1
|
Zhang Q, Liu Q, Xue H, Bi Y, Li X, Xu X, Liu Z, Prusky D. ROS mediated by TrPLD3 of Trichothecium roseum participated cell membrane integrity of apple fruit by influencing phosphatidic acid metabolism. Food Microbiol 2024; 120:104484. [PMID: 38431329 DOI: 10.1016/j.fm.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Trichothecium roseum is a typical necrotrophic fungal pathogen that not only bring about postharvest disease, but contribute to trichothecenes contamination in fruit and vegetables. Phospholipase D (PLD), as an important membrane lipid degrading enzyme, can produce phosphatidic acid (PA) by hydrolyzing phosphatidylcholine (PC) and phosphatidylinositol (PI). PA can promote the production of reactive oxygen species (ROS) by activating the activity of NADPH oxidase (NOX), thereby increasing the pathogenicity to fruit. However, the ROS mediated by TrPLD3 how to influence T. roseum infection to fruit by modulating phosphatidic acid metabolism, which has not been reported. In this study, the knockout mutant and complement strain of TrPLD3 were constructed through homologous recombination, TrPLD3 was tested for its effect on the colony growth and pathogenicity of T. roseum. The experimental results showed that the knockout of TrPLD3 inhibited the colony growth of T. roseum, altered the mycelial morphology, completely inhibited the sporulation, and reduced the accumulation of T-2 toxin. Moreover, the knockout of TrPLD3 significantly decreased pathogenicity of T. roseum on apple fruit. Compared to inoculated apple fruit with the wide type (WT), the production of ROS in apple infected with ΔTrPLD3 was slowed down, the relative expression and enzymatic activity of NOX, and PA content decreased, and the enzymatic activity and gene expression of superoxide dismutase (SOD) increased. In addition, PLD, lipoxygenase (LOX) and lipase activities were considerably decreased in apple fruit infected with ΔTrPLD3, the changes of membrane lipid components were slowed down, the decrease of unsaturated fatty acid content was alleviated, and the accumulation of saturated fatty acid content was reduced, thereby maintaining the cell membrane integrity of the inoculated apple fruit. We speculated that the decreased PA accumulation in ΔTrPLD3-inoculated apple fruit further weakened the interaction between PA and NOX on fruit, resulting in the reduction of ROS accumulation of fruits, which decreased the damage to the cell membrane and maintained the cell membrane integrity, thus reducing the pathogenicity to apple. Therefore, TrPLD3-mediated ROS plays a critical regulatory role in reducing the pathogenicity of T. roseum on apple fruit by influencing phosphatidic acid metabolism.
Collapse
Affiliation(s)
- Qianqian Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Qili Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiao Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, PR China; Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
2
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Hassing B, Eaton CJ, Winter D, Green KA, Brandt U, Savoian MS, Mesarich CH, Fleissner A, Scott B. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis. Mol Microbiol 2020; 113:1101-1121. [PMID: 32022309 DOI: 10.1111/mmi.14480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/15/2022]
Abstract
Although lipid signaling has been shown to serve crucial roles in mammals and plants, little is known about this process in filamentous fungi. Here we analyze the contribution of phospholipase D (PLD) and its product phosphatidic acid (PA) in hyphal morphogenesis and growth of Epichloë festucae and Neurospora crassa, and in the establishment of a symbiotic interaction between E. festucae and Lolium perenne. Growth of E. festucae and N. crassa PLD deletion strains in axenic culture, and for E. festucae in association with L. perenne, were analyzed by light-, confocal- and electron microscopy. Changes in PA distribution were analyzed in E. festucae using a PA biosensor and the impact of these changes on the endocytic recycling and superoxide production investigated. We found that E. festucae PldB, and the N. crassa ortholog, PLA-7, are required for polarized growth and cell fusion and contribute to ascospore development, whereas PldA/PLA-8 are dispensable for these functions. Exogenous addition of PA rescues the cell-fusion phenotype in E. festucae. PldB is also crucial for E. festucae to establish a symbiotic association with L. perenne. This study identifies a new component of the cell-cell communication and cell fusion signaling network for hyphal morphogenesis and growth of filamentous fungi.