1
|
Chen X, Chen X, Tan Q, Mo X, Liu J, Zhou G. Recent progress on harm, pathogen classification, control and pathogenic molecular mechanism of anthracnose of oil-tea. Front Microbiol 2022; 13:918339. [PMID: 35966682 PMCID: PMC9372368 DOI: 10.3389/fmicb.2022.918339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Oil tea (Camellia oleifera), mainly used to produce high-quality edible oil, is an important cash crop in China. Anthracnose of oil tea is a considerable factor that limits the yield of tea oil. In order to effectively control the anthracnose of oil tea, researchers have worked hard for many years, and great progress has been made in the research of oil tea anthracnose. For instance, researchers isolated a variety of Colletotrichum spp. from oil tea and found that Colletotrichum fructicola was the most popular pathogen in oil tea. At the same time, a variety of control methods have been explored, such as cultivating resistant varieties, pesticides, and biological control, etc. Furthermore, the research on the molecular pathogenesis of Colletotrichum spp. has also made good progress, such as the elaboration of the transcription factors and effector functions of Colletotrichum spp. The authors summarized the research status of the harm, pathogen types, control, and pathogenic molecular mechanism of oil tea anthracnose in order to provide theoretical support and new technical means for the green prevention and control of oil tea anthracnose.
Collapse
Affiliation(s)
| | | | | | | | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
2
|
Dautt-Castro M, Rosendo-Vargas M, Casas-Flores S. The Small GTPases in Fungal Signaling Conservation and Function. Cells 2021; 10:cells10051039. [PMID: 33924947 PMCID: PMC8146680 DOI: 10.3390/cells10051039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. They are fine-tuned regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several families have been identified in organisms from different kingdoms. Overall, the most studied families are Ras, Rho, Rab, Ran, Arf, and Miro. Recently, a new family named Big Ras GTPases was reported. As a general rule, the proteins of all families have five characteristic motifs (G1–G5), and some specific features for each family have been described. Here, we present an exhaustive analysis of these small GTPase families in fungi, using 56 different genomes belonging to different phyla. For this purpose, we used distinct approaches such as phylogenetics and sequences analysis. The main functions described for monomeric GTPases in fungi include morphogenesis, secondary metabolism, vesicle trafficking, and virulence, which are discussed here. Their participation during fungus–plant interactions is reviewed as well.
Collapse
|
3
|
Gu Q, Chen M, Huang J, Wei Y, Hsiang T, Zheng L. Multifaceted Roles of the Ras Guanine-Nucleotide Exchange Factor ChRgf in Development, Pathogenesis, and Stress Responses of Colletotrichum higginsianum. PHYTOPATHOLOGY 2017; 107:433-443. [PMID: 28026997 DOI: 10.1094/phyto-03-16-0137-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The infection process of Colletotrichum higginsianum, which causes a disease of crucifers, involves several key steps: conidial germination, appressorial formation, appressorial penetration, and invasive growth in host tissues. In this study, the ChRgf gene encoding a Ras guanine-nucleotide exchange factor protein was identified by screening T-DNA insertion mutants generated from Agrobacterium tumefaciens-mediated transformation that were unable to cause disease on the host Arabidopsis thaliana. Targeted gene deletion of ChRgf resulted in a null mutant (ΔChrgf-42) with defects in vegetative growth, hyphal morphology, and conidiation, and poor surface attachment and low germination on hydrophobic surfaces; however, there were no apparent differences in appressorial turgor pressure between the wild type and the mutant. The conidia of the mutant were unable to geminate on attached Arabidopsis leaves and did not cause any disease symptoms. Intracellular cyclic adenosine monophosphate levels in the ΔChrgf mutant were lower than that of the wild type. Our results suggest that ChRgf is a key regulator in response to salt and osmotic stresses in C. higginsianum, and indicate that it is involved in fungal pathogenicity. This gene seems to act as an important modulator upstream of several distinct signaling pathways that are involved in regulating vegetative growth, conidiation, infection-related structure development, and stress responses of C. higginsianum.
