1
|
Li X, Wei Y, Fei Q, Fu G, Gan Y, Shi C. TurboID-mediated proximity labeling for screening interacting proteins of FIP37 in Arabidopsis. PLANT DIRECT 2023; 7:e555. [PMID: 38111714 PMCID: PMC10727772 DOI: 10.1002/pld3.555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/20/2023]
Abstract
Proximity labeling was recently developed to detect protein-protein interactions and members of subcellular multiprotein structures in living cells. Proximity labeling is conducted by fusing an engineered enzyme with catalytic activity, such as biotin ligase, to a protein of interest (bait protein) to biotinylate adjacent proteins. The biotinylated protein can be purified by streptavidin beads, and identified by mass spectrometry (MS). TurboID is an engineered biotin ligase with high catalytic efficiency, which is used for proximity labeling. Although TurboID-based proximity labeling technology has been successfully established in mammals, its application in plant systems is limited. Here, we report the usage of TurboID for proximity labeling of FIP37, a core member of m6A methyltransferase complex, to identify FIP37 interacting proteins in Arabidopsis thaliana. By analyzing the MS data, we found 214 proteins biotinylated by GFP-TurboID-FIP37 fusion, including five components of m6A methyltransferase complex that have been previously confirmed. Therefore, the identified proteins may include potential proteins directly involved in the m6A pathway or functionally related to m6A-coupled mRNA processing due to spatial proximity. Moreover, we demonstrated the feasibility of proximity labeling technology in plant epitranscriptomics study, thereby expanding the application of this technology to more subjects of plant research.
Collapse
Affiliation(s)
- Xiaofang Li
- Shengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural ScienceShenzhenChina
| | - Yanping Wei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural ScienceShenzhenChina
| | - Qili Fei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural ScienceShenzhenChina
| | - Guilin Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural ScienceShenzhenChina
- College of AgricultureShanxi Agricultural UniversityTaiguChina
| | - Yu Gan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural ScienceShenzhenChina
- School of Life SciencesHenan UniversityKaifengChina
- Shenzhen Research Institute of Henan universityShenzhenChina
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural ScienceShenzhenChina
| |
Collapse
|
2
|
Serebriiskii IG, Elmekawy M, Golemis EA. Identification of the KRIT1 Protein by LexA-Based Yeast Two-Hybrid System. Methods Mol Biol 2020; 2152:269-289. [PMID: 32524559 DOI: 10.1007/978-1-0716-0640-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerebral cavernous malformation (CCM) is a vascular malformation of the central nervous system that is associated with leaky capillaries, and a predisposition to serious clinical conditions including intracerebral hemorrhage and seizures. Germline or sporadic mutations in the CCM1/KRIT1 gene are responsible for the majority of cases of CCM. In this article, we describe the original characterization of the CCM1/KRIT1 gene. This cloning was done through the use of a variant of the yeast two-hybrid screen known as the interaction trap, using the RAS-family GTPase KREV1/RAP1A as a bait. The partial clone of KRIT1 (Krev1 Interaction Trapped) initially identified was extended through 5'RACE and computational analysis to obtain a full-length cDNA, then used in a sequential screen to define the integrin-associated ICAP1 protein as a KRIT1 partner protein. We discuss how these interactions are relevant to the current understanding of KRIT1/CCM1 biology, and provide a protocol for library screening with the Interaction Trap.
Collapse
Affiliation(s)
- Ilya G Serebriiskii
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.
| | - Mohamed Elmekawy
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Stanczyk PJ, Lai FA, Zissimopoulos S. Genetic and Biochemical Approaches for In Vivo and In Vitro Assessment of Protein Oligomerization: The Ryanodine Receptor Case Study. J Vis Exp 2016. [PMID: 27500320 PMCID: PMC5065051 DOI: 10.3791/54271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Oligomerization is often a structural requirement for proteins to accomplish their specific cellular function. For instance, tetramerization of the ryanodine receptor (RyR) is necessary for the formation of a functional Ca2+ release channel pore. Here, we describe detailed protocols for the assessment of protein self-association, including yeast two-hybrid (Y2H), co-immunoprecipitation (co-IP) and chemical cross-linking assays. In the Y2H system, protein self-interaction is detected by β-galactosidase assay in yeast co-expressing GAL4 bait and target fusions of the test protein. Protein self-interaction is further assessed by co-IP using HA- and cMyc-tagged fusions of the test protein co-expressed in mammalian HEK293 cells. The precise stoichiometry of the protein homo-oligomer is examined by cross-linking and SDS-PAGE analysis following expression in HEK293 cells. Using these different but complementary techniques, we have consistently observed the self-association of the RyR N-terminal domain and demonstrated its intrinsic ability to form tetramers. These methods can be applied to protein-protein interaction and homo-oligomerization studies of other mammalian integral membrane proteins.
