin Abdelaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| |
Collapse
|
3
|
Boukouvala S, Kontomina E, Olbasalis I, Patriarcheas D, Tzimotoudis D, Arvaniti K, Manolias A, Tsatiri MA, Basdani D, Zekkas S. Insights into the genomic and functional divergence of NAT gene family to serve microbial secondary metabolism. Sci Rep 2024; 14:14905. [PMID: 38942826 PMCID: PMC11213898 DOI: 10.1038/s41598-024-65342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Microbial NAT enzymes, which employ acyl-CoA to acylate aromatic amines and hydrazines, have been well-studied for their role in xenobiotic metabolism. Some homologues have also been linked to secondary metabolism, but this function of NAT enzymes is not as well-known. For this comparative study, we surveyed sequenced microbial genomes to update the list of formally annotated NAT genes, adding over 4000 new sequences (mainly bacterial, but also archaeal, fungal and protist) and portraying a broad but not universal distribution of NATs in the microbiocosmos. Localization of NAT sequences within microbial gene clusters was not a rare finding, and this association was evident across all main types of biosynthetic gene clusters (BGCs) implicated in secondary metabolism. Interrogation of the MIBiG database for experimentally characterized clusters with NAT genes further supports that secondary metabolism must be a major function for microbial NAT enzymes and should not be overlooked by researchers in the field. We also show that NAT sequences can be associated with bacterial plasmids potentially involved in horizontal gene transfer. Combined, our computational predictions and MIBiG literature findings reveal the extraordinary functional diversification of microbial NAT genes, prompting further research into their role in predicted BGCs with as yet uncharacterized function.
Collapse
Affiliation(s)
- Sotiria Boukouvala
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Evanthia Kontomina
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Ioannis Olbasalis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dionysios Patriarcheas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimosthenis Tzimotoudis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Konstantina Arvaniti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Aggelos Manolias
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Maria-Aggeliki Tsatiri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Dimitra Basdani
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Sokratis Zekkas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
4
|
Adhikari A, Shakya S, Shrestha S, Aryal D, Timalsina KP, Dhakal D, Khatri Y, Parajuli N. Biocatalytic role of cytochrome P450s to produce antibiotics: A review. Biotechnol Bioeng 2023; 120:3465-3492. [PMID: 37691185 DOI: 10.1002/bit.28548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C-H, C-C, and C-N bonds, including heteroatom oxidation, oxidative C-C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Sajan Shakya
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Shreesti Shrestha
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Dipa Aryal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kavi Prasad Timalsina
- Department of Biotechnology, National College, Tribhuvan University, Kathmandu, Nepal
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida, USA
| | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
5
|
Guo ZK, Wang YC, Tan YZ, Abulaizi A, Xiong ZJ, Zhang SQ, Yang Y, Yang LY, Shi J. Nagimycins A and B, Antibacterial Ansamycin-Related Macrolactams from Streptomyces sp. NA07423. Org Lett 2023; 25:4203-4207. [PMID: 37232514 DOI: 10.1021/acs.orglett.3c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemical investigation of Streptomyces sp. NA07423 led to the discovery of two unreported macrolactams, nagimycins A (1) and B (2). Their structures were elucidated by NMR, HRESIMS, X-ray crystallography, and comparison of experimental and theoretical ECD spectra. The nagimycins have a unique butenolide moiety rarely found in ansamycin antibiotics. Genome analysis revealed the putative biosynthetic gene cluster for nagimycins, and a likely biosynthetic pathway was proposed. Notably, compounds 1 and 2 exhibited potent antibacterial activity against two pathogenic Xanthomonas bacteria.
Collapse
Affiliation(s)
- Zhi Kai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Chao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ying Zi Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ailiman Abulaizi
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zi Jun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shi Qing Zhang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences & National Collection of Microbial Resource for Fertilizer (Hainan), Haikou 571101, China
| | - La Ying Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences & National Collection of Microbial Resource for Fertilizer (Hainan), Haikou 571101, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Singh HW, Creamer KE, Chase AB, Klau LJ, Podell S, Jensen PR. Metagenomic Data Reveal Type I Polyketide Synthase Distributions Across Biomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523365. [PMID: 36711755 PMCID: PMC9882069 DOI: 10.1101/2023.01.09.523365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Microbial polyketide synthase (PKS) genes encode the biosynthesis of many biomedically important natural products, yet only a small fraction of nature's polyketide biosynthetic potential has been realized. Much of this potential originates from type I PKSs (T1PKSs), which can be delineated into different classes and subclasses based on domain organization and structural features of the compounds encoded. Notably, phylogenetic relationships among PKS ketosynthase (KS) domains provide a method to classify the larger and more complex genes in which they occur. Increased access to large metagenomic datasets from diverse habitats provides opportunities to assess T1PKS biosynthetic diversity and distributions through the analysis of KS domain sequences. Here, we used the webtool NaPDoS2 to detect and classify over 35,000 type I KS domains from 137 metagenomic data sets reported from eight diverse biomes. We found biome-specific separation with soils enriched in modular cis -AT and hybrid cis -AT KSs relative to other biomes and marine sediments enriched in KSs associated with PUFA and enediyne biosynthesis. By extracting full-length KS domains, we linked the phylum Actinobacteria to soil-specific enediyne and cis -AT clades and identified enediyne and monomodular KSs in phyla from which the associated compound classes have not been reported. These sequences were phylogenetically distinct from those associated with experimentally characterized PKSs suggesting novel structures or enzyme functions remain to be discovered. Lastly, we employed our metagenome-extracted KS domains to evaluate commonly used type I KS PCR primers and identified modifications that could increase the KS sequence diversity recovered from amplicon libraries. Importance Polyketides are a crucial source of medicines, agrichemicals, and other commercial products. Advances in our understanding of polyketide biosynthesis coupled with the accumulation of metagenomic sequence data provide new opportunities to assess polyketide biosynthetic potential across biomes. Here, we used the webtool NaPDoS2 to assess type I PKS diversity and distributions by detecting and classifying KS domains across 137 metagenomes. We show that biomes are differentially enriched in KS domain classes, providing a roadmap for future biodiscovery strategies. Further, KS phylogenies reveal both biome-specific clades that do not include biochemically characterized PKSs, highlighting the biosynthetic potential of poorly explored environments. The large metagenome-derived KS dataset allowed us to identify regions of commonly used type I KS PCR primers that could be modified to capture a larger extent of KS diversity. These results facilitate both the search for novel polyketides and our understanding of the biogeographical distribution of PKSs across earth's major biomes.
Collapse
|
7
|
Gao Q, Deng S, Jiang T. Recent developments in the identification and biosynthesis of antitumor drugs derived from microorganisms. ENGINEERING MICROBIOLOGY 2022; 2:100047. [PMID: 39628704 PMCID: PMC11611020 DOI: 10.1016/j.engmic.2022.100047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2024]
Abstract
Secondary metabolites in microorganisms represent a resource for drug discovery and development. In particular, microbial-derived antitumor agents are in clinical use worldwide. Herein, we provide an overview of the development of classical antitumor drugs derived from microorganisms. Currently used drugs and drug candidates are comprehensively described in terms of pharmacological activities, mechanisms of action, microbial sources, and biosynthesis. We further discuss recent studies that have demonstrated the utility of gene-editing technologies and synthetic biology tools for the identification of new gene clusters, expansion of natural products, and elucidation of biosynthetic pathways. This review summarizes recent progress in the discovery and development of microbial-derived anticancer compounds with emphasis on biosynthesis.