Collapse
Affiliation(s)
- Qiongnan Gu
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Meijuan Chen
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Junbin Huang
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Yangdou Wei
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Tom Hsiang
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Lu Zheng
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
4
|
Kou Y, Naqvi NI. Surface sensing and signaling networks in plant pathogenic fungi. Semin Cell Dev Biol 2016; 57:84-92. [DOI: 10.1016/j.semcdb.2016.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/29/2022]
|
5
|
Cheng Y, Wang W, Yao J, Huang L, Voegele RT, Wang X, Kang Z. Two distinct Ras genes from Puccinia striiformis
exhibit differential roles in rust pathogenicity and cell death. Environ Microbiol 2016; 18:3910-3922. [DOI: 10.1111/1462-2920.13379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/10/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Wumei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Ralf T. Voegele
- Fachgebiet Phytopathologie, Fakultät Agrarwissenschaften, Institut für Phytomedizin, Universität Hohenheim; Stuttgart Germany
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection; Northwest A&F University; Yangling Shaanxi 712100 People's Republic of China
| |
Collapse
|
6
|
Fortwendel JR. Orchestration of Morphogenesis in Filamentous Fungi: Conserved Roles for Ras Signaling Networks. FUNGAL BIOL REV 2015; 29:54-62. [PMID: 26257821 DOI: 10.1016/j.fbr.2015.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Filamentous fungi undergo complex developmental programs including conidial germination, polarized morphogenesis, and differentiation of sexual and asexual structures. For many fungi, the coordinated completion of development is required for pathogenicity, as specialized morphological structures must be produced by the invading fungus. Ras proteins are highly conserved GTPase signal transducers and function as major regulators of growth and development in eukaryotes. Filamentous fungi typically express two Ras homologues, comprising distinct groups of Ras1-like and Ras2-like proteins based on sequence homology. Recent evidence suggests shared roles for both Ras1 and Ras2 homologues, but also supports the existence of unique functions in the areas of stress response and virulence. This review focuses on the roles played by both Ras protein groups during growth, development, and pathogenicity of a diverse array of filamentous fungi.
Collapse
Affiliation(s)
- Jarrod R Fortwendel
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
7
|
Ras GTPase activating protein CoIra1 is involved in infection-related morphogenesis by regulating cAMP and MAPK signaling pathways through CoRas2 in Colletotrichum orbiculare. PLoS One 2014; 9:e109045. [PMID: 25275394 PMCID: PMC4183519 DOI: 10.1371/journal.pone.0109045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Colletotrichum orbiculare is the causative agent of anthracnose disease on cucurbitaceous plants. Several signaling pathways, including cAMP–PKA and mitogen-activating protein kinase (MAPK) pathways are involved in the infection-related morphogenesis and pathogenicity of C. orbiculare. However, upstream regulators of these pathways for this species remain unidentified. In this study, CoIRA1, encoding RAS GTPase activating protein, was identified by screening the Agrobacterium tumefaciens-mediated transformation (AtMT) mutant, which was defective in the pathogenesis of C. orbiculare. The coira1 disrupted mutant showed an abnormal infection-related morphogenesis and attenuated pathogenesis. In Saccharomyces cerevisiae, Ira1/2 inactivates Ras1/2, which activates adenylate cyclase, leading to the synthesis of cAMP. Increase in the intracellular cAMP levels in coira1 mutants and dominant active forms of CoRAS2 introduced transformants indicated that CoIra1 regulates intracellular cAMP levels through CoRas2. Moreover, the phenotypic analysis of transformants that express dominant active form CoRAS2 in the comekk1 mutant or a dominant active form CoMEKK1 in the coras2 mutant indicated that CoRas2 regulates the MAPK CoMekk1–Cmk1 signaling pathway. The CoRas2 localization pattern in vegetative hyphae of the coira1 mutant was similar to that of the wild-type, expressing a dominant active form of RFP–CoRAS2. Moreover, we demonstrated that bimolecular fluorescence complementation (BiFC) signals between CoIra1 and CoRas2 were detected in the plasma membrane of vegetative hyphae. Therefore, it is likely that CoIra1 negatively regulates CoRas2 in vegetative hyphae. Furthermore, cytological analysis of the localization of CoIraI and CoRas2 revealed the dynamic cellular localization of the proteins that leads to proper assembly of F-actin at appressorial pore required for successful penetration peg formation through the pore. Thus, our results indicated that CoIra1 is involved in infection-related morphogenesis and pathogenicity by proper regulation of cAMP and MAPK signaling pathways through CoRas2.
