1
|
Tailoring Next Generation Plant Growth Promoting Microorganisms as Versatile Tools beyond Soil Desalinization: A Road Map towards Field Application. SUSTAINABILITY 2021. [DOI: 10.3390/su13084422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Plant growth promoting bacteria (PGPB) have been the target of intensive research studies toward their efficient use in the field as biofertilizers, biocontrol, and bioremediation agents among numerous other applications. Recent trends in the field of PGPB research led to the development of versatile multifaceted PGPB that can be used in different field conditions such as biocontrol of plant pathogens in metal contaminated soils. Unfortunately, all these research efforts lead to the development of PGPB that failed to perform in salty environments. Therefore, it is urgently needed to address this drawback of these PGPB toward their efficient performance in salinity context. In this paper we provide a review of state-of-the-art research in the field of PGPB and propose a road map for the development of next generation versatile and multifaceted PGPB that can perform in salinity. Beyond soil desalinization, our study paves the way towards the development of PGPB able to provide services in diverse salty environments such as heavy metal contaminated, or pathogen threatened. Smart development of salinity adapted next generation biofertilizers will inevitably allow for mitigation and alleviation of biotic and abiotic threats to plant productivity in salty environments.
Collapse
|
2
|
Multiple Megaplasmids Confer Extremely High Levels of Metal Tolerance in Alteromonas Strains. Appl Environ Microbiol 2020; 86:AEM.01831-19. [PMID: 31757820 DOI: 10.1128/aem.01831-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Alteromonas is a widely distributed genus of marine Gammaproteobacteria, with representatives shown to be key players in diverse processes, including biogeochemical cycling and biofouling of marine substrata. While Alteromonas spp. are early colonizers of copper-based antifouling paints on marine vessels, their mechanism of tolerance is poorly understood. PacBio whole-genome sequencing of Alteromonas macleodii strains CUKW and KCC02, isolated from Cu/Ni alloy test coupons submerged in oligotrophic coastal waters, indicated the presence of multiple megaplasmids (ca. 200 kb) in both. A pulsed-field gel electrophoresis method was developed and used to confirm the presence of multiple megaplasmids in these two strains; it was then used to screen additional Alteromonas strains for which little to no sequencing data exist. Plasmids were not detected in any of the other strains. Bioinformatic analysis of the CUKW and KCC02 plasmids identified numerous genes associated with metal resistance. Copper resistance orthologs from both the Escherichia coli Cue and Cus and Pseudomonas syringae Cop systems were present, at times as multiple copies. Metal growth assays in the presence of copper, cobalt, manganese, and zinc performed with 10 Alteromonas strains demonstrated the ability of CUKW and KCC02 to grow at metal concentrations inhibitory to all the other strains tested. This study reports multiple megaplasmids in Alteromonas strains. Bioinformatic analysis of the CUKW and KCC02 plasmids indicate that they harbor elements of the Tra system conjugation apparatus, although their type of mobility remains to be experimentally verified.IMPORTANCE Copper is commonly used as an antifouling agent on ship hulls. Alteromonas spp. are early colonizers of copper-based antifouling paint, but their mechanism of tolerance is poorly understood. Sequencing of A. macleodii strains isolated from copper test materials for marine ships indicated the presence of multiple megaplasmids. Plasmids serve as key vectors in horizontal gene transfer and confer traits such as metal resistance, detoxification, ecological interaction, and antibiotic resistance. Bioinformatic analysis identified many metal resistance genes and genes associated with mobility. Understanding the molecular mechanisms and capacity for gene transfer within marine biofilms provides a platform for the development of novel antifouling solutions targeting genes involved in copper tolerance and biofilm formation.