Collapse
Affiliation(s)
- Qi Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Sizhe Deng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Tianyu Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
8
|
Zhu J, Xie Y, Li Y, Yang Y, Li C, Huang D, Wu W, Xu Y, Xia W, Huang X, Zhou S. Complete genome sequence of Streptomyces malaysiensis HNM0561, a marine sponge-associated actinomycete producing malaymycin and mccrearamycin E. Mar Genomics 2022; 63:100947. [DOI: 10.1016/j.margen.2022.100947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022]
|
9
|
The natural product biosynthesis potential of the microbiomes of Earth – Bioprospecting for novel anti-microbial agents in the meta-omics era. Comput Struct Biotechnol J 2022; 20:343-352. [PMID: 35035787 PMCID: PMC8733032 DOI: 10.1016/j.csbj.2021.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
As we stand on the brink of the post-antibiotic era, we are in dire need of novel antimicrobial compounds. Microorganisms produce a wealth of so-called secondary metabolites and have been our most prolific source of antibiotics so far. However, rediscovery of known antibiotics from well-studied cultured microorganisms, and the fact that the majority of microorganisms in the environment are out of reach by means of conventional cultivation techniques, have led to the exploration of the biosynthetic potential in natural microbial communities by novel approaches. In this mini review we discuss how sequence-based analyses have exposed an unprecedented wealth of potential for secondary metabolite production in soil, marine, and host-associated microbiomes, with a focus on the biosynthesis of non-ribosomal peptides and polyketides. Furthermore, we discuss how the complexity of natural microbiomes and the lack of standardized methodology has complicated comparisons across biomes. Yet, as even the most commonly sampled microbiomes hold promise of providing novel classes of natural products, we lastly discuss the development of approaches applied in the translation of the immense biosynthetic diversity of natural microbiomes to the procurement of novel antibiotics.
Collapse
|
10
|
Sulheim S, Fossheim FA, Wentzel A, Almaas E. Automatic reconstruction of metabolic pathways from identified biosynthetic gene clusters. BMC Bioinformatics 2021; 22:81. [PMID: 33622234 PMCID: PMC7901079 DOI: 10.1186/s12859-021-03985-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background A wide range of bioactive compounds is produced by enzymes and enzymatic complexes encoded in biosynthetic gene clusters (BGCs). These BGCs can be identified and functionally annotated based on their DNA sequence. Candidates for further research and development may be prioritized based on properties such as their functional annotation, (dis)similarity to known BGCs, and bioactivity assays. Production of the target compound in the native strain is often not achievable, rendering heterologous expression in an optimized host strain as a promising alternative. Genome-scale metabolic models are frequently used to guide strain development, but large-scale incorporation and testing of heterologous production of complex natural products in this framework is hampered by the amount of manual work required to translate annotated BGCs to metabolic pathways. To this end, we have developed a pipeline for an automated reconstruction of BGC associated metabolic pathways responsible for the synthesis of non-ribosomal peptides and polyketides, two of the dominant classes of bioactive compounds. Results The developed pipeline correctly predicts 72.8% of the metabolic reactions in a detailed evaluation of 8 different BGCs comprising 228 functional domains. By introducing the reconstructed pathways into a genome-scale metabolic model we demonstrate that this level of accuracy is sufficient to make reliable in silico predictions with respect to production rate and gene knockout targets. Furthermore, we apply the pipeline to a large BGC database and reconstruct 943 metabolic pathways. We identify 17 enzymatic reactions using high-throughput assessment of potential knockout targets for increasing the production of any of the associated compounds. However, the targets only provide a relative increase of up to 6% compared to wild-type production rates. Conclusion With this pipeline we pave the way for an extended use of genome-scale metabolic models in strain design of heterologous expression hosts. In this context, we identified generic knockout targets for the increased production of heterologous compounds. However, as the predicted increase is minor for any of the single-reaction knockout targets, these results indicate that more sophisticated strain-engineering strategies are necessary for the development of efficient BGC expression hosts.
Collapse
Affiliation(s)
- Snorre Sulheim
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway. .,Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, 7034, Trondheim, Norway.
| | - Fredrik A Fossheim
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3, 7034, Trondheim, Norway
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Sem Sælands vei 8, 7034, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, NTNU - Norwegian University of Science and Technology, Håkon Jarls gate 11, 7030, Trondheim, Norway
| |
Collapse
|
11
|
Silakari P, Priyanka, Piplani P. p-Benzoquinone as a Privileged Scaffold of Pharmacological Significance: A Review. Mini Rev Med Chem 2020; 20:1586-1609. [DOI: 10.2174/1389557520666200429101451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Quinones are a huge class of compounds with affluent and captivating chemistry.
p-Benzoquinone (p-BNZ) or 1,4-Benzoquinone is the key structural motif of numerous biologically active
synthetic and natural compounds. This draws interest in its biological exploration to assess prospective
therapeutic implications. It possesses immense therapeutic potential depending on different
substitutions. This moiety has a marvelous potential to regulate a varied range of different cellular
pathways which can be investigated for various selective activities. p-Benzoquinones have been a requisite
core for the development of novel therapeutic molecules with minimum side effects. In this review,
various synthetic, pharmacological approaches and structure-activity relationship studies focusing
on the chemical groups responsible for evoking the pharmacological potential of p-benzoquinone
derivatives have been emphasized. Additionally, the compilation highlights the chemical, pharmaceutical
and medicinal aspects of synthetic and natural benzoquinone derivatives. The natural occurrences
of p-benzoquinone derivatives with different pharmacological significance have also been reported in
this review.
Collapse
Affiliation(s)
- Pragati Silakari
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Priyanka
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
12
|
Malik A, Kim YR, Kim SB. Genome Mining of the Genus Streptacidiphilus for Biosynthetic and Biodegradation Potential. Genes (Basel) 2020; 11:genes11101166. [PMID: 33022985 PMCID: PMC7601586 DOI: 10.3390/genes11101166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
The genus Streptacidiphilus represents a group of acidophilic actinobacteria within the family Streptomycetaceae, and currently encompasses 15 validly named species, which include five recent additions within the last two years. Considering the potential of the related genera within the family, namely Streptomyces and Kitasatospora, these relatively new members of the family can also be a promising source for novel secondary metabolites. At present, 15 genome data for 11 species from this genus are available, which can provide valuable information on their biology including the potential for metabolite production as well as enzymatic activities in comparison to the neighboring taxa. In this study, the genome sequences of 11 Streptacidiphilus species were subjected to the comparative analysis together with selected Streptomyces and Kitasatospora genomes. This study represents the first comprehensive comparative genomic analysis of the genus Streptacidiphilus. The results indicate that the genomes of Streptacidiphilus contained various secondary metabolite (SM) producing biosynthetic gene clusters (BGCs), some of them exclusively identified in Streptacidiphilus only. Several of these clusters may potentially code for SMs that may have a broad range of bioactivities, such as antibacterial, antifungal, antimalarial and antitumor activities. The biodegradation capabilities of Streptacidiphilus were also explored by investigating the hydrolytic enzymes for complex carbohydrates. Although all genomes were enriched with carbohydrate-active enzymes (CAZymes), their numbers in the genomes of some strains such as Streptacidiphilus carbonis NBRC 100919T were higher as compared to well-known carbohydrate degrading organisms. These distinctive features of each Streptacidiphilus species make them interesting candidates for future studies with respect to their potential for SM production and enzymatic activities.
Collapse
Affiliation(s)
- Adeel Malik
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea; (A.M.); (Y.R.K.)
- Institute of Intelligence Informatics Technology, Sangmyung University, Seoul 03016, Korea
| | - Yu Ri Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea; (A.M.); (Y.R.K.)
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea; (A.M.); (Y.R.K.)