Collapse
|
4
|
Dutta S, Teresinski HJ, Smith MD. A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast preprotein import receptors. PLoS One 2014; 9:e95026. [PMID: 24736607 PMCID: PMC3988174 DOI: 10.1371/journal.pone.0095026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/22/2014] [Indexed: 11/18/2022] Open
Abstract
Post-translational import of nucleus-encoded chloroplast pre-proteins is critical for chloroplast biogenesis, and the Toc159 family of proteins serve as receptors for the process. Toc159 shares with other members of the family (e.g. Toc132), homologous GTPase (G−) and Membrane (M−) domains, but a highly dissimilar N-terminal acidic (A−) domain. Although there is good evidence that atToc159 and atToc132 from Arabidopsis mediate the initial sorting step, preferentially recognizing photosynthetic and non-photosynthetic preproteins, respectively, relatively few chloroplast preproteins have been assigned as substrates for particular members of the Toc159 family, which has limited the proof for the hypothesis. The current study expands the number of known preprotein substrates for members of the Arabidopsis Toc159 receptor family using a split-ubiquitin membrane-based yeast two-hybrid system using the atToc159 G-domain (Toc159G), atToc132 G-domain (Toc132G) and atToc132 A- plus G-domains (Toc132AG) as baits. cDNA library screening with all three baits followed by pairwise interaction assays involving the 81 chloroplast preproteins identified show that although G-domains of the Toc159 family are sufficient for preprotein recognition, they alone do not confer specificity for preprotein subclasses. The presence of the A-domain fused to atToc132G (Toc132AG) not only positively influences its specificity for non-photosynthetic preproteins, but also negatively regulates the ability of this receptor to interact with a subset of photosynthetic preproteins. Our study not only substantiates the fact that atToc132 can serve as a receptor by directly binding to chloroplast preproteins but also proposes the existence of subsets of preproteins with different but overlapping affinities for more than one member of the Toc159 receptor family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Howard J Teresinski
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Matthew D Smith
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Strickland EC, Geer MA, Hong J, Fitzgerald MC. False-positive rate determination of protein target discovery using a covalent modification- and mass spectrometry-based proteomics platform. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:132-140. [PMID: 24114261 PMCID: PMC3880622 DOI: 10.1007/s13361-013-0754-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
Detection and quantitation of protein-ligand binding interactions is important in many areas of biological research. Stability of proteins from rates of oxidation (SPROX) is an energetics-based technique for identifying the proteins targets of ligands in complex biological mixtures. Knowing the false-positive rate of protein target discovery in proteome-wide SPROX experiments is important for the correct interpretation of results. Reported here are the results of a control SPROX experiment in which chemical denaturation data is obtained on the proteins in two samples that originated from the same yeast lysate, as would be done in a typical SPROX experiment except that one sample would be spiked with the test ligand. False-positive rates of 1.2-2.2% and <0.8% are calculated for SPROX experiments using Q-TOF and Orbitrap mass spectrometer systems, respectively. Our results indicate that the false-positive rate is largely determined by random errors associated with the mass spectral analysis of the isobaric mass tag (e.g., iTRAQ®) reporter ions used for peptide quantitation. Our results also suggest that technical replicates can be used to effectively eliminate such false positives that result from this random error, as is demonstrated in a SPROX experiment to identify yeast protein targets of the drug, manassantin A. The impact of ion purity in the tandem mass spectral analyses and of background oxidation on the false-positive rate of protein target discovery using SPROX is also discussed.
Collapse
Affiliation(s)
| | | | | | - Michael C. Fitzgerald
- Address reprint requests to: Professor Michael C. Fitzgerald, Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346, Tel: 919-660-1547, Fax: 919-660-1605,
| |
Collapse
|
6
|
Westermarck J, Ivaska J, Corthals GL. Identification of protein interactions involved in cellular signaling. Mol Cell Proteomics 2013; 12:1752-63. [PMID: 23481661 DOI: 10.1074/mcp.r113.027771] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein-protein interactions drive biological processes. They are critical for all intra- and extracellular functions, and the technologies to analyze them are widely applied throughout the various fields of biological sciences. This study takes an in-depth view of some common principles of cellular regulation and provides a detailed account of approaches required to comprehensively map signaling protein-protein interactions in any particular cellular system or condition. We provide a critical review of the benefits and disadvantages of the yeast two-hybrid method and affinity purification coupled with mass spectrometric procedures for identification of signaling protein-protein interactions. In particular, we emphasize the quantitative and qualitative differences between tandem affinity and one-step purification (such as FLAG and Strep tag) methods. Although applicable to all types of interaction studies, a special section is devoted in this review to aspects that should be considered when attempting to identify signaling protein interactions that often are transient and weak by nature. Finally, we discuss shotgun and quantitative information that can be gleaned by MS-coupled methods for analysis of multiprotein complexes.