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Carla J Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Kimberly A Green
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| | - Ulrike Brandt
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Matthew S Savoian
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, Lincoln, New Zealand.,School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Andre Fleissner
- Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Lincoln, New Zealand
| |
Collapse
|
4
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|
5
|
Differential roles of three FgPLD genes in regulating development and pathogenicity in Fusarium graminearum. Fungal Genet Biol 2017; 109:46-52. [PMID: 29079075 DOI: 10.1016/j.fgb.2017.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022]
Abstract
Phospholipase D (PLD) is an important phospholipid hydrolase that plays critical roles in various biological processes in eukaryotic cells. However, little is known about its functions in plant pathogenic fungi. In this study, we identified three FgPLD genes in Fusarium graminearum that are homologous to the Saccharomyces cerevisiae Spo14 gene. We constructed deletion mutants of all three FgPLD genes using homologous recombination. Deletion of FgPLD1 (Δpld1), but not FgPLD2 or FgPLD3, affected hyphal growth, conidiation, and perithecium formation. The Δpld1 mutant showed reduced deoxynivalenol (DON) production and virulence in flowering wheat heads and corn silks. Furthermore, three FgPLD proteins have the same subcellular localization and localize to the cytoplasm in F. graminearum. Taken together, these results indicate that FgPLD1, but not FgPLD2 or FgPLD3, is important for hyphal growth, sexual or asexual reproduction, and plant infection.
Collapse
|
6
|
Liu Y, Zhang T, Qiao J, Liu X, Bo J, Wang J, Lu F. High-yield phosphatidylserine production via yeast surface display of phospholipase D from Streptomyces chromofuscus on Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5354-5360. [PMID: 24841277 DOI: 10.1021/jf405836x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The gene encoding phospholipase D (PLD) from Streptomyces chromofuscus was displayed on the cell surface of Pichia pastoris GS115/pKFS-pldh using a Flo1p anchor attachment signal sequence (FS anchor). The displayed PLD (dPLD) showed maximum enzymatic activity at pH 6.0 and 55 °C and was stable within a broad range of temperatures (20-65 °C) and pHs (pH 4.0-11.0). In addition, the thermostability, acid stability and organic solvent tolerance of the dPLD were significantly enhanced compared with the secreted PLD (sPLD) from S. chromofuscus. Use of dPLD for conversion of phosphatidylcholine (PC) and l-serine to phosphatidylserine (PS) showed that 67.5% of PC was converted into PS at the optimum conditions. Moreover, the conversion rate of PS remained above 50% after 7 repeated batch cycles. Thus, P. pastoris GS115/pKFS-pldh shows the potential for viable industrial production of PS.
Collapse
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology , Tianjin 300457, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
7
|
Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M. Correlation of gene expression and protein production rate - a system wide study. BMC Genomics 2011; 12:616. [PMID: 22185473 PMCID: PMC3266662 DOI: 10.1186/1471-2164-12-616] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina) that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. RESULTS We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. CONCLUSIONS Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR).