- Correspondence:
| |
Collapse
|
13
|
The biosynthetic pathway to tetromadurin (SF2487/A80577), a polyether tetronate antibiotic. PLoS One 2020; 15:e0239054. [PMID: 32925967 PMCID: PMC7489565 DOI: 10.1371/journal.pone.0239054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/30/2020] [Indexed: 12/03/2022] Open
Abstract
The type I polyketide SF2487/A80577 (herein referred to as tetromadurin) is a polyether tetronate ionophore antibiotic produced by the terrestrial Gram-positive bacterium Actinomadura verrucosospora. Tetromadurin is closely related to the polyether tetronates tetronasin (M139603) and tetronomycin, all of which are characterised by containing a tetronate, cyclohexane, tetrahydropyran, and at least one tetrahydrofuran ring. We have sequenced the genome of Actinomadura verrucosospora to identify the biosynthetic gene cluster responsible for tetromadurin biosynthesis (the mad gene cluster). Based on bioinformatic analysis of the 32 genes present within the cluster a plausible biosynthetic pathway for tetromadurin biosynthesis is proposed. Functional confirmation of the mad gene cluster is obtained by performing in-frame deletions in each of the genes mad10 and mad31, which encode putative cyclase enzymes responsible for cyclohexane and tetrahydropyran formation, respectively. Furthermore, the A. verrucosospora Δmad10 mutant produces a novel tetromadurin metabolite that according to mass spectrometry analysis is analogous to the recently characterised partially cyclised tetronasin intermediate lacking its cyclohexane and tetrahydropyran rings. Our results therefore elucidate the biosynthetic machinery of tetromadurin biosynthesis and lend support for a conserved mechanism of cyclohexane and tetrahydropyran biosynthesis across polyether tetronates.
Collapse
|
14
|
Hermane J, Eichner S, Mancuso L, Schröder B, Sasse F, Zeilinger C, Kirschning A. New geldanamycin derivatives with anti Hsp properties by mutasynthesis. Org Biomol Chem 2019; 17:5269-5278. [PMID: 31089638 DOI: 10.1039/c9ob00892f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutasynthetic supplementation of the AHBA blocked mutant strain of S. hygroscopicus, the geldanamycin producer, with 21 aromatic and heteroaromatic amino acids provided new nonquinoid geldanamycin derivatives. Large scale (5 L) fermentation provided four new derivatives in sufficient quantity for full structural characterisation. Among these, the first thiophene derivative of reblastatin showed strong antiproliferative activity towards several human cancer cell lines. Additionally, inhibitory effects on human heat shock protein Hsp90α and bacterial heat shock protein from H. pylori HpHtpG were observed, revealing strong displacement properties for labelled ATP and demonstrating that the ATP-binding site of Hsps is the target site for the new geldanamycin derivatives.
Collapse
Affiliation(s)
- Jekaterina Hermane
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Construction and application of a "superplasmid" for enhanced production of antibiotics. Appl Microbiol Biotechnol 2019; 104:1647-1660. [PMID: 31853567 DOI: 10.1007/s00253-019-10283-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
More than two-third of known antibiotics are produced by actinomycetes of the genus Streptomyces. Unfortunately, the production rate from Streptomyces natural antibiotic is extremely slow and thus cannot satisfy industrial demand. In this study, the production of antibiotics by Streptomyces is enhanced by a "superplasmid" which including global regulatory factors afsR, cyclic adenosine receptor protein (CRP), RNA polymerase beta subunits (rpoB) with point mutation and acetyl coenzyme A carboxylase gene (accA2BE), these elements are controlled by the PermE* promoter and then transfer into Streptomyces coelicolor M145, Streptomyces mutabilis TRM45540, Streptomyces hygroscopicus XM201, and Streptomyces hygroscopicus ATCC29253 by conjugation to generate exconjugants. NMR, HPLC, and LC-MS analyses revealed that the superplasmid led to the overproduction of actinorhodin (101.90%), undecylprodigiosin (181.60%) in S. coelicolor M145:: pLQ003, of rapamycin (110%), hygrocin A (163.4%) in S. hygroscopicus ATCC29253:: pLQ003, and of actinomycin D (11.78%) in S. mutabilis TRM45540:: pLQ003, and also to the downregulation of geldanamycin in S. hygroscopicus XM201, but we found that mutant strains in mutant strains of S. hygroscopicus XM201 with regulatory factors inserted showed several peaks that were not found in wild-type strains. The results of the present work indicated that the regulator net working in Streptomyces was not uniform, the superplasmid we constructed possibly caused this overproduction and downregulation in different Streptomyces.
Collapse
|
16
|
Martín JF, Ramos A, Liras P. Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP. Antibiotics (Basel) 2019; 8:antibiotics8030087. [PMID: 31262015 PMCID: PMC6784220 DOI: 10.3390/antibiotics8030087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/16/2022] Open
Abstract
Geldanamycin and the closely related herbimycins A, B, and C are benzoquinone-type ansamycins with antitumoral activity. They are produced by Streptomyces hygroscopicus var. geldanus, Streptomyces lydicus and Streptomyces autolyticus among other Streptomyces strains. Geldanamycins interact with the Hsp-90 chaperone, a protein that has a key role in tumorigenesis of human cells. Geldanamycin is a polyketide antibiotic and the polyketide synthase contain seven modules organized in three geldanamycin synthases genes named gdmAI, gdmAII, and gdmAIII. The loading domain of GdmI activates AHBA, and also related hydroxybenzoic acid derivatives, forming geldanamycin analogues. Three regulatory genes, gdmRI, gdmRII, and gdmRIII were found associated with the geldanamycin gene cluster in S. hygroscopicus strains. GdmRI and GdmRII are LAL-type (large ATP binding regulators of the LuxR family) transcriptional regulators, while GdmRIII belongs to the TetR-family. All three are positive regulators of geldanamycin biosynthesis and are strictly required for expression of the geldanamycin polyketide synthases. In S. autolyticus the gdmRIII regulates geldanamycin biosynthesis and also expression of genes in the elaiophylin gene cluster, an unrelated macrodiolide antibiotic. The biosynthesis of geldanamycin is very sensitive to the inorganic phosphate concentration in the medium. This regulation is exerted through the two components system PhoR-PhoP. The phoRP genes of S. hygroscopicus are linked to phoU encoding a transcriptional modulator. The phoP gene was deleted in S. hygroscopicus var geldanus and the mutant was unable to grow in SPG medium unless supplemented with 5 mM phosphate. Also, the S. hygroscopicus pstS gene involved in the high affinity phosphate transport was cloned, and PhoP binding sequences (PHO boxes), were found upstream of phoU, phoRP, and pstS; the phoRP-phoU sequences were confirmed by EMSA and nuclease footprinting protection assays. The PhoP binding sequence consists of 11 nucleotide direct repeat units that are similar to those found in S. coelicolor Streptomyces avermitilis and other Streptomyces species. The available genetic information provides interesting tools for modification of the biosynthetic and regulatory mechanisms in order to increase geldanamycin production and to obtain new geldanamycin analogues with better antitumor properties.