Collapse
|
3
|
Teamtisong K, Songwattana P, Noisangiam R, Piromyou P, Boonkerd N, Tittabutr P, Minamisawa K, Nantagij A, Okazaki S, Abe M, Uchiumi T, Teaumroong N. Divergent nod-containing Bradyrhizobium sp. DOA9 with a megaplasmid and its host range. Microbes Environ 2014; 29:370-6. [PMID: 25283477 PMCID: PMC4262360 DOI: 10.1264/jsme2.me14065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation was determinate. The morphology and size of DOA9 bacteroids isolated from the nodules of various species of Papilionoideae were indistinguishable from the free-living form. However, they were spherical in Arachis hypogaea nodules. GusA-tagged DOA9 also colonized rice roots as endophytes. Since broad-host-range legume symbionts often carry multiple replicons in their genome, we analyzed the replicons for symbiosis genes by electrophoresis. DOA9 carried two replicons, a chromosome (cDOA9) and single megaplasmid (pDOA9) larger than 352 kb. The genes for nodulation (nodA, B, C) and nitrogen fixation (nifH) were localized on the megaplasmid. Southern blot hybridization revealed two copies of nodA on the megaplasmid, single copies of nodB and C on the megaplasmid, and one copy each of nifH on the chromosome and megaplasmid. These results suggested that Bradyrhizobium sp. DOA9 may have the unusual combination of a broad host range, bacteroid differentiation, and symbiosis-mediating replicons.
Collapse
Affiliation(s)
- Kamonluck Teamtisong
- Center for Scientific and Technological Equipment, Suranaree University of Technology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Physiological features of Halomonas lionensis sp. nov., a novel bacterium isolated from a Mediterranean Sea sediment. Res Microbiol 2014; 165:490-500. [PMID: 25086262 DOI: 10.1016/j.resmic.2014.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 11/19/2022]
Abstract
A novel halophilic bacterium, strain RHS90(T), was isolated from marine sediments from the Gulf of Lions, in the Mediterranean Sea. Its metabolic and physiological characteristics were examined under various cultural conditions, including exposure to stressful ones (oligotrophy, high pressure and high concentrations of metals). Based on phylogenetic analysis of the 16S rRNA gene, the strain was found to belong to the genus Halomonas in the class Gammaproteobacteria. Its closest relatives are Halomonas axialensis and Halomonas meridiana (98% similarity). DNA-DNA hybridizations indicated that the novel isolate is genotypically distinct from these species. The DNA G + C content of the strain is 54.4 mol%. The main fatty acids (C18:1ω7c, 2-OH iso-C15:0, C16:0 and/or C19:0 cyclo ω8c), main polar lipids (diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unidentified phosphoglycolipid) and major respiratory quinone (ubiquinone Q9) were determined. The novel isolate is heterotrophic, mesophilic, euryhaline (growth optimum ranging from 2 to 8% w/v NaCl) and is able to grow under stressful conditions. The strain accumulates poly-β-hydroxyalkanoates granules and compatible solutes. Based on genotypic, chemotaxonomic and phenotypic distinctiveness, this isolate is likely to represent a novel species, for which the name Halomonas lionensis is proposed. The type strain of H. lionensis is RHS90(T) (DSM 25632(T) = CIP 110370(T) = UBOCC 3186(T)).