Collapse
Affiliation(s)
- Mikko Arvas
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Tiina Pakula
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Bart Smit
- NIZO food research, Kernhemseweg 2, 6718ZB Ede, the Netherlands
| | - Jari Rautio
- Plexpress, Viikinkaari 6, 00790 Helsinki, Finland
| | | | - Paula Jouhten
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Erno Lindfors
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Marilyn Wiebe
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland, Tietotie 2, P.O. Box FI-1000, 02044 VTT, Espoo, Finland
| |
Collapse
|
8
|
Disruption of the phospholipase D gene attenuates the virulence of Aspergillus fumigatus. Infect Immun 2011; 80:429-40. [PMID: 22083709 DOI: 10.1128/iai.05830-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen that induces serious infections in immunocompromised patients. Phospholipases are key enzymes in pathogenic fungi that cleave host phospholipids, resulting in membrane destabilization and host cell penetration. However, knowledge of the impact of phospholipases on A. fumigatus virulence is rather limited. In this study, disruption of the pld gene encoding phospholipase D (PLD), an important member of the phospholipase protein family in A. fumigatus, was confirmed to significantly decrease both intracellular and extracellular PLD activity of A. fumigatus. The pld gene disruption did not alter conidial morphological characteristics, germination, growth, and biofilm formation but significantly suppressed the internalization of A. fumigatus into A549 epithelial cells without affecting conidial adhesion to epithelial cells. Importantly, the suppressed internalization was fully rescued in the presence of 100 μM phosphatidic acid, the PLD product. Indeed, complementation of pld restored the PLD activity and internalization capacity of A. fumigatus. Phagocytosis of A. fumigatus conidia by J774 macrophages was not affected by the absence of the pld gene. Pretreatment of conidia with 1-butanol and a specific PLD inhibitor decreased the internalization of A. fumigatus into A549 epithelial cells but had no effect on phagocytosis by J774 macrophages. Finally, loss of the pld gene attenuated the virulence of A. fumigatus in mice immunosuppressed with hydrocortisone acetate but not with cyclophosphamide. These data suggest that PLD of A. fumigatus regulates its internalization into lung epithelial cells and may represent an important virulence factor for A. fumigatus infection.
Collapse
|
9
|
Hongoh Y. Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 2011; 68:1311-25. [PMID: 21365277 PMCID: PMC11114660 DOI: 10.1007/s00018-011-0648-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 11/29/2022]
Abstract
Termites thrive on dead plant matters with the aid of microorganisms resident in their gut. The gut microbiota comprises protists (single-celled eukaryotes), bacteria, and archaea, most of which are unique to the termite gut ecosystem. Although this symbiosis has long been intriguing researchers of both basic and applied sciences, its detailed mechanism remains unclear due to the enormous complexity and the unculturability of the microbiota. In the effort to overcome the difficulty, recent advances in omics, such as metagenomics, metatranscriptomics, and metaproteomics have gradually unveiled the black box of this symbiotic system. Genomics targeting a single species of the unculturable microbial members has also provided a great progress in the understanding of the symbiotic interrelationships among the gut microorganisms. In this review, the symbiotic system organized by wood-feeding termites and their gut microorganisms is outlined, focusing on the recent achievement in omics studies of this multilayered symbiotic system.
Collapse
Affiliation(s)
- Yuichi Hongoh
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
10
|
Gaver-Wainwright MM, Zack RS, Foradori MJ, Lavine LC. Misdiagnosis of spider bites: bacterial associates, mechanical pathogen transfer, and hemolytic potential of venom from the hobo spider, Tegenaria agrestis (Araneae: Agelenidae). JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:382-388. [PMID: 21485377 DOI: 10.1603/me09224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The European spider Tegenaria agrestis (Walckenaer) (hobo spider) has been implicated as a spider of medical importance in the Pacific Northwest since its introduction in the late 1980s. Studies have indicated that the hobo spider causes necrotic tissue lesions through hemolytic venom or through the transfer of pathogenic bacteria introduced by its bite. Bacterial infections are often diagnosed as spider bites, in particular the pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA). This study examines three aspects of the potential medical importance of hobo spiders in part of its introduced range, Washington State. First, the bacterial diversity of the spider was surveyed using a polymerase chain reaction-based assay to determine whether the spider carries any pathogenic bacteria. Second, an experiment was conducted to determine the ability of the spiders to transfer MRSA. Third, the venom was evaluated to assess the hemolytic activity. We found 10 genera of ubiquitous bacteria on the exterior surface of the spiders. In addition, none of the spiders exposed to MRSA transferred this pathogen. Finally, the hemolytic venom assay corroborates previous studies that found hobo spider venom was not deleterious to vertebrate red blood cells.