Collapse
Affiliation(s)
- Juan F Martín
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain.
| | - Angelina Ramos
- Instituto de Biotecnología (INBIOTEC). Av. Real 1, 24006 León, Spain
| | - Paloma Liras
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain
| |
Collapse
|
17
|
Li Z, Zhu D, Shen Y. Discovery of novel bioactive natural products driven by genome mining. Drug Discov Ther 2018; 12:318-328. [DOI: 10.5582/ddt.2018.01066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhongyue Li
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University
| | - Deyu Zhu
- School of Basic Medical Sciences, Shandong University
| | - Yuemao Shen
- Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Shandong University
| |
Collapse
|
18
|
Mohammadi-Ostad-Kalayeh S, Stahl F, Scheper T, Kock K, Herrmann C, Heleno Batista FA, Borges JC, Sasse F, Eichner S, Ongouta J, Zeilinger C, Kirschning A. Heat Shock Proteins Revisited: Using a Mutasynthetically Generated Reblastatin Library to Compare the Inhibition of Human and Leishmania Hsp90s. Chembiochem 2018; 19:562-574. [PMID: 29265716 DOI: 10.1002/cbic.201700616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/12/2023]
Abstract
Thirteen new reblastatin derivatives, with alkynyl, amino and fluoro substituents on the aromatic ring, were prepared by a chemo-biosynthetic approach using an AHBA(-) mutant strain of Streptomyces hygroscopicus, the geldanamycin producer. The inhibitory potencies of these mutaproducts and of an extended library of natural products and derivatives were probed with purified heat shock proteins (Hsps), obtained from Leishmania braziliensis (LbHsp90) as well as from human sources (HsHsp90). We determined the activities of potential inhibitors by means of a displacement assay in which fluorescence-labelled ATP competes for the ATP binding sites of Hsps in the presence of the inhibitor in question. The results were compared with those of cell-based assays and, in selected cases, of isothermal titration calorimetry (ITC) measurements. In essence, reblastatin derivatives are also able to bind effectively to the ATP-binding site of LbHsp90, and for selected derivatives, moderate differences in binding to LbHsp90 and HsHsp90 were encountered. This work demonstrates that parasitic heat shock proteins can be developed as potential pharmaceutical targets.
Collapse
Affiliation(s)
- Sona Mohammadi-Ostad-Kalayeh
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Frank Stahl
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Callinstrasse 5, 30167, Hannover, Germany
| | - Klaus Kock
- Physical Chemistry I, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | | | - Júlio César Borges
- São Carlos Institute of Chemistry, University of São Paulo, USP, São Carlos, SP, 13560-970, Brazil
| | - Florenz Sasse
- Department of Chemical Biology, Helmholtz Center of Infectious Research (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Simone Eichner
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Jekaterina Ongouta
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Carsten Zeilinger
- Institute of Biophysics and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| |
Collapse
|
19
|
Improved PKS Gene Expression With Strong Endogenous Promoter Resulted in Geldanamycin Yield Increase. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/03/2017] [Indexed: 12/29/2022]
|
20
|
Jiang M, Yin M, Wu S, Han X, Ji K, Wen M, Lu T. GdmRIII, a TetR Family Transcriptional Regulator, Controls Geldanamycin and Elaiophylin Biosynthesis in Streptomyces autolyticus CGMCC0516. Sci Rep 2017; 7:4803. [PMID: 28684749 PMCID: PMC5500506 DOI: 10.1038/s41598-017-05073-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Geldanamycin and elaiophylin are co-produced in several Streptomyces strains. However, the regulation of their biosynthesis is not fully understood yet. Herein the function of a TetR family regulator GdmRIII, which is located in the biosynthetic gene cluster of geldanamycin, was studied to understand the regulatory mechanism of geldanamycin biosynthesis in Streptomyces autolyticus CGMCC0516. The production of geldanamycin decreased substantially in a ΔgdmRIII mutant and the yield of three compounds which were thought to be geldanamycin congeners greatly increased. Surprisingly, the structural elucidation of these compounds showed that they were elaiophylin and its analogues, which implied that GdmRIII not only played a positive regulatory role in the biosynthesis of geldanamycin, but also played a negative role in elaiophylin biosynthesis. GdmRIII affected the expression of multiple genes in both gene clusters, and directly regulated the expression of gdmM, gdmN, and elaF by binding to the promoter regions of these three genes. A conserved non-palindromic sequence was found among the binding sites of elaF. Our findings suggested that the biosynthetic pathways of geldanamycin and elaiophylin were connected through GdmRIII, which might provide a way for Streptomyces to coordinate the biosynthesis of these compounds for better adapting to environment changes.
Collapse
Affiliation(s)
- MingXing Jiang
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - Min Yin
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - ShaoHua Wu
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - XiuLin Han
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - KaiYan Ji
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - MengLiang Wen
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China.
| | - Tao Lu
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China.
| |
Collapse
|
21
|
The complete genome sequence of Streptomyces autolyticus CGMCC 0516, the producer of geldanamycin, autolytimycin, reblastatin and elaiophylin. J Biotechnol 2017; 252:27-31. [DOI: 10.1016/j.jbiotec.2017.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022]
|
22
|
RifZ (AMED_0655) Is a Pathway-Specific Regulator for Rifamycin Biosynthesis in Amycolatopsis mediterranei. Appl Environ Microbiol 2017; 83:AEM.03201-16. [PMID: 28159794 DOI: 10.1128/aem.03201-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/26/2017] [Indexed: 11/20/2022] Open
Abstract
Rifamycin and its derivatives are particularly effective against the pathogenic mycobacteria Mycobacterium tuberculosis and Mycobacterium leprae Although the biosynthetic pathway of rifamycin has been extensively studied in Amycolatopsis mediterranei, little is known about the regulation in rifamycin biosynthesis. Here, an in vivo transposon system was employed to identify genes involved in the regulation of rifamycin production in A. mediterranei U32. In total, nine rifamycin-deficient mutants were isolated, among which three mutants had the transposon inserted in AMED_0655 (rifZ, encoding a LuxR family regulator). The rifZ gene was further knocked out via homologous recombination, and the transcription of genes in the rifamycin biosynthetic gene cluster (rif cluster) was remarkably reduced in the rifZ null mutant. Based on the cotranscription assay results, genes within the rif cluster were grouped into 10 operons, sharing six promoter regions. By use of electrophoretic mobility shift assay and DNase I footprinting assay, RifZ was proved to specially bind to all six promoter regions, which was consistent with the fact that RifZ regulated the transcription of the whole rif cluster. The binding consensus sequence was further characterized through alignment using the RifZ-protected DNA sequences. By use of bionformatic analysis, another five promoters containing the RifZ box (CTACC-N8-GGATG) were identified, among which the binding of RifZ to the promoter regions of both rifK and orf18 (AMED_0645) was further verified. As RifZ directly regulates the transcription of all operons within the rif cluster, we propose that RifZ is a pathway-specific regulator for the rif cluster.IMPORTANCE To this day, rifamycin and its derivatives are still the first-line antituberculosis drugs. The biosynthesis of rifamycin has been extensively studied, and most biosynthetic processes have been characterized. However, little is known about the regulation of the transcription of the rifamycin biosynthetic gene cluster (rif cluster), and no regulator has been characterized. Through the employment of transposon screening, we here characterized a LuxR family regulator, RifZ, as a direct transcriptional activator for the rif cluster. As RifZ directly regulates the transcription of the entire rif cluster, it is considered a pathway-specific regulator for rifamycin biosynthesis. Therefore, as the first regulator characterized for direct regulation of rif cluster transcription, RifZ may provide a new clue for further engineering of high-yield industrial strains.