Collapse
|
5
|
Zlatkin IV, Nikitin DI, Sigalevich PA. Investigation of unusual growth and phenotypic characteristics of plasmid-containing and plasmid-free strains of oligotrophic bacterium Ancylobacter vacuolatus. Microbiology (Reading) 2012. [DOI: 10.1134/s002626171201016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Argandoña M, Vargas C, Reina-Bueno M, Rodríguez-Moya J, Salvador M, Nieto JJ. An extended suite of genetic tools for use in bacteria of the Halomonadaceae: an overview. Methods Mol Biol 2012; 824:167-201. [PMID: 22160899 DOI: 10.1007/978-1-61779-433-9_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Halophilic gammaproteobacteria of the family Halomonadaceae (including the genera Aidingimonas, Carnimonas, Chromohalobacter, Cobetia, Halomonas, Halotalea, Kushneria, Modicisalibacter, Salinicola, and Zymobacter) have current and promising applications in biotechnology mainly as a source of compatible solutes (powerful stabilizers of biomolecules and cells, with exciting potentialities in biomedicine), salt-tolerant enzymes, biosurfactants, and extracellular polysaccharides, among other products. In addition, they display a number of advantages to be used as cell factories, alternative to conventional prokaryotic hosts like Escherichia coli or Bacillus, for the production of recombinant proteins: (1) their high salt tolerance decreases to a minimum the necessity for aseptic conditions, resulting in cost-reducing conditions, (2) they are very easy to grow and maintain in the laboratory, and their nutritional requirements are simple, and (3) the majority can use a large range of compounds as a sole carbon and energy source. In the last 15 years, the efforts of our group and others have made possible the genetic manipulation of this bacterial group. In this review, the most relevant and recent tools for their genetic manipulation are described, with emphasis on nucleic acid isolation procedures, cloning and expression vectors, genetic exchange mechanisms, mutagenesis approaches, reporter genes, and genetic expression analyses. Complementary sections describing the influence of salinity on the susceptibility of these bacteria to antimicrobials, as well as the growth media most routinely used and culture conditions, for these microorganisms, are also included.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Department of Microbiology and Parasitology, University of Seville, Seville, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Llop P, Barbé S, López MM. Functions and origin of plasmids in Erwinia species that are pathogenic to or epiphytically associated with pome fruit trees. TREES (BERLIN, GERMANY : WEST) 2011; 26:31-46. [PMID: 25983394 PMCID: PMC4425259 DOI: 10.1007/s00468-011-0630-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/17/2011] [Accepted: 09/21/2011] [Indexed: 05/29/2023]
Abstract
The genus Erwinia includes plant-associated pathogenic and non-pathogenic species. Among them, all species pathogenic to pome fruit trees (E. amylovora, E. pyrifoliae, E. piriflorinigrans, Erwinia sp. from Japan) cause similar symptoms, but differ in their degrees of aggressiveness, i.e. in symptoms, host range or both. The presence of plasmids of similar size, in the range of 30 kb, is a common characteristic that they possess. Besides, they share some genetic content with high homology in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes. Knowledge of the content of these plasmids and comparative genetic analyses may provide interesting new clues to understanding the origin and evolution of these pathogens and the level of symptoms they produce. Furthermore, genetic similarities observed among some of the plasmids (and genomes) from the above indicated pathogenic species and E. tasmaniensis or E. billingiae, which are epiphytic on the same hosts, may reveal associations that could expose the mechanisms of origin of pathogens. A summary of the current information on their plasmids and the relationships among them is presented here.
Collapse
Affiliation(s)
- Pablo Llop
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| | - Silvia Barbé
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| | - María M. López
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km 4.5, 46113 Moncada, Valencia Spain
| |
Collapse
|
8
|
Yang JC, Lessard PA, Sengupta N, Windsor SD, O'brien XM, Bramucci M, Tomb JF, Nagarajan V, Sinskey AJ. TraA is required for megaplasmid conjugation in Rhodococcus erythropolis AN12. Plasmid 2006; 57:55-70. [PMID: 16997374 DOI: 10.1016/j.plasmid.2006.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 08/01/2006] [Accepted: 08/04/2006] [Indexed: 11/13/2022]
Abstract
Pulsed-field gel electrophoresis (PFGE) revealed three previously uncharacterized megaplasmids in the genome of Rhodococcus erythropolis AN12. These megaplasmids, pREA400, pREA250, and pREA100, are approximately 400, 250, and 100kb, respectively, based on their migration in pulsed-field gels. Genetic screening of an AN12 transposon insertion library showed that two megaplasmids, pREA400, and pREA250, are conjugative. Mobilization frequencies of these AN12 megaplasmids to recipient R. erythropolis SQ1 were determined to be approximately 7x10(-4) and 5x10(-4) events per recipient cell, respectively. It is known for other bacterial systems that a relaxase encoded by the traA gene is required to initiate DNA transfer during plasmid conjugation. Sequences adjacent to the transposon insertion in megaplasmid pREA400 revealed a putative traA-like open reading frame. A targeted gene disruption method was developed to generate a traA mutation in AN12, which allowed us to address the role of the traA gene product for Rhodococcus megaplasmid conjugation. We found that the AN12 traA mutant is no longer capable of transferring the pREA400 megaplasmid to SQ1. Furthermore, we confirmed that the conjugation defect was specifically due to the disruption of the traA gene, as pREA400 megaplasmid conjugation defect is restored with a complementing copy of the traA gene.