Collapse
|
8
|
Involvement of Botrytis cinerea small GTPases BcRAS1 and BcRAC in differentiation, virulence, and the cell cycle. EUKARYOTIC CELL 2013; 12:1609-18. [PMID: 24096906 DOI: 10.1128/ec.00160-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small GTPases of the Ras superfamily are highly conserved proteins that are involved in various cellular processes, in particular morphogenesis, differentiation, and polar growth. Here we report on the analysis of RAS1 and RAC homologues from the gray mold fungus Botrytis cinerea. We show that these small GTPases are individually necessary for polar growth, reproduction, and pathogenicity, required for cell cycle progression through mitosis (BcRAC), and may lie upstream of the stress-related mitogen-activated protein kinase (MAPK) signaling pathway. bcras1 and bcrac deletion strains had reduced growth rates, and their hyphae were hyperbranched and deformed. In addition, both strains were vegetatively sterile and nonpathogenic. A strain expressing a constitutively active (CA) allele of the BcRAC protein had partially similar but milder phenotypes. Similar to the deletion strains, the CA-BcRAC strain did not produce any conidia and had swollen hyphae. In contrast to the two deletion strains, however, the growth rate of the CA-BcRAC strain was normal, and it caused delayed but well-developed disease symptoms. Microscopic examination revealed an increased number of nuclei and disturbance of actin localization in the CA-BcRAC strain. Further work with cell cycle- and RAC-specific inhibitory compounds associated the BcRAC protein with progression of the cell cycle through mitosis, possibly via an effect on microtubules. Together, these results show that the multinucleate phenotype of the CA-BcRAC strain could result from at least two defects: disruption of polar growth through disturbed actin localization and uncontrolled nuclear division due to constitutive activity of BcRAC.
Collapse
|
9
|
Luo S, He M, Cao Y, Xia Y. The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Environ Microbiol 2013; 15:2966-79. [PMID: 23809263 DOI: 10.1111/1462-2920.12166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/25/2013] [Indexed: 01/19/2023]
Abstract
In most eukaryotes, tetraspanins regulate cellular activities by associating with other membrane components. In phytopathogenic fungi, the tetraspanin Pls1 controls appressorium-mediated penetration. However, regulation of Pls1 and its associated signalling pathways are not clear. In this study, the MaPls1 gene from the entomopathogenic fungus Metarhizium acridum was functionally characterized. MaPls1 was highly expressed in mycelium and appressorium, and accumulated on the plasma membrane or in the cytoplasm. Compared with a wild-type strain, the deletion mutant ΔMaPls1 had delayed germination and appressorium formation and impaired turgor pressure on locust wings, but normal germination on medium and non-host insect matrices. Bioassays showed that ΔMaPls1 had decreased virulence and hyphal body formation in haemolymph when topically inoculated, but was not different from wild type when the insect cuticle was bypassed. Moreover, the ability to grow out of the cuticle was impaired in ΔMaPls1. Digital gene expression profiling revealed that genes involved in hydrolysing host cuticle and cell wall synthesis and remodelling were downregulated in ΔMaPls1. MaPls1 participated in crosstalk with signalling pathways such as the cyclic adenosine monophosphate-dependent protein kinase A and calmodulin-dependent pathways. Taken together, these results demonstrated the important roles of MaPls1 at the early stage of infection-associated development in M. acridum.