Collapse
Affiliation(s)
- Jukka Westermarck
- Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland
| | | | | |
Collapse
|
7
|
Quantitative real-time PCR as a sensitive protein–protein interaction quantification method and a partial solution for non-accessible autoactivator and false-negative molecule analysis in the yeast two-hybrid system. Methods 2012; 58:376-84. [DOI: 10.1016/j.ymeth.2012.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
|
8
|
Braun P. Interactome mapping for analysis of complex phenotypes: insights from benchmarking binary interaction assays. Proteomics 2012; 12:1499-518. [PMID: 22589225 DOI: 10.1002/pmic.201100598] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Protein interactions mediate essentially all biological processes and analysis of protein-protein interactions using both large-scale and small-scale approaches has contributed fundamental insights to the understanding of biological systems. In recent years, interactome network maps have emerged as an important tool for analyzing and interpreting genetic data of complex phenotypes. Complementary experimental approaches to test for binary, direct interactions, and for membership in protein complexes are used to explore the interactome. The two approaches are not redundant but yield orthogonal perspectives onto the complex network of physical interactions by which proteins mediate biological processes. In recent years, several publications have demonstrated that interactions from high-throughput experiments can be equally reliable as the high quality subset of interactions identified in small-scale studies. Critical for this insight was the introduction of standardized experimental benchmarking of interaction and validation assays using reference sets. The data obtained in these benchmarking experiments have resulted in greater appreciation of the limitations and the complementary strengths of different assays. Moreover, benchmarking is a central element of a conceptual framework to estimate interactome sizes and thereby measure progress toward near complete network maps. These estimates have revealed that current large-scale data sets, although often of high quality, cover only a small fraction of a given interactome. Here, I review the findings of assay benchmarking and discuss implications for quality control, and for strategies toward obtaining a near-complete map of the interactome of an organism.
Collapse
Affiliation(s)
- Pascal Braun
- Department of Plant Systems Biology, Center of Life and Food Sciences, Technische Universität München, Freising, Germany.
| |
Collapse
|
9
|
Lentze N, Auerbach D. Membrane-based yeast two-hybrid system to detect protein interactions. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2008; Chapter 19:Unit 19.17. [PMID: 18491299 DOI: 10.1002/0471140864.ps1917s52] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The classical yeast two-hybrid system and its modifications have been successfully used over the past decade to investigate interactions between most classes of proteins expressed in a given cell or tissue. However, some proteins (e.g., integral membrane proteins or nuclear proteins) are relatively difficult to investigate by standard yeast two-hybrid methods either because they are retained at cellular membranes or they activate the system in the absence of a true protein interaction. The membrane-based yeast two-hybrid (MbY2H) system presented in this unit overcomes some of these limitations. It is based on the split-ubiquitin protein complementation assay and detects protein interactions directly at the membrane, thereby allowing the use of full-length integral membrane proteins and membrane-associated proteins as baits to hunt for novel interaction partners. A simple modification also allows the use of proteins that are self-activating in a classical yeast two-hybrid system (e.g., acidic proteins and many transcription factors). Like the yeast two-hybrid system, the MbY2H system can also be used for interaction discovery by screening complex cDNA libraries for novel interaction partners.
Collapse
|
10
|
Lee JH, Vittone V, Diefenbach E, Cunningham AL, Diefenbach RJ. Identification of structural protein-protein interactions of herpes simplex virus type 1. Virology 2008; 378:347-54. [PMID: 18602131 DOI: 10.1016/j.virol.2008.05.035] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/18/2008] [Accepted: 05/31/2008] [Indexed: 11/24/2022]
Abstract
In this study we have defined protein-protein interactions between the structural proteins of herpes simplex virus type 1 (HSV-1) using a LexA yeast two-hybrid system. The majority of the capsid, tegument and envelope proteins of HSV-1 were screened in a matrix approach. A total of 40 binary interactions were detected including 9 out of 10 previously identified tegument-tegument interactions (Vittone, V., Diefenbach, E., Triffett, D., Douglas, M.W., Cunningham, A.L., and Diefenbach, R.J., 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J. Virol. 79, 9566-9571). A total of 12 interactions involving the capsid protein pUL35 (VP26) and 11 interactions involving the tegument protein pUL46 (VP11/12) were identified. The most significant novel interactions detected in this study, which are likely to play a role in viral assembly, include pUL35-pUL37 (capsid-tegument), pUL46-pUL37 (tegument-tegument) and pUL49 (VP22)-pUS9 (tegument-envelope). This information will provide further insights into the pathways of HSV-1 assembly and the identified interactions are potential targets for new antiviral drugs.