Collapse
|
11
|
The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr Microbiol 2011; 62:1390-9. [PMID: 21267722 DOI: 10.1007/s00284-011-9874-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/05/2011] [Indexed: 12/27/2022]
Abstract
As it is known that food waste can be reduced by the larvae of Hermetia illucens (Black soldier fly, BSF), the scientific and commercial value of BSF larvae has increased recently. We hypothesised that the ability of catabolic degradation by BSF larvae might be due to intestinal microorganisms. Herein, we analysed the bacterial communities in the gut of BSF larvae by pyrosequencing of extracting intestinal metagenomic DNA from larvae that had been fed three different diets. The 16S rRNA sequencing results produced 9737, 9723 and 5985 PCR products from larval samples fed food waste, cooked rice and calf forage, respectively. A BLAST search using the EzTaxon program showed that the bacterial community in the gut of larvae fed three different diets was mainly composed of the four phyla with dissimilar proportions. Although the composition of the bacterial communities depended on the different nutrient sources, the identified bacterial strains in the gut of BSF larvae represented unique bacterial species that were unlike the intestinal microflora of other insects. Thus, our study analysed the structure of the bacterial communities in the gut of BSF larvae after three different feedings and assessed the application of particular bacteria for the efficient degradation of organic compounds.
Collapse
|
12
|
Ray S, Chen Y, Ayoung J, Hanna R, Brazill D. Phospholipase D controls Dictyostelium development by regulating G protein signaling. Cell Signal 2010; 23:335-43. [PMID: 20950684 DOI: 10.1016/j.cellsig.2010.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/21/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
Dictyostelium discoideum cells normally exist as individual amoebae, but will enter a period of multicellular development upon starvation. The initial stages of development involve the aggregation of individual cells, using cAMP as a chemoattractant. Chemotaxis is initiated when cAMP binds to its receptor, cAR1, and activates the associated G protein, Gα2βγ. However, chemotaxis will not occur unless there is a high density of starving cells present, as measured by high levels of the secreted quorum sensing molecule, CMF. We previously demonstrated that cells lacking PldB bypass the need for CMF and can aggregate at low cell density, whereas cells overexpressing pldB do not aggregate even at high cell density. Here, we found that PldB controlled both cAMP chemotaxis and cell sorting. PldB was also required by CMF to regulate G protein signaling. Specifically, CMF used PldB, to regulate the dissociation of Gα2 from Gβγ. Using fluorescence resonance energy transfer (FRET), we found that along with cAMP, CMF increased the dissociation of the G protein. In fact, CMF augmented the dissociation induced by cAMP. This augmentation was lost in cells lacking PldB. PldB appears to mediate the CMF signal through the production of phosphatidic acid, as exogenously added phosphatidic acid phenocopies overexpression of pldB. These results suggest that phospholipase D activity is required for CMF to alter the kinetics of cAMP-induced G protein signaling.
Collapse
Affiliation(s)
- Sibnath Ray
- Department of Biological Sciences, Hunter College, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
13
|
Mansfeld J, Ulbrich-Hofmann R. Modulation of phospholipase D activity in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:913-26. [DOI: 10.1016/j.bbalip.2009.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
|
14
|
Rolland SG, Bruel CA. Sulphur and nitrogen regulation of the protease-encoding ACP1 gene in the fungus Botrytis cinerea: correlation with a phospholipase D activity. MICROBIOLOGY-SGM 2008; 154:1464-1473. [PMID: 18451055 DOI: 10.1099/mic.0.2007/012005-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sulphur and nitrogen catabolic repressions are regulations that have long been recognized in fungi, but whose molecular bases remain largely elusive. This paper shows that catabolic repression of a protease-encoding gene correlates with the modulation of a phosphatidylethanolamine (PE)-specific phospholipase D (PLD) activity in the pathogenic fungus Botrytis cinerea. Our results first demonstrate that the ACP1 gene is subject to sulphur catabolic repression, with sulphate and cysteine inhibiting its expression. Sulphate and cysteine also cause a decrease of the total cellular PLD activity and, reciprocally, the two PLD inhibitors AEBSF [4-(2-aminoethyl)benzenesulphonyl fluoride] and curcumin negatively affect ACP1 expression in vivo. Cysteine moreover inhibits the PE-specific PLD activity in cell extracts. ACP1 is regulated by nitrogen, but here we show that this regulation does not rely on the proximal AREA binding site in its promoter, and that glutamine does not play a particular role in the process. A decrease in the total cellular PLD activity is also observed when the cells are fed ammonia, but this effect is smaller than that produced by sulphur. RNA-interference experiments finally suggest that the enzyme responsible for the PE-specific PLD activity is encoded by a gene that does not belong to the known HKD gene family of PLDs.