Collapse
Affiliation(s)
- Joyce C Yang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Llamas I, del Moral A, Martínez-Checa F, Arco Y, Arias S, Quesada E. Halomonas maura is a physiologically versatile bacterium of both ecological and biotechnological interest. Antonie van Leeuwenhoek 2006; 89:395-403. [PMID: 16622791 DOI: 10.1007/s10482-005-9043-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2005] [Indexed: 11/27/2022]
Abstract
Halomonas maura is a bacterium of great metabolic versatility. We summarise in this work some of the properties that make it a very interesting microorganism both from an ecological and biotechnological point of view. It plays an active role in the nitrogen cycle, is capable of anaerobic respiration in the presence of nitrate and has recently been identified as a diazotrophic bacterium. Of equal interest is mauran, the exopolysaccharide produced by H. maura, which contributes to the formation of biofilms and thus affords the bacterium advantages in the colonisation of its saline niches. Mauran is highly viscous, shows thixotropic and pseudoplastic behaviour, has the capacity to capture heavy metals and exerts a certain immunomodulator effect in medicine. All these attributes have prompted us to make further investigations into its molecular characteristics. To date we have described 15 open reading frames (ORF's) related to exopolysaccharide production, nitrogen fixation and nitrate reductase activity among others.
Collapse
Affiliation(s)
- Inmaculada Llamas
- Department of Microbiology, University of Granada, Campus Universitario de Cartuja s/n, 18071, Granada, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Arco Y, Llamas I, Martínez-Checa F, Argandoña M, Quesada E, Moral AD. epsABCJ genes are involved in the biosynthesis of the exopolysaccharide mauran produced by Halomonas maura. Microbiology (Reading) 2005; 151:2841-2851. [PMID: 16151197 DOI: 10.1099/mic.0.27981-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The moderately halophilic strainHalomonas mauraS-30 produces a high-molecular-mass acidic polymer (4·7×106 Da) composed of repeating units of mannose, galactose, glucose and glucuronic acid. This exopolysaccharide (EPS), known as mauran, has interesting functional properties that make it suitable for use in many industrial fields. Analysis of the flanking regions of a mini-Tn5insertion site in an EPS-deficient mutant ofH. maura, strain TK71, led to the identification of five ORFs (epsABCDJ), which form part of a gene cluster (eps) with the same structural organization as others involved in the biosynthesis of group 1 capsules and some EPSs. Conserved genetic features were found such as JUMPstart andopselements, which are characteristically located preceding the gene clusters for bacterial polysaccharides. On the basis of their amino-acid-sequence homologies, their putative hydropathy profiles and the effect of their mutations, it is predicted that EpsA (an exporter-protein homologue belonging to the OMA family) and EpsC (a chain-length-regulator homologue belonging to the PCP family) play a role in the assembly, polymerization and translocation of mauran. The possibility that mauran might be synthesized via a Wzy-like biosynthesis system, just as it is for many other polysaccharides, is also discussed. This hypothesis is supported by the fact that EpsJ is homologous with some members of the PST-exporter-protein family, which seems to function together with each OMA–PCP pair in polysaccharide transport in Gram-negative bacteria, transferring the assembled lipid-linked repeating units from the cytoplasmic membrane to the periplasmic space. Maximum induction of theepsgenes is reached during stationary phase in the presence of 5 % (w/v) marine salts.