Collapse
Affiliation(s)
- Jin H Lee
- Centre for Virus Research, The Westmead Millennium Institute, The University of Sydney and Westmead Hospital, PO Box 412 Westmead, NSW 2145, Australia
| | | | | | | | | |
Collapse
|
11
|
Resolving the network of cell signaling pathways using the evolving yeast two-hybrid system. Biotechniques 2008; 44:655-62. [PMID: 18474041 DOI: 10.2144/000112797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In 1983, while investigators had identified a few human proteins as important regulators of specific biological outcomes, how these proteins acted in the cell was essentially unknown in almost all cases. Twenty-five years later, our knowledge of the mechanistic basis of protein action has been transformed by our increasingly detailed understanding of protein-protein interactions, which have allowed us to define cellular machines. The advent of the yeast two-hybrid (Y2H) system in 1989 marked a milestone in the field of proteomics. Exploiting the modular nature of transcription factors, the Y2H system allows facile measurement of the activation of reporter genes based on interactions between two chimeric or "hybrid" proteins of interest. After a decade of service as a leading platform for individual investigators to use in exploring the interaction properties of interesting target proteins, the Y2H system has increasingly been applied in high-throughput applications intended to map genome-scale protein-protein interactions for model organisms and humans. Although some significant technical limitations apply, Y2H has made a great contribution to our general understanding of the topology of cellular signaling networks.
Collapse
|
12
|
Abstract
Yeast two-hybrid systems are artificial genetic systems that allow identification and characterization of protein-protein interactions. One common limit to the use of these techniques is when the intrinsic property of "bait" proteins of interest transcriptionally autoactivates reporters, eliminating the basis for interaction detection. To circumvent this problem, autoactivating baits can be alternatively used in bacteria wherein such activation does not occur. A single-vector system has been developed, which can be used either in yeast or in bacteria, streamlining and expanding capacity for protein-protein interaction screens. A concise proposal is provided for use of this system in bacteria; a companion article, chapter 15, describes use of the system in yeast.
Collapse
|
13
|
Möckli N, Deplazes A, Auerbach D. Finding new protein interactions using the DUALhunter system. Nat Methods 2008. [DOI: 10.1038/nmeth.f.204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Krotov GI, Krutikova MP, Zgoda VG, Filatov AV. Profiling of the CD4 receptor complex proteins. BIOCHEMISTRY (MOSCOW) 2007; 72:1216-24. [DOI: 10.1134/s0006297907110077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Chatterjee S, Majumder CB, Roy P. Development of a yeast-based assay to determine the (anti)androgenic contaminants from pulp and paper mill effluents in India. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2007; 24:114-121. [PMID: 21783798 DOI: 10.1016/j.etap.2007.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/31/2007] [Accepted: 04/03/2007] [Indexed: 05/31/2023]
Abstract
We have constructed an efficient and reliable yeast-based detection system to evaluate the androgenic activity of endocrine disruptors from pulp and paper mill effluents (PPME). This system consists of human androgen receptor and androgen response elements driven β-galactosidase genes transformed in yeast, Saccharomyces cerevisiae. The transcriptional activation by known androgens, correlated with androgenic activities as measured by other assay systems. This assay system when applied to evaluate anti-androgenic activities, the known anti-androgens effectively inhibited reporter gene induction by testosterone. The specificity of the assay was tested by incubating the transformed cells with supraphysiological concentrations of non-androgenic steroids and none of them gave a significant response. The extracted PPME from five different mills demonstrated strong androgenic activities (about five- to eight-folds over control). These results suggest that PPME are rich in androgenic chemicals and the employed detection system could be applicable to primary screening for effectors on androgen receptor functions.
Collapse
Affiliation(s)
- Shamba Chatterjee
- Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee 247667, Uttaranchal, India
| | | | | |
Collapse
|
16
|
Park K, Yi SY, Lee CS, Kim KE, Pai HS, Seol DW, Chung BH, Kim M. A split enhanced green fluorescent protein-based reporter in yeast two-hybrid system. Protein J 2007; 26:107-16. [PMID: 17203394 DOI: 10.1007/s10930-006-9051-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We have developed a novel reporter system involving a yeast two-hybrid assay, which utilizes the reconstitution of the split EGFP reporter in order to characterize the relevant protein-protein interactions. To our knowledge, this study represents the first application of the split EGFP system as a read-out in a yeast two-hybrid assay. In comparison with the existing two-hybrid system, the bait and prey vectors were improved with regard to the reporter and the replication control element. As a result, the reconstituted EGFP has been observed to evidence a restored fluorescence upon protein-protein interactions in yeast, thereby allowing for the characterization of its interactor. The use of a split EGFP reporter has some salient advantages. Firstly, no substrates are required for the production of fluorescence. Secondly, low copy number plasmids may help to solve the protein toxicity problem, via the reduction of expression. Thirdly, this technique may prove useful in overcoming the autoactivation problem, due to the fact that the read-out of the yeast two-hybrid system is transcription-independent. Collectively, our results showed that the split EGFP reporter system might potentially be applied in yeast two-hybrid assays for the high-throughput screening of protein-protein interactions, with a simple and direct fluorescent read-out.