Collapse
|
23
|
Baksh A, Kepplinger B, Isah HA, Probert MR, Clegg W, Wills C, Goodfellow M, Errington J, Allenby N, Hall MJ. Production of 17-O-demethyl-geldanamycin, a cytotoxic ansamycin polyketide, by Streptomyces hygroscopicus DEM20745. Nat Prod Res 2016; 31:1895-1900. [PMID: 27966376 DOI: 10.1080/14786419.2016.1263854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The actinomycete DEM20745, collected from non-rhizosphere soil adjacent to Paraserianthes falactaria trees (Cangkringan, Indonesia), is an efficient producer of the anticancer ansamycin polyketide 17-O-demethyl-geldanamycin (17-O-DMG), a biosynthetic precursor of the Hsp90 inhibitor geldanamycin (GDM). In DEM20745, 17-O-DMG is the major ansamycin product observed reaching a maximum titre of 17 mg/L in the fermentation broth. 17-O-DMG has the potential to be a key starting material for the semi-synthesis of GDM analogues for use in anticancer therapy. Thus, this preferential biosynthesis of 17-O-DMG facilitates easy access to this important molecule and provides further insight in the biosynthesis of the geldanamycins.
Collapse
Affiliation(s)
- Aron Baksh
- a Faculty of Medical Sciences , Demuris Limited, Newcastle Biomedicine Bio-Incubators , Newcastle upon Tyne , UK
| | - Bernhard Kepplinger
- a Faculty of Medical Sciences , Demuris Limited, Newcastle Biomedicine Bio-Incubators , Newcastle upon Tyne , UK.,b Industrial Doctorate Centre: Biopharmaceutical Process Development , Newcastle University , Newcastle upon Tyne , UK
| | - Hadiza A Isah
- c School of Chemistry , Newcastle University , Newcastle upon Tyne , UK
| | - Michael R Probert
- c School of Chemistry , Newcastle University , Newcastle upon Tyne , UK
| | - William Clegg
- c School of Chemistry , Newcastle University , Newcastle upon Tyne , UK
| | - Corinne Wills
- c School of Chemistry , Newcastle University , Newcastle upon Tyne , UK
| | | | - Jeff Errington
- e Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School , Newcastle University , Newcastle upon Tyne , UK
| | - Nick Allenby
- a Faculty of Medical Sciences , Demuris Limited, Newcastle Biomedicine Bio-Incubators , Newcastle upon Tyne , UK
| | - Michael J Hall
- c School of Chemistry , Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
24
|
Draft Genome Sequence of Streptomyces sp. SPMA113, a Prajinamide Producer. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01126-16. [PMID: 27738040 PMCID: PMC5064113 DOI: 10.1128/genomea.01126-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the draft genome sequence of Streptomyces sp. SPMA113 isolated from soil in Thailand. This strain produces a new modified peptide, prajinamide, which has adipocyte differentiation activity. The genome harbors at least 30 gene clusters for synthases of polyketide and nonribosomal peptide, suggesting its potential to produce diverse secondary metabolites.
Collapse
|
25
|
Robertson AW, Forget SM, Martinez-Farina CF, McCormick NE, Syvitski RT, Jakeman DL. JadX is a Disparate Natural Product Binding Protein. J Am Chem Soc 2016; 138:2200-8. [PMID: 26814718 DOI: 10.1021/jacs.5b11286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report that JadX, a protein of previously undetermined function coded for in the jadomycin biosynthetic gene cluster of Streptomyces venezuelae ISP5230, affects both chloramphenicol and jadomycin production levels in blocked mutants. Characterization of recombinant JadX through protein-ligand interactions by chemical shift perturbation and WaterLOGSY NMR spectroscopy resulted in the observation of binding between JadX and a series of jadomycins and between JadX and chloramphenicol, another natural product produced by S. venezuelae ISP5230. These results suggest JadX to be an unusual class of natural product binding protein involved in binding structurally disparate natural products. The ability for JadX to bind two different natural products in vitro and the ability to affect production of these secondary metabolites in vivo suggest a potential role in regulation or signaling. This is the first example of functional characterization of these JadX-like proteins, and provides insight into a previously unobserved regulatory process.
Collapse
Affiliation(s)
| | | | | | | | - Raymond T Syvitski
- Institute for Marine Biosciences, National Research Council of Canada , Halifax, Nova Scotia B3H 3Z1, Canada
| | | |
Collapse
|
26
|
Hermane J, Bułyszko I, Eichner S, Sasse F, Collisi W, Poso A, Schax E, Walter JG, Scheper T, Kock K, Herrmann C, Aliuos P, Reuter G, Zeilinger C, Kirschning A. New, non-quinone fluorogeldanamycin derivatives strongly inhibit Hsp90. Chembiochem 2015; 16:302-11. [PMID: 25572106 DOI: 10.1002/cbic.201402375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/04/2014] [Indexed: 11/11/2022]
Abstract
Streptomyces hygroscopicus is a natural producer of geldanamycin. Mutasynthetic supplementation of an AHBA-blocked mutant with all possible monofluoro 3-aminobenzoic acids provided new fluorogeldanamycins. These showed strong antiproliferative activity and inhibitory effects on human heat shock protein Hsp90. Binding to Hsp90 in the low nanomolar range was determined from molecular modelling, AFM analysis and by calorimetric studies.
Collapse
Affiliation(s)
- Jekaterina Hermane
- Institute of Organic Chemistry, Center of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167 Hannover (Germany)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Medema MH, Cimermancic P, Sali A, Takano E, Fischbach MA. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS Comput Biol 2014; 10:e1004016. [PMID: 25474254 PMCID: PMC4256081 DOI: 10.1371/journal.pcbi.1004016] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/31/2014] [Indexed: 01/04/2023] Open
Abstract
Bacterial secondary metabolites are widely used as antibiotics, anticancer drugs, insecticides and food additives. Attempts to engineer their biosynthetic gene clusters (BGCs) to produce unnatural metabolites with improved properties are often frustrated by the unpredictability and complexity of the enzymes that synthesize these molecules, suggesting that genetic changes within BGCs are limited by specific constraints. Here, by performing a systematic computational analysis of BGC evolution, we derive evidence for three findings that shed light on the ways in which, despite these constraints, nature successfully invents new molecules: 1) BGCs for complex molecules often evolve through the successive merger of smaller sub-clusters, which function as independent evolutionary entities. 2) An important subset of polyketide synthases and nonribosomal peptide synthetases evolve by concerted evolution, which generates sets of sequence-homogenized domains that may hold promise for engineering efforts since they exhibit a high degree of functional interoperability, 3) Individual BGC families evolve in distinct ways, suggesting that design strategies should take into account family-specific functional constraints. These findings suggest novel strategies for using synthetic biology to rationally engineer biosynthetic pathways. Bacterial secondary metabolites mediate a broad range of microbe-microbe and microbe-host interactions, and are widely used in human medicine, agriculture and manufacturing. Despite recent advances in synthetic biology, efforts to engineer their biosynthetic genes for the production of unnatural variants are frustrated by a high failure rate. In an effort to better understand what types of genetic changes are most likely to lead to successful improvements, we systematically analyzed the ways in which biosynthetic genes naturally evolve to generate new compounds. We show that large gene clusters appear to evolve through the merger of sub-clusters, which function independently, and are promising units for cluster engineering. Moreover, a subset of gene clusters evolve by concerted evolution, which generates sets of interoperable domains that may enable predictable domain swapping. Finally, many biosynthetic gene clusters evolve in family-specific modes that differ greatly from each other. Overall, this quantitative perspective on the ways in which gene clusters naturally evolve suggests novel strategies for using synthetic biology to engineer the production of unnatural metabolites.