Collapse
Affiliation(s)
- Stéphane G Rolland
- Génomique fonctionnelle des champignons pathogènes des plantes, UMR5240 Microbiologie, Adaptation et Pathogénie, Université Lyon 1, CNRS, Bayer CropScience, Université de Lyon, 14 Rue Pierre Baizet, 69263 Lyon Cedex 9, France
| | - Christophe A Bruel
- Génomique fonctionnelle des champignons pathogènes des plantes, UMR5240 Microbiologie, Adaptation et Pathogénie, Université Lyon 1, CNRS, Bayer CropScience, Université de Lyon, 14 Rue Pierre Baizet, 69263 Lyon Cedex 9, France
| |
Collapse
|
15
|
Fisher M, Miller D, Brewster C, Husseneder C, Dickerman A. Diversity of gut bacteria of Reticulitermes flavipes as examined by 16S rRNA gene sequencing and amplified rDNA restriction analysis. Curr Microbiol 2007; 55:254-9. [PMID: 17657534 DOI: 10.1007/s00284-007-0136-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/16/2007] [Indexed: 11/29/2022]
Abstract
The phylogenetic species richness of the bacteria in the gut of the termite Reticulitermes flavipes was examined using near full-length 16S rRNA gene sequencing and amplified rDNA restriction analysis (ARDRA). We amplified the genes by polymerase chain reaction (PCR) directly from a mixed population of termite gut bacteria and isolated them using cloning techniques. Sequence analysis of 42 clones identified a broad taxonomic range of ribotypes from six phyla within the domain Bacteria: Proteobacteria, Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and the recently proposed "Endomicrobia." Analysis of the sequence data suggested the presence of a termite specific bacterial lineage within Bacteroidetes. The ARDRA data included 261 different ARDRA profiles of 512 clones analyzed. These data suggest the gut flora in R. flavipes is extremely diverse.
Collapse
Affiliation(s)
- Marc Fisher
- Dow AgroSciences, 1115 Arrington Road, Blacksburg, VA 24060, USA.
| | | | | | | | | |
Collapse
|
16
|
Brune A, Stingl U. Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:39-60. [PMID: 16623388 DOI: 10.1007/3-540-28221-1_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Andreas Brune
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | |
Collapse
|
17
|
Hong S, Horiuchi H, Ohta A. Identification and molecular cloning of a gene encoding Phospholipase A2 (plaA) from Aspergillus nidulans. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:222-9. [PMID: 16051517 DOI: 10.1016/j.bbalip.2005.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 11/16/2022]
Abstract
The plaA gene encoding a protein that contains the cytosolic Phospholipase A(2) (cPLA(2)) motif is cloned for the first time from the filamentous fungus, Aspergillus nidulans. The translated 837 amino acid protein product of plaA comprises conserved lipase regions that are present in most mammalian cPLA(2) homologs. High expression of plaA was observed in glucose-lactose medium by Northern blot analyses. Deletion mutants of plaA grew and formed conidia similar to the wild-type strain, but showed decreased PLA(2) activity. Expression of the N-terminal truncated form of plaA in yeast cells resulted in increased Ca(2+)-dependent PLA(2) activity with (14)C-labeled phosphatidylcholine (PC) and phosphatidylethanolamine (PE) as substrates, compared with vector-transformed cells. In conclusion, we have identified and cloned a phospholipid-hydrolyzing novel cPLA(2) protein from A. nidulans for the first time.
Collapse
Affiliation(s)
- SaHyun Hong
- Department of Biotechnology, The University of Tokyo, Japan.
| | | | | |
Collapse
|