Collapse
Affiliation(s)
- Yolanda Arco
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain
| | - Fernando Martínez-Checa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain
| | - Montserrat Argandoña
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain
| | - Emilia Quesada
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain
| | - Ana Del Moral
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain
| |
Collapse
|
11
|
Argandoña M, Fernández-Carazo R, Llamas I, Martínez-Checa F, Caba JM, Quesada E, del Moral A. The moderately halophilic bacterium Halomonas maura is a free-living diazotroph. FEMS Microbiol Lett 2005; 244:69-74. [PMID: 15727823 DOI: 10.1016/j.femsle.2005.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 12/22/2004] [Accepted: 01/12/2005] [Indexed: 11/21/2022] Open
Abstract
Halomonas maura is a moderately halophilic bacterium which lives in saline soils and synthesises an exopolysaccharide known as mauran. Strain S-31T grew in a nitrogen-free medium under an N2 atmosphere; the acetylene reduction assay proved positive under specific conditions. We identified the nifH gene in this strain by using degenerate oligonucleotides designed from highly preserved gene sequences obtained from the alignment of a large number of nifH sequences from different microorganisms. Our results lead us to conclude that H. maura is capable of fixing nitrogen under microaerobic conditions.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Departamento de Microbiología, Facultad de Farmacia, Campus Universitario de Cartuja s/n., 18071 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Martínez-Cánovas MJ, Quesada E, Martínez-Checa F, Moral AD, Béjar V. Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the α-Proteobacteria. Int J Syst Evol Microbiol 2004; 54:1735-1740. [PMID: 15388737 DOI: 10.1099/ijs.0.63166-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Salipiger mucescens gen. nov., sp. nov. is a moderately halophilic, exopolysaccharide-producing, Gram-negative rod isolated from a hypersaline habitat in Murcia in south-eastern Spain. The bacterium is chemoheterotrophic and strictly aerobic (i.e. unable to grow under anaerobic conditions either by fermentation or by nitrate or fumarate respiration). It does not synthesize bacteriochlorophyll a. Catalase and phosphatase are positive. It does not produce acids from carbohydrates. It cannot grow with carbohydrates or amino acids as sole sources of carbon and energy. It grows best at 9–10 % w/v NaCl and requires the presence of Na+ but not Mg2+ or K+, although they do stimulate its growth somewhat when present. Its major fatty-acid component is 18 : 1ω7c (78·0 %). The predominant respiratory lipoquinone found in strain A3T is ubiquinone with ten isoprene units. The G+C content is 64·5 mol%. Phylogenetic analyses strongly indicate that this strain forms a distinct line within a clade containing the genus Roseivivax in the subclass α-Proteobacteria. The similarity value with Roseivivax halodurans and Roseivivax halotolerans is 94 %. In the light of the polyphasic evidence gathered in this study it is proposed that the isolate be classified as representing a new genus and species, Salipiger mucescens gen. nov., sp. nov. The proposed type strain is strain A3T (=CECT 5855T=LMG 22090T=DSM 16094T).
Collapse
MESH Headings
- Amino Acids/metabolism
- Anti-Bacterial Agents/pharmacology
- Bacteriochlorophyll A/analysis
- Base Composition
- Carbohydrate Metabolism
- Catalase/analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Fatty Acids/analysis
- Genes, rRNA
- Magnesium/metabolism
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Phosphoric Monoester Hydrolases/analysis
- Phylogeny
- Polysaccharides, Bacterial/biosynthesis
- Potassium/metabolism
- Quinones/analysis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Rhodobacteraceae/classification
- Rhodobacteraceae/isolation & purification
- Rhodobacteraceae/physiology
- Rhodobacteraceae/ultrastructure
- Saline Solution, Hypertonic/pharmacology
- Sequence Analysis, DNA
- Sodium/metabolism
- Soil Microbiology
- Spain
Collapse
Affiliation(s)
- M José Martínez-Cánovas
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain
| | - Emilia Quesada
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain
| | - Fernando Martínez-Checa
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain
| | - Ana Del Moral
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain
| | - Victoria Béjar
- Microbial Exopolysaccharide Research Group, Department of Microbiology, Faculty of Pharmacy, Cartuja Campus, University of Granada, 18071 Granada, Spain
| |
Collapse
|