Collapse
Affiliation(s)
- Marnix H. Medema
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Peter Cimermancic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, San Francisco, California, United States of America
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Eriko Takano
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael A. Fischbach
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kim KH, Ramadhar TR, Beemelmanns C, Cao S, Poulsen M, Currie CR, Clardy J. Natalamycin A, an Ansamycin from a Termite-Associated Streptomyces sp. Chem Sci 2014; 5:4333-4338. [PMID: 25386334 PMCID: PMC4224317 DOI: 10.1039/c4sc01136h] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based on antifungal activity led to the isolation of natalamycin A, and a combination of NMR spectroscopy and X-ray crystallographic analysis, including highly-accurate quantum-chemical NMR calculations on the largest and most conformationally-flexible system to date, revealed natalamycin A's three-dimensional solid- and solution-state structure. This structure along with the structures of related compounds isolated from the same source suggest a geldanamycin-like biosynthetic pathway with unusual post-PKS modifications.
Collapse
Affiliation(s)
- Ki Hyun Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115, United States of America
| | - Timothy R. Ramadhar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115, United States of America
| | - Christine Beemelmanns
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115, United States of America
| | - Shugeng Cao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115, United States of America
| | - Michael Poulsen
- Department of Bacteriology, University of Wisconsin-Madison, 6145 Microbial Science Building, 1550 Linden Drive, Madison, Wisconsin, 53706, United States of America
| | - Cameron R. Currie
- Department of Bacteriology, University of Wisconsin-Madison, 6145 Microbial Science Building, 1550 Linden Drive, Madison, Wisconsin, 53706, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts, 02115, United States of America
| |
Collapse
|
29
|
Li S, Wang H, Li Y, Deng J, Lu C, Shen Y, Shen Y. Biosynthesis of hygrocins, antitumor naphthoquinone ansamycins produced by Streptomyces sp. LZ35. Chembiochem 2014; 15:94-102. [PMID: 24501776 DOI: 10.1002/cbic.201300599] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hygrocins are naphthoquinone ansamycins with significant antitumor activities. Here, we report the identification and characterization of the hygrocin biosynthetic gene cluster (hgc) in Streptomyces sp. LZ35. A biosynthetic pathway is proposed based on bioinformatics analysis of the hgc genes and intermediates accumulated in selected gene disruption mutants. One of the steps during the biosynthesis of hygrocins is a Baeyer–Villiger oxidation between C5 and C6, catalyzed by luciferase- like monooxygenase homologue Hgc3. Hgc3 represents the founding member of a previously uncharacterized family of enzymes acting as Baeyer–Villiger monooxygenases.
Collapse
|
30
|
Kirm B, Magdevska V, Tome M, Horvat M, Karničar K, Petek M, Vidmar R, Baebler S, Jamnik P, Fujs Š, Horvat J, Fonovič M, Turk B, Gruden K, Petković H, Kosec G. SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea. Microb Cell Fact 2013; 12:126. [PMID: 24341557 PMCID: PMC3878487 DOI: 10.1186/1475-2859-12-126] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. RESULTS We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. CONCLUSIONS SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bldD, SACE_5599 is involved in morphological development of S. erythraea, suggesting a very close relationship between secondary metabolite biosynthesis and morphological differentiation in this organism. While the mode of action of SACE_5599 remains to be elucidated, the manipulation of this gene clearly shows potential for improvement of erythromycin production in S. erythraea in industrial setting. We have also demonstrated the applicability of the comparative proteomics approach for identifying new regulatory elements involved in biosynthesis of secondary metabolites in industrial conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hrvoje Petković
- Acies Bio, d,o,o, Tehnološki park 21, SI-1000, Ljubljana, Slovenia.
| | | |
Collapse
|
31
|
Ni S, Jiang B, Wu L, Wang Y, Zhou H, He W, Wang H, Zhu J, Li S, Li T, Zhang K. Identification of 6-demethoxy-6-methylgeldanamycin and its implication of geldanamycin biosynthesis. J Antibiot (Tokyo) 2013; 67:183-5. [DOI: 10.1038/ja.2013.94] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/07/2013] [Accepted: 08/27/2013] [Indexed: 02/02/2023]
|
32
|
Mancuso L, Jürjens G, Hermane J, Harmrolfs K, Eichner S, Fohrer J, Collisi W, Sasse F, Kirschning A. Bioreduction of aryl azides during mutasynthesis of new ansamitocins. Org Lett 2013; 15:4442-5. [PMID: 23981134 DOI: 10.1021/ol401989e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supplementing a culture of a mutant strain of Actinosynnema pretiosum that is unable to biosynthesize aminohydroxy benzoic acid (AHBA), with 3-azido-5-hydroxy-benzoic acid and 3-azido-5-amino-benzoic acid, unexpectedly yielded anilino ansamitocins instead of the expected azido derivatives. This is the first example of the bioreduction of organic azides. The unique nature of these results was demonstrated when 3-azido-5-amino-benzoic acid was fed to the corresponding AHBA blocked mutant of Streptomyces hygroscopicus, the geldanamycin producer. This mutasynthetic experiment yielded the fully processed azido derivative of geldanamycin.
Collapse
Affiliation(s)
- Lena Mancuso
- Institut für Organische Chemie und Biomolekulares Wikstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Franke J, Eichner S, Zeilinger C, Kirschning A. Targeting heat-shock-protein 90 (Hsp90) by natural products: geldanamycin, a show case in cancer therapy. Nat Prod Rep 2013; 30:1299-323. [PMID: 23934201 DOI: 10.1039/c3np70012g] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering 2005 to 2013. In this review recent progress in the development of heat shock proteins (Hsp90) in oncogenesis is illuminated. Particular emphasis is put on inhibitors such as geldanamycin and analogues that serve as a natural product show case. Hsp90 has emerged as an important target in cancer therapy and/or against pathogenic cells which elicit abnormal Hsp patterns. Competition for ATP by geldanamycin and related compounds abrogate the chaperone function of Hsp90. In this context, this account pursues three topics in detail: a) Hsp90 and its biochemistry, b) Hsp90 and its role in oncogenesis and c) strategies to create compound libraries of structurally complex inhibitors like geldanamycin on which SAR studies and the development of drugs that are currently in different stages of clinical testing rely.
Collapse
Affiliation(s)
- Jana Franke
- Institut für Organische Chemie und Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| | | | | | | |
Collapse
|
34
|
Dunn BJ, Khosla C. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J R Soc Interface 2013; 10:20130297. [PMID: 23720536 DOI: 10.1098/rsif.2013.0297] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active 'unnatural' natural products.
Collapse
Affiliation(s)
- Briana J Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
35
|
Wang HX, Chen YY, Ge L, Fang TT, Meng J, Liu Z, Fang XY, Ni S, Lin C, Wu YY, Wang ML, Shi NN, He HG, Hong K, Shen YM. PCR screening reveals considerable unexploited biosynthetic potential of ansamycins and a mysterious family of AHBA-containing natural products in actinomycetes. J Appl Microbiol 2013; 115:77-85. [PMID: 23594089 DOI: 10.1111/jam.12217] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/30/2013] [Accepted: 04/14/2013] [Indexed: 11/26/2022]
Abstract
AIMS Ansamycins are a family of macrolactams that are synthesized by type I polyketide synthase (PKS) using 3-amino-5-hydroxybenzoic acid (AHBA) as the starter unit. Most members of the family have strong antimicrobial, antifungal, anticancer and/or antiviral activities. We aimed to discover new ansamycins and/or other AHBA-containing natural products from actinobacteria. METHODS AND RESULTS Through PCR screening of AHBA synthase gene, we identified 26 AHBA synthase gene-positive strains from 206 plant-associated actinomycetes (five positives) and 688 marine-derived actinomycetes (21 positives), representing a positive ratio of 2·4-3·1%. Twenty-five ansamycins, including eight new compounds, were isolated from six AHBA synthase gene-positive strains through TLC-guided fractionations followed by repeated column chromatography. To gain information about those potential ansamycin gene clusters whose products were unknown, seven strains with phylogenetically divergent AHBA synthase genes were subjected to fosmid library construction. Of the seven gene clusters we obtained, three show characteristics for typical ansamycin gene clusters, and other four, from Micromonospora spp., appear to lack the amide synthase gene, which is unusual for ansamycin biosynthesis. The gene composition of these four gene clusters suggests that they are involved in the biosynthesis of a new family of hybrid PK-NRP compounds containing AHBA substructure. CONCLUSIONS PCR screening of AHBA synthase is an efficient approach to discover novel ansamycins and other AHBA-containing natural products. SIGNIFICANCE AND IMPACT OF THE STUDY This work demonstrates that the AHBA-based screening method is a useful approach for discovering novel ansamycins and other AHBA-containing natural products from new microbial resources.