Collapse
Affiliation(s)
- Sha Luo
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 400030, China
| | - Min He
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, Chongqing, 400030, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, Chongqing, 400030, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, Chongqing, 400030, China
| |
Collapse
|
10
|
Knabe N, Jung EM, Freihorst D, Hennicke F, Horton JS, Kothe E. A central role for Ras1 in morphogenesis of the basidiomycete Schizophyllum commune. EUKARYOTIC CELL 2013; 12:941-52. [PMID: 23606288 PMCID: PMC3675993 DOI: 10.1128/ec.00355-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/17/2013] [Indexed: 11/20/2022]
Abstract
Fungi have been used as model systems to define general processes in eukaryotes, for example, the one gene-one enzyme hypothesis, as well as to study polar growth or pathogenesis. Here, we show a central role for the regulator protein Ras in a mushroom-forming, filamentous basidiomycete linking growth, pheromone signaling, sexual development, and meiosis to different signal transduction pathways. ras1 and Ras-specific gap1 mutants were generated and used to modify the intracellular activation state of the Ras module. Transformants containing constitutive ras1 alleles (ras1(G12V) and ras1(Q61L)), as well as their compatible mating interactions, did show strong phenotypes for growth (associated with Cdc42 signaling) and mating (associated with mitogen-activated protein kinase signaling). Normal fruiting bodies with abnormal spores exhibiting a reduced germination rate were produced by outcrossing of these mutant strains. Homozygous Δgap1 primordia, expected to experience increased Ras signaling, showed overlapping phenotypes with a block in basidium development and meiosis. Investigation of cyclic AMP (cAMP)-dependent protein kinase A indicated that constitutively active ras1, as well as Δgap1 mutant strains, exhibit a strong increase in Tpk activity. Ras1-dependent, cAMP-mediated signal transduction is, in addition to the known signaling pathways, involved in fruiting body formation in Schizophyllum commune. To integrate these analyses of Ras signaling, microarray studies were performed. Mutant strains containing constitutively active Ras1, deletion of RasGap1, or constitutively active Cdc42 were characterized and compared. At the transcriptome level, specific regulation highlighting the phenotypic differences of the mutants is clearly visible.
Collapse
Affiliation(s)
- Nicole Knabe
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Elke-Martina Jung
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Daniela Freihorst
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Florian Hennicke
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Jena, Germany
| | - J. Stephen Horton
- Department of Biological Sciences, Science and Engineering Center, Union College, Schenectady, New York, USA
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
11
|
Regulatable Ras activity is critical for proper establishment and maintenance of polarity in Aspergillus fumigatus. EUKARYOTIC CELL 2011; 10:611-5. [PMID: 21278230 DOI: 10.1128/ec.00315-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we show that expression of a constitutively activated RasA allele, as the sole source of Ras activity, revealed novel Ras-induced phenotypes, including excessive vacuolar expansion and spontaneous lysis of hyphal compartments. These findings highlight the requirement for balanced Ras activity in the establishment and maintenance of polarized growth in filamentous fungi.
Collapse
|
12
|
Li S, Jochum CC, Yu F, Zaleta-Rivera K, Du L, Harris SD, Yuen GY. An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. PHYTOPATHOLOGY 2008; 98:695-701. [PMID: 18944294 DOI: 10.1094/phyto-98-6-0695] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lysobacter enzymogenes C3 is a bacterial biological control agent that exhibits antagonism against multiple fungal pathogens. Its antifungal activity was attributed in part to lytic enzymes. In this study, a heat-stable antifungal factor (HSAF), an antibiotic complex consisting of dihydromaltophilin and structurally related macrocyclic lactams, was found to be responsible for antagonism by C3 against fungi and oomycetes in culture. HSAF in purified form exhibited inhibitory activity against a wide range of fungal and oomycetes species in vitro, inhibiting spore germination, and disrupting hyphal polarity in sensitive fungi. When applied to tall fescue leaves as a partially-purified extract, HSAF at 25 mug/ml and higher inhibited germination of conidia of Bipolaris sorokiniana compared with the control. Although application of HSAF at 12.5 mug/ml did not reduce the incidence of conidial germination, it inhibited appressorium formation and suppressed Bipolaris leaf spot development. Two mutant strains of C3 (K19 and DeltaNRPS) that were disrupted in different domains in the hybrid polyketide synthase-nonribosomal peptide synthetase gene for HSAF biosynthesis and had lost the ability to produce HSAF were compared with the wild-type strain for biological control efficacy against Bipolaris leaf spot on tall fescue and Fusarium head blight, caused by Fusarium graminearum, on wheat. Both mutant strains exhibited decreased capacity to reduce the incidence and severity of Bipolaris leaf spot compared with C3. In contrast, the mutant strains were as efficacious as the wild-type strain in reducing the severity of Fusarium head blight. Thus, HSAF appears to be a mechanism for biological control by strain C3 against some, but not all, plant pathogenic fungi.