Collapse
Affiliation(s)
- Kyoungsook Park
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Möckli N, Deplazes A, Hassa PO, Zhang Z, Peter M, Hottiger MO, Stagljar I, Auerbach D. Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. Biotechniques 2007; 42:725-30. [PMID: 17612295 DOI: 10.2144/000112455] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Interactions between proteins are central to most biological processes; consequently, understanding the latter requires identification of all possible protein interactions within a cell. To extend the range of existing assays for the detection of protein interactions, we present a novel genetic screening assay, the cytosolic yeast two-hybrid system (cytoY2H), which is based on the split-ubiquitin technique and detects protein-protein interactions in the cytoplasm. We show that the assay can be applied to a wide range of proteins that are difficult to study in the classical yeast two-hybrid (Y2H) system, including transcription factors such as p53 and members of the NF-kappaB complex. Furthermore, we applied the cytoY2H system to cDNA library screening and identified several new interaction partners of Uri1p, an uncharacterized yeast protein. The cytoY2H system extends existing methods for the detection of protein interactions by providing a convenient solution for screening a wide range of transcriptionally active proteins.
Collapse
|
18
|
Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 2007; 3:e42. [PMID: 17397251 PMCID: PMC1847991 DOI: 10.1371/journal.pcbi.0030042] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Piekna-Przybylska D, Liu B, Fournier MJ. The U1 snRNA hairpin II as a RNA affinity tag for selecting snoRNP complexes. Methods Enzymol 2007; 425:317-53. [PMID: 17673090 DOI: 10.1016/s0076-6879(07)25014-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When isolating ribonucleoprotein (RNP) complexes by an affinity selection approach, tagging the RNA component can prove to be strategically important. This is especially true for purifying single types of snoRNPs, because in most cases the snoRNA is thought to be the only unique component. Here, we present a general strategy for selecting specific snoRNPs that features a high-affinity tag in the snoRNA and another in a snoRNP core protein. The RNA tag (called U1hpII) is a small (26 nt) stem-loop domain from human U1 snRNA. This structure binds with high affinity (K(D)=10(-11)M) to the RRM domain of the snRNP protein U1A. In our approach, the U1A protein contains a unique affinity tag and is coexpressed in vivo with the tagged snoRNA to yield snoRNP-U1A complexes with two unique protein tags-one in the bound U1A protein and the other in the snoRNP core protein. This scheme has been used effectively to select C/D and H/ACA snoRNPs, including both processing and modifying snoRNPs, and the snoRNA and core proteins are highly enriched. Depending on selection stringency other proteins are isolated as well, including an RNA helicase involved in snoRNP release from pre-rRNA and additional proteins that function in ribosome biogenesis. Tagging the snoRNA component alone is also effective when U1A is expressed with a myc-Tev-protein A fusion sequence. Combined with reduced stringency, enrichment of the U14 snoRNP with this latter system revealed potential interactions with two other snoRNPs, including one processing snoRNP involved in the same cleavages of pre-rRNA.
Collapse
|
20
|
Pedelini L, Marquina M, Ariño J, Casamayor A, Sanz L, Bollen M, Sanz P, Garcia-Gimeno MA. YPI1 and SDS22 proteins regulate the nuclear localization and function of yeast type 1 phosphatase Glc7. J Biol Chem 2006; 282:3282-92. [PMID: 17142459 DOI: 10.1074/jbc.m607171200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently characterized Ypi1 as an inhibitory subunit of yeast Glc7 PP1 protein phosphatase. In this work we demonstrate that Ypi1 forms a complex with Glc7 and Sds22, another Glc7 regulatory subunit that targets the phosphatase to substrates involved in cell cycle control. Interestingly, the combination of equimolar amounts of Ypi1 and Sds22 leads to an almost full inhibition of Glc7 activity. Because YPI1 is an essential gene, we have constructed conditional mutants that demonstrate that depletion of Ypi1 leads to alteration of nuclear localization of Glc7 and cell growth arrest in mid-mitosis with aberrant mitotic spindle. These phenotypes mimic those produced upon inactivation of Sds22. The fact that progressive depletion of either Ypi1 or Sds22 resulted in similar physiological phenotypes and that both proteins inhibit the phosphatase activity of Glc7 strongly suggest a common role of these two proteins in regulating Glc7 nuclear localization and function.