Collapse
Affiliation(s)
- H-X Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li S, Cui J, Lu X, Zheng Z, Liu X, Ni S, Wang Y, Wu L. Methanethiol as a catabolite of methionine provides methylthio- group for chemical formation of 19-S-methylgeldanamycin and 17,19-dimethylthioherbimycin A. J Antibiot (Tokyo) 2013; 66:499-503. [PMID: 23591607 DOI: 10.1038/ja.2013.31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/15/2012] [Accepted: 03/20/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Shufen Li
- Key Laboratory of Biotechnology of Antibiotics, Ministry of Health, Institute of Medicinal Biotechnology, CAMS & PUMC, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Goranovič D, Blažič M, Magdevska V, Horvat J, Kuščer E, Polak T, Santos-Aberturas J, Martínez-Castro M, Barreiro C, Mrak P, Kopitar G, Kosec G, Fujs S, Martín JF, Petković H. FK506 biosynthesis is regulated by two positive regulatory elements in Streptomyces tsukubaensis. BMC Microbiol 2012; 12:238. [PMID: 23083511 PMCID: PMC3551636 DOI: 10.1186/1471-2180-12-238] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/03/2012] [Indexed: 12/14/2022] Open
Abstract
Background FK506 (Tacrolimus) is an important immunosuppressant, produced by industrial biosynthetic processes using various Streptomyces species. Considering the complex structure of FK506, it is reasonable to expect complex regulatory networks controlling its biosynthesis. Regulatory elements, present in gene clusters can have a profound influence on the final yield of target product and can play an important role in development of industrial bioprocesses. Results Three putative regulatory elements, namely fkbR, belonging to the LysR-type family, fkbN, a large ATP-binding regulator of the LuxR family (LAL-type) and allN, a homologue of AsnC family regulatory proteins, were identified in the FK506 gene cluster from Streptomyces tsukubaensis NRRL 18488, a progenitor of industrial strains used for production of FK506. Inactivation of fkbN caused a complete disruption of FK506 biosynthesis, while inactivation of fkbR resulted in about 80% reduction of FK506 yield. No functional role in the regulation of the FK506 gene cluster has been observed for the allN gene. Using RT-PCR and a reporter system based on a chalcone synthase rppA, we demonstrated, that in the wild type as well as in fkbN- and fkbR-inactivated strains, fkbR is transcribed in all stages of cultivation, even before the onset of FK506 production, whereas fkbN expression is initiated approximately with the initiation of FK506 production. Surprisingly, inactivation of fkbN (or fkbR) does not abolish the transcription of the genes in the FK506 gene cluster in general, but may reduce expression of some of the tested biosynthetic genes. Finally, introduction of a second copy of the fkbR or fkbN genes under the control of the strong ermE* promoter into the wild type strain resulted in 30% and 55% of yield improvement, respectively. Conclusions Our results clearly demonstrate the positive regulatory role of fkbR and fkbN genes in FK506 biosynthesis in S. tsukubaensis NRRL 18488. We have shown that regulatory mechanisms can differ substantially from other, even apparently closely similar FK506-producing strains, reported in literature. Finally, we have demonstrated the potential of these genetically modified strains of S. tsukubaensis for improving the yield of fermentative processes for production of FK506.
Collapse
Affiliation(s)
- Dušan Goranovič
- Acies Bio d,o,o, Tehnološki Park 21, SI-1000, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li T, Ni S, Jia C, Wang H, Sun G, Wu L, Gan M, Shan G, He W, Lin L, Zhou H, Wang Y. Identification of 4,5-dihydro-4-hydroxygeldanamycins as shunt products of geldanamycin biosynthesis. JOURNAL OF NATURAL PRODUCTS 2012; 75:1480-1484. [PMID: 22849774 DOI: 10.1021/np3001738] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Two new geldanamycin (GDM) analogues, (4S)-4,5-dihydro-4-hydroxygeldanamycin (1) and (4R)-4,5-dihydro-4-hydroxygeldanamycin (2), were identified from Streptomyces hygroscopicus 17997. Compounds 1 and 2 were not normal intermediates of GDM biosynthesis but shunt products of C-4,5 oxidation catalyzed by GdmP, a cytochrome P450 oxidase acting as a desaturase in GDM biosynthesis. Preliminary assays implied that, compared with GDM, 1 and 2 exhibited decreased cytotoxicity.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Enzymatic glycosylation of nonbenzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl Environ Microbiol 2012; 78:7680-6. [PMID: 22923401 DOI: 10.1128/aem.02004-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geldanamycin (GM) is a naturally occurring anticancer agent isolated from several strains of Streptomyces hygroscopicus. However, its potential clinical utility is compromised by its severe toxicity and poor water solubility. For this reason, considerable efforts are under way to make new derivatives that have both good clinical efficacy and high water solubility. On the other hand, glycosylation is often a step that improves the water solubility and/or biological activity in many natural products of biosynthesis. Here, we report the facile production of glucose-conjugated nonbenzoquinone GM analogs using the Bacillus UDP-glycosyltransferase BL-C. Five aglycon substrates containing nonbenzoquinone aromatic rings were chosen to validate the in vitro glycosylation reaction. Putative glucoside compounds were determined through the presence of a product peak(s) and were also verified using LC/MS analyses. Further, the chemical structures of new glucoside compounds 6 and 7 were elucidated using spectroscopy data. These glucoside compounds showed a dramatic improvement in water solubility compared with that of the original aglycon, nonbenzoquinone GM.
Collapse
|
40
|
Kim EY, Han JW, Lee JY, Kim BS. Identification of the biosynthetic gene cluster for the antibiotic polyketide L-155,175 in Streptomyces hygroscopicus. Folia Microbiol (Praha) 2012; 57:543-50. [PMID: 22669556 DOI: 10.1007/s12223-012-0173-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
Abstract
The antibiotic L-155,175, a potent antiparasitic and antifungal compound, has an unusual structure involving 16-membered macrolides that contain a tetrahydropyran ring connected through a three-carbon linker chain. To identify the biosynthetic gene cluster for L-155,175, a genomic DNA library of Streptomyces hygroscopicus ATCC31955 was constructed and screened with a degenerate primer set designed from a conserved region of the ketosynthase (KS) domain. Sequence analysis of a fosmid clone, pEY1D8 (34 kb), revealed multiple open reading frames (ORFs) encoding type I polyketide synthase (PKS). To determine whether the cloned genes are involved in L-155,175 biosynthesis, a deletion mutant (1D8m) was generated by homologous recombination, in which the gene encoding the KS domain was substituted with an apramycin-resistance gene by PCR-targeted Streptomyces gene replacement. LC-MS analysis showed that L-155,175 production was completely abolished in the 1D8m strain, thereby proving that the cloned gene is responsible for L-155,175 biosynthesis. The sequencing of two other fosmid clones (pEY8B10 and pEY1C9) harboring overlapping sequences from pEY1D8 revealed a 60-kb DNA segment encoding six ORFs for type I PKS harboring 12 modules. The domain organization of the PKS modules encoded by PKS exactly matched the structure of L-155,175. This is the first report on the gene cluster involved in the biosynthesis of L-155,175.