Collapse
Affiliation(s)
- S Li
- Department of Plant Pathology, University of Nebraska, Lincoln 68583, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Brown SH, Yarden O, Gollop N, Chen S, Zveibil A, Belausov E, Freeman S. Differential protein expression in Colletotrichum acutatum: changes associated with reactive oxygen species and nitrogen starvation implicated in pathogenicity on strawberry. MOLECULAR PLANT PATHOLOGY 2008; 9:171-90. [PMID: 18705850 PMCID: PMC6640448 DOI: 10.1111/j.1364-3703.2007.00454.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The cellular outcome of changes in nitrogen availability in the context of development and early stages of pathogenicity was studied by quantitative analysis of two-dimensional gel electrophoresis of Colletotrichum acutatum infecting strawberry. Significant alterations occurred in the abundance of proteins synthesized during appressorium formation under nitrogen-limiting conditions compared with a complete nutrient supply. Proteins that were up- or down-regulated were involved in energy metabolism, nitrogen and amino acid metabolism, protein synthesis and degradation, response to stress and reactive oxygen scavenging. Members belonging to the reactive oxygen species (ROS) scavenger machinery, superoxide dismutase and glutathione peroxidase, were up-regulated at the appressorium formation stage, as well as under nitrogen-limiting conditions relative to growth with a complete nutrient supply, whereas abundance of bifunctional catalase was up-regulated predominantly at the appressorium formation stage. Fungal ROS were detected within germinating conidia during host pre-penetration, penetration and colonization stages, accompanied by plant ROS, which were abundant in the apoplastic space. Application of exogenous antioxidants quenched ROS production and reduced the frequency of appressorium formation. Up-regulation in metabolic activity was detected during appressorium formation and nutrient deficiency compared with growth under complete nutrient supply. Enhanced levels of proteins related to the glyoxylate cycle and lipid metabolism (malate dehydrogenase, formate dehydrogenase and acetyl-CoA acetyltransferase) were observed at the appressorium formation stage, in contrast to down-regulation of isocitrate dehydrogenase. The present study demonstrates that appressoria formation processes, occurring under nutritional deprivation, are accompanied by metabolic shifts, and that ROS production is an early fungal response that may modulate initial stages of pathogen development.
Collapse
Affiliation(s)
- Sigal Horowitz Brown
- Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD. RAS2 regulates growth and pathogenesis in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:627-36. [PMID: 17555271 DOI: 10.1094/mpmi-20-6-0627] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fusarium graminearum is a ubiquitous pathogen of cereal crops, including wheat, barley, and maize. Diseases caused by F. graminearum are of particular concern because harvested grains frequently are contaminated with harmful mycotoxins such as deoxynivalenol (DON). In this study, we explored the role of Ras GTPases in pathogenesis. The genome of F. graminearum contains two putative Ras GTPase-encoding genes. The two genes (RAS1 and RAS2) showed different patterns of expression under different conditions of nutrient availability and in various mutant backgrounds. RAS2 was dispensable for survival but, when disrupted, caused a variety of morphological defects, including slower growth on solid media, delayed spore germination, and significant reductions in virulence on wheat heads and maize silks. Intracellular cAMP levels were not affected by deletion of RAS2 and exogenous treatment of the ras2 mutant with cAMP did not affect phenotypic abnormalities, thus indicating that RAS2 plays a minor or no role in cAMP signaling. However, phosphorylation of the mitogen-activated protein (MAP) kinase Gpmk1 and expression of a secreted lipase (FGL1) required for infection were reduced significantly in the ras2 mutant. Based on these observations, we hypothesize that RAS2 regulates growth and virulence in F. graminearum by regulating the Gpmk1 MAP kinase pathway.