Collapse
Affiliation(s)
- Leda Pedelini
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaime Roig 11, 46010 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Suter B, Auerbach D, Stagljar I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. Biotechniques 2006; 40:625-44. [PMID: 16708762 DOI: 10.2144/000112151] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Yeast-based functional genomics and proteomics technologies developed over the past decade have contributed greatly to our understanding of bacterial, yeast, fly, worm, and human gene functions. In this review, we highlight some of these yeast-based functional genomic and proteomic technologies that are advancing the utility of yeast as a model organism in molecular biology and speculate on their future uses. Such technologies include use of the yeast deletion strain collection, large-scale determination of protein localization in vivo, synthetic genetic array analysis, variations of the yeast two-hybrid system, protein microarrays, and tandem affinity purification (TAP)-tagging approaches. The integration of these advances with established technologies is invaluable in the drive toward a comprehensive understanding of protein structure and function in the cellular milieu.
Collapse
|
22
|
Pelletier B, Trott A, Morano KA, Labbé S. Functional characterization of the iron-regulatory transcription factor Fep1 from Schizosaccharomyces pombe. J Biol Chem 2005; 280:25146-61. [PMID: 15866870 DOI: 10.1074/jbc.m502947200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to excess iron, Schizosaccharomyces pombe cells repress transcription of genes encoding components involved in iron uptake through the Fep1 transcription factor. Fep1 mediates this control by interacting with the consensus sequence 5'-(A/T)GATAA-3', found in iron-dependent promoters. In this report, we show that Fep1 localizes to the nucleus under both iron-replete and iron-starved conditions. The Fep1 DNA binding domain (amino acids 1-241) contains two GATA-type zinc finger motifs. Although we determine that the Fep1 C-terminal zinc finger (ZF2) is essential for DNA binding, we show that the N-terminal zinc finger (ZF1) enhances DNA binding affinity approximately 5-fold. Between the two zinc finger motifs of Fep1 resides an invariant amino acid sequence, denoted the Cys-rich region (amino acids 68-94), in which four highly conserved Cys residues are found. Cells harboring mutant alleles in which two or more of the conserved Cys residues were substituted by alanine exhibited elevated fio1(+) mRNA levels. We determine that the dissociation constant for the resulting complex between each of the Cys mutants and the sequence 5'-(A/T)GATAA-3' reflects a much lower affinity that correlates with failure to repress fio1(+) gene expression. Deletion analysis identified two heptad repeats (amino acids 522-536) within the C-terminal region of Fep1 that are necessary and sufficient to mediate Fep1 dimerization. Moreover, mutations that impair dimerization also negatively affect transcriptional repression. Together these findings reveal several novel features of Fep1, a non-canonical GATA factor required for iron homeostasis.
Collapse
Affiliation(s)
- Benoit Pelletier
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
23
|
Allen MW, Urbauer RJB, Johnson CK. Single-molecule assays of calmodulin target binding detected with a calmodulin energy-transfer construct. Anal Chem 2005; 76:3630-7. [PMID: 15228334 DOI: 10.1021/ac0497656] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have detected single-molecule binding interactions of a target peptide with the calcium-signaling protein calmodulin (CaM) immobilized in an agarose gel, and we have demonstrated the application of a single-molecule binding assay to measure the binding strength of CaM with the CaM-binding domain of calmodulin-dependent protein kinase II (CaMKII). The results demonstrate the potential for ultrasensitive assays of CaM-target interactions and the measurement of a picomolar dissociation constant. To detect single-molecule protein interactions, single-molecule assays require that the analyte molecule be confined to the focal spot of the objective for the time scale of the measurement. We demonstrate the deleterious effect of surface immobilization on CaM. As an alternative to surface immobilization, we have constructed a CaM/maltose binding protein fusion protein, which renders CaM translationally immobile in a low weight percent agarose gel. The target binding functionality of CaM assayed in agarose gels is in good agreement with solution assays. The utility of the construct for detecting interactions with CaM targets was demonstrated in a single-molecule assay of binding interactions of MBP-CaM with the CaMKII CaM-binding domain peptide. A value of 103 +/- 35 pM for the dissociation constant of this interaction was determined by simple counting of fluorescent molecules.
Collapse
Affiliation(s)
- Michael W Allen
- Department of Chemistry and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
24
|
Nasim MT, Trembath RC. A dual-light reporter system to determine the efficiency of protein-protein interactions in mammalian cells. Nucleic Acids Res 2005; 33:e66. [PMID: 15824058 PMCID: PMC1075926 DOI: 10.1093/nar/gni066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methods for determining protein–protein interactions in mammalian cells typically rely on single reporter functions and are susceptible to variations between samples particularly in regard to levels of transcription, processing and translation. A method has been developed for determining protein–protein interactions in mammalian cells, which bypasses these variables confounding single reporter assays. The approach utilizes two units of gene expression linked to reporter functions that are interposed by a deactivation–activation unit in such a way that the downstream expression unit is switched off. Hence upstream expression occurs regardless of protein–protein interaction, leading to the production of the upstream reporter. In the event of protein–protein interactions, the downstream expression unit is switched on leading to dual reporter read outs. Thus, the ratio of the two reporter activities provides a measure to determine the efficiency of protein–protein interactions. To access the system we screened a mutant of BMPR2 where the interaction between BMPR-II and LIMK is abrogated. BMPR-II is a type II receptor of the TGFβ superfamily and plays a key role in the pathogenesis of familial pulmonary arterial hypertension. This system has potential for high-throughput screening of libraries (peptide, chemical, cDNA, etc.) to isolate agents that are capable of interfering with highly selective protein–protein interaction.