Collapse
Affiliation(s)
- Eun Young Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 5 Anam-dong, Seongbuk-gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
41
|
Miller KI, Qing C, Sze DMY, Neilan BA. Investigation of the biosynthetic potential of endophytes in traditional Chinese anticancer herbs. PLoS One 2012; 7:e35953. [PMID: 22629306 PMCID: PMC3358349 DOI: 10.1371/journal.pone.0035953] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 03/26/2012] [Indexed: 01/07/2023] Open
Abstract
Traditional Chinese medicine encompasses a rich empirical knowledge of the use of plants for the treatment of disease. In addition, the microorganisms associated with medicinal plants are also of interest as the producers of the compounds responsible for the observed plant bioactivity. The present study has pioneered the use of genetic screening to assess the potential of endophytes to synthesize bioactive compounds, as indicated by the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes. The total DNA extracts of 30 traditional Chinese herbs, were screened for functional genes involved in the biosynthesis of bioactive compounds. The four PCR screens were successful in targeting four bacterial PKS, six bacterial NRPS, ten fungal PKS and three fungal NRPS gene fragments. Analysis of the detected endophyte gene fragments afforded consideration of the possible bioactivity of the natural products produced by endophytes in medicinal herbs. This investigation describes a rapid method for the initial screening of medicinal herbs and has highlighted a subset of those plants that host endophytes with biosynthetic potential. These selected plants can be the focus of more comprehensive endophyte isolation and natural product studies.
Collapse
Affiliation(s)
- Kristin I. Miller
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Chen Qing
- Yunnan Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Science, Kunming Medical University, Kunming, China
| | - Daniel Man Yuen Sze
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Australian Centre for Astrobiology, The University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
42
|
Abstract
Natural products and their derivatives play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex yet valuable compounds have been elucidated. With an ever-expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains, systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities, advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering not only have yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis.
Collapse
Affiliation(s)
- Lauren B Pickens
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
43
|
Eichner S, Eichner T, Floss HG, Fohrer J, Hofer E, Sasse F, Zeilinger C, Kirschning A. Broad substrate specificity of the amide synthase in S. hygroscopicus--new 20-membered macrolactones derived from geldanamycin. J Am Chem Soc 2012; 134:1673-9. [PMID: 22136518 DOI: 10.1021/ja2087147] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The amide synthase of the geldanamycin producer, Streptomyces hygroscopicus, shows a broader chemoselectivity than the corresponding amide synthase present in Actinosynnema pretiosum, the producer of the highly cytotoxic ansamycin antibiotics, the ansamitocins. This was demonstrated when blocked mutants of both strains incapable of biosynthesizing 3-amino-5-hydroxybenzoic acid (AHBA), the polyketide synthase starter unit of both natural products, were supplemented with 3-amino-5-hydroxymethylbenzoic acid instead. Unlike the ansamitocin producer A. pretiosum, S. hygroscopicus processed this modified starter unit not only to the expected 19-membered macrolactams but also to ring enlarged 20-membered macrolactones. The former mutaproducts revealed the sequence of transformations catalyzed by the post-PKS tailoring enzymes in geldanamycin biosynthesis. The unprecedented formation of the macrolactones together with molecular modeling studies shed light on the mode of action of the amide synthase responsible for macrocyclization. Obviously, the 3-hydroxymethyl substituent shows similar reactivity and accessibility toward C-1 of the seco-acid as the arylamino group, while phenolic hydroxyl groups lack this propensity to act as nucleophiles in the macrocyclization. The promiscuity of the amide synthase of S. hygroscopicus was further demonstrated by successful feeding of four other m-hydroxymethylbenzoic acids, leading to formation of the expected 20-membered macrocycles. Good to moderate antiproliferative activities were encountered for three of the five new geldanamycin derivatives, which matched well with a competition assay for Hsp90α.
Collapse
Affiliation(s)
- Simone Eichner
- Institute of Organic Chemistry and Center of Biomolecular Research (BMWZ), Schneiderberg 1B, Leibniz University Hannover, D-30167 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
|
46
|
Jia C, Wu L, Ni S, Wang H, Liu X, Li S, Lin L, He W, Wang Y. 17-O-demethylreblastatin, a subnormal intermediate in geldanamycin biosynthesis. J Antibiot (Tokyo) 2011; 65:79-82. [PMID: 22146125 DOI: 10.1038/ja.2011.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changhong Jia
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Clermont N, Lerat S, Beaulieu C. Genome shuffling enhances biocontrol abilities of Streptomyces strains against two potato pathogens. J Appl Microbiol 2011; 111:671-82. [DOI: 10.1111/j.1365-2672.2011.05078.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Yin M, Lu T, Zhao LX, Chen Y, Huang SX, Lohman JR, Xu LH, Jiang CL, Shen B. The missing C-17 O-methyltransferase in geldanamycin biosynthesis. Org Lett 2011; 13:3726-9. [PMID: 21682254 DOI: 10.1021/ol201383w] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The biosynthetic gene clusters for the Hsp90 inhibitor geldanamycin (GDM, 1) have been cloned previously from three different Streptomyces strains, but the gene encoding the C-17 O-methyltransferase remains unknown. The cloning and sequencing of a new GDM biosynthetic gene cluster from Streptomyces autolyticus CGMCC 0516 was reported, identifying the gdmMT gene that encodes the missing C-17 O-methyltransferase for 1 biosynthesis.
Collapse
Affiliation(s)
- Min Yin
- Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A pair of sulfur-containing geldanamycin analogs, 19-S-methylgeldanamycin and 4,5-dihydro- 19-S-methylgeldanamycin, from Streptomyces hygroscopicus 17997. J Antibiot (Tokyo) 2011; 64:519-22. [PMID: 21559026 DOI: 10.1038/ja.2011.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Dai S, Ouyang Y, Wang G, Li X. Streptomyces autolyticus JX-47 large-insert bacterial artificial chromosome library construction and identification of clones covering geldanamycin biosynthesis gene cluster. Curr Microbiol 2011; 63:68-74. [PMID: 21544574 DOI: 10.1007/s00284-011-9940-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/19/2011] [Indexed: 11/28/2022]
Abstract
Geldanamycin belongs to benzoquinone ansamycin antibiotic and has potent antitumor activities. In this study, a bacterial artificial chromosome (BAC) library with an average insert size of up to 150 kb was constructed from genomic DNA of Streptomyces autolyticus JX-47. A genetic-screening strategy was established using BAC end-sequencing and three pairs of primers designed to target the remote regions, gdmA1, gdmA3 and gdmRI, of the geldanamycin gene cluster. Three clones covering geldanamycin biosynthesis gene cluster were obtained, which together spanned a 250-kb genomic region, and a 150227-bp insert in the clone p4E9 was sequenced. Comparison with the reported geldanamycin gene cluster sequences from S. hygroscopicus revealed that it had the same gene arrangement and high gene homology in the polyketide synthase (PKS) region and its downstream with 84-100% DNA identity and 81-100% amino acid (AA) identity. Its DNA homology with the whole gene cluster sequence from S. hygroscopicus strain 17997 reached 99% identity. However, upstream of the PKS region exhibited great diversity, where only ORF16 was conserved, and the other genes including gdmL and gdmX were displaced.
Collapse
Affiliation(s)
- Shikun Dai
- Key Laboratory of Marine Bio-Resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | | | | | | |
Collapse
|