Collapse
Affiliation(s)
- B H Bluhm
- Crop Production & Pest Control Research Unit, United States Department of Agriculture-Agricultural Research Service, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
15
|
Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. THE PLANT CELL 2006; 18:2822-35. [PMID: 17056708 PMCID: PMC1626611 DOI: 10.1105/tpc.105.038422] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice blast fungus (Magnaporthe grisea) forms a highly specialized infection structure for plant penetration, the appressorium, the formation and growth of which are regulated by the Mst11-Mst7-Pmk1 mitogen-activated protein kinase cascade. We characterized the MST50 gene that directly interacts with both MST11 and MST7. Similar to the mst11 mutant, the mst50 mutant was defective in appressorium formation, sensitive to osmotic stresses, and nonpathogenic. Expressing a dominant active MST7 allele in mst50 complemented its defects in appressorium but not lesion formation. The sterile alpha-motif (SAM) domain of Mst50 was essential for its interaction with Mst11 and for appressorium formation. Although the SAM and Ras-association domain (RAD) of Mst50 were dispensable for its interaction with Mst7, deletion of RAD reduced appressorium formation and virulence on rice (Oryza sativa) seedlings. The interaction between Mst50 and Mst7 or Mst11 was detected by coimmunoprecipitation assays in developing appressoria. Mst50 also interacts with Ras1, Ras2, Cdc42, and Mgb1 in yeast two-hybrid assays. Expressing a dominant active RAS2 allele in the wild-type strain but not in mst50 stimulated abnormal appressorium formation. These results indicate that MST50 functions as an adaptor protein interacting with multiple upstream components and plays critical roles in activating the Pmk1 cascade for appressorium formation and plant infection in M. grisea.
Collapse
Affiliation(s)
- Gyungsoon Park
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
16
|
Chen C, Ha YS, Min JY, Memmott SD, Dickman MB. Cdc42 is required for proper growth and development in the fungal pathogen Colletotrichum trifolii. EUKARYOTIC CELL 2006; 5:155-66. [PMID: 16400178 PMCID: PMC1360247 DOI: 10.1128/ec.5.1.155-166.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cdc42 is a highly conserved small GTP-binding protein that is involved in regulating morphogenesis in eukaryotes. In this study, we isolated and characterized a highly conserved Cdc42 gene from Colletotrichum trifolii (CtCdc42), a fungal pathogen of alfalfa. CtCdc42 is, at least in part, functionally equivalent to Saccharomyces cerevisiae Cdc42p, since it restores the temperature-sensitive phenotype of a yeast Cdc42p mutant. Inhibition of CtCdc42 by expression of an antisense CtCdc42 or a dominant negative form of CtCdc42 (DN Cdc42) resulted in appressorium differentiation under noninductive conditions, suggesting that CtCdc42 negatively regulates pathogenic development in this fungus. We also examined the possible linkage between CtCdc42 and Ras signaling. Expression of a dominant active Cdc42 (DA Cdc42) in C. trifolii leads to aberrant hyphal growth under nutrient-limiting conditions. This phenotype was similar to that of our previously reported dominant active Ras (DA Ras) mutant. Also consistent with our observations of the DA Ras mutant, high levels of reactive oxygen species (ROS) were observed in the DA Cdc42 mutant, and proline restored the wild-type phenotype. Moreover, overexpression of DN Cdc42 resulted in a significant decrease in spore germination, virtually no hyphal branching, and earlier sporulation, again similar to what we observed in a dominant negative Ras (DN Ras) mutant strain. Interestingly, coexpression of DA Cdc42 with DN Ras resulted in germination rates close to wild-type levels, while coexpression of DN Cdc42 with the DA Ras mutant restored the wild-type phenotype. These data suggest that CtCdc42 is positioned as a downstream effector of CtRas to regulate spore germination and pathogenic development.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Plant Pathology, 406 Plant Sciences Hall, University of Nebraska--Lincoln, Lincoln, Nebraska 68583-0722, USA
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Peter J Lammers
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces NM, USA 88003 (tel +1 505064603918; fax +1 505 646 6846; email )
| |
Collapse
|