Collapse
Affiliation(s)
- M T Nasim
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.
| | | |
Collapse
|
25
|
Poustovoitov M, Serebriiskii I, Adams PD. A two-step two-hybrid system to identify functionally significant protein-protein interactions. Methods 2005; 32:371-80. [PMID: 15003599 DOI: 10.1016/j.ymeth.2003.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2003] [Indexed: 11/19/2022] Open
Abstract
The two-step two-hybrid approach described here is an adaptation of the classic two-hybrid system. Its purpose is to identify proteins that interact with a relatively small, defined, functionally significant domain of a protein of interest. In this method, a first round of screening is performed to identify proteins that interact with bait comprised of the wild type protein. Next, each of the prey identified in this first round is tested for its ability to interact with functionally impaired, mutant bait. Any proteins that interact with the wild type bait, but not the mutant bait, are candidate effectors or regulators of the protein of interest.
Collapse
|
26
|
Causier B. Studying the interactome with the yeast two-hybrid system and mass spectrometry. MASS SPECTROMETRY REVIEWS 2004; 23:350-367. [PMID: 15264234 DOI: 10.1002/mas.10080] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein interactions are crucial to the life of a cell. The analysis of such interactions is allowing biologists to determine the function of uncharacterized proteins and the genes that encode them. The yeast two-hybrid system has become one of the most popular and powerful tools to study protein-protein interactions. With the advent of proteomics, the two-hybrid system has found a niche in interactome mapping. However, it is clear that only by combining two-hybrid data with that from complementary approaches such as mass spectrometry (MS) can the interactome be analyzed in full. This review introduces the yeast two-hybrid system to those unfamiliar with the technique, and discusses how it can be used in combination with MS to unravel the network of protein interactions that occur in a cell.
Collapse
Affiliation(s)
- Barry Causier
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
27
|
Möckli N, Auerbach D. Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system. Biotechniques 2004; 36:872-6. [PMID: 15152608 DOI: 10.2144/04365pt03] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Measurement of beta-galactosidase (beta-gal) activity is an important step in every yeast two-hybrid assay, yet many commonly used methods have distinct disadvantages, such as being only qualitative, time-consuming, and cumbersome when processing large numbers of samples. To overcome these drawbacks, we have implemented a novel technique, termed pellet X-gal assay, that allows simultaneous quantitative measurements from large numbers of samples with a minimum of hands-on time. The method was tested using five different, previously described protein-protein interactions and compared to two standard methods, the colony filter lift and the liquid ONPG assay. Our assay allows accurate quantitative measurements of protein-protein interactions and covers a greater dynamic range than the classic ONPG assay. The novel assay is robust and requires very little handling, making it suitable for applications in which several hundreds of individual protein interaction pairs need to be measured simultaneously.
Collapse
|
28
|
Abstract
The goal of interaction proteomics that studies the protein-protein interactions of all expressed proteins is to understand biological processes that are strictly regulated by these interactions. The availability of entire genome sequences of many organisms and high-throughput analysis tools has led scientists to study the entire proteome (Pandey and Mann, 2000). There are various high-throughput methods for detecting protein interactions such as yeast two-hybrid approach and mass spectrometry to produce vast amounts of data that can be utilized to decipher protein functions in complicated biological networks. In this review, we discuss recent developments in analytical methods for large-scale protein interactions and the future direction of interaction proteomics.
Collapse
Affiliation(s)
- Sayeon Cho
- Laboratory of Proteome Analysis, Korea Research Institute of Bioscience and Biotechnology, P.O. Box 115, Yusong, Daejeon 305-600, South Korea.
| | | | | | | |
Collapse
|
29
|
Panasyuk G, Nemazanyy I, Filonenko V, Zhyvoloup A. Large-scale yeast transformation in low-percentage agarose medium. Biotechniques 2004; 36:40-2, 44. [PMID: 14740481 DOI: 10.2144/04361bm03] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ganna Panasyuk
- Institute of Molecular Biology and Genetics, National University Kyiv-Mohyla Academy, Kyiv, Ukraine
| | | | | | | |
Collapse
|
30
|
Stagljar I. Finding Partners: Emerging Protein Interaction Technologies Applied to Signaling Networks. Sci Signal 2003; 2003:pe56. [PMID: 14679289 DOI: 10.1126/stke.2132003pe56] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Signal transduction pathways play essential roles in cell differentiation, proliferation, and survival. Their precise regulation is achieved through specific protein-protein interactions that mediate the assembly of protein complexes in response to different signals. Disturbances of the normal protein-protein interactions within signaling pathways can lead to many diseases, including cancer. In this review, Stagljar aims to highlight the emerging protein interaction technologies that are advancing the field of signal transduction. These approaches include stable isotope labeling by amino acids in cell culture, SH2 profiling, target-assisted iterative screening, and the split-ubiquitin membrane yeast two-hybrid system. Although still at an early stage, these technologies show promise as useful methods for the characterization of novel components of various signal transduction pathways.
Collapse
Affiliation(s)
- Igor Stagljar
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
31
|
Tijms MA, Snijder EJ. Equine arteritis virus non-structural protein 1, an essential factor for viral subgenomic mRNA synthesis, interacts with the cellular transcription co-factor p100. J Gen Virol 2003; 84:2317-2322. [PMID: 12917451 DOI: 10.1099/vir.0.19297-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Non-structural protein 1 (nsp1), the N-terminal subunit of the replicase polyprotein of the arterivirus Equine arteritis virus (EAV), is essential for viral subgenomic mRNA synthesis, but fully dispensable for genome replication. However, at the molecular level, the role of nsp1 in EAV subgenomic mRNA synthesis is poorly understood. A yeast two-hybrid screen did not reveal interactions between EAV nsp1 and other viral non-structural proteins or the nucleocapsid protein, although both nsp1 and the nucleocapsid protein were found to form homomers. Subsequently, a yeast two-hybrid screen of a HeLa cell cDNA library was performed using nsp1 as bait. Remarkably, this analysis revealed (potential) interactions between EAV nsp1 and factors that are involved in host cell transcriptional regulation. The interaction of nsp1 with one of these proteins, p100, a transcription co-activator that also interacts with regulatory proteins of other viruses, was confirmed by mutual co-immunoprecipitation from lysates of EAV-susceptible mammalian cells.
Collapse
Affiliation(s)
- Marieke A Tijms
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC E4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC E4-P, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
32
|
Diaz-Camino C, Risseeuw EP, Liu E, Crosby WL. A high-throughput system for two-hybrid screening based on growth curve analysis in microtiter plates. Anal Biochem 2003; 316:171-4. [PMID: 12711337 DOI: 10.1016/s0003-2697(02)00706-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The yeast two-hybrid system is a powerful tool for identifying novel protein-protein interactions. In general, biochemical marker genes such as lacZ are exploited for indirect quantification of the interaction, and commonly involve the conduct of rather laborious beta-galactosidase assays. This paper describes a simple alternative method based on growth curve analysis of yeast cultures that is amenable to microtiter plate format, and therefore allows the quantification of large numbers of yeast two-hybrid combinations. The analyzed results of yeast cultures grown in microtiter plates were compared with those obtained from the classical beta-galactosidase assay. We conclude that the method presented here is reproducible, of equal or greater sensitivity than the beta-galactosidase assay, and can be further adapted for application to the conduct of large-scale, automated yeast two-hybrid experiments.
Collapse
Affiliation(s)
- Claudia Diaz-Camino
- Gene Expression Group, Plant Biotechnology Institute, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, Canada S7N 0W9
| | | | | | | |
Collapse
|
33
|
Abstract
The long-term challenge of proteomics is enormous: to define the identities, quantities, structures and functions of complete complements of proteins, and to characterize how these properties vary in different cellular contexts. One critical step in tackling this goal is the generation of sets of clones that express a representative of each protein of a proteome in a useful format, followed by the analysis of these sets on a genome-wide basis. Such studies enable genetic, biochemical and cell biological technologies to be applied on a systematic level, leading to the assignment of biochemical activities, the construction of protein arrays, the identification of interactions, and the localization of proteins within cellular compartments.
Collapse
Affiliation(s)
- Eric Phizicky
- University of Rochester School of Medicine, Department of Biochemistry and Biophysics, Box 712, 601 Elmwood Avenue, Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Due to the pivotal role of membrane proteins in many cellular processes, their direct link to human disease and their often extracellular accessibility towards drugs, an understanding of membrane protein function is desirable. However, the hydrophobic nature of membrane proteins often results in insoluble proteins which makes protein isolation difficult and therefore hinders the determination of protein complex composition and protein function. Recently, several yeast genetic techniques have made the characterisation of interactions among membrane proteins more feasible. Techniques such as the guanine-nucleotide binding protein fusion assay, the reverse Ras recruitment system and the split-ubiquitin system have been fruitful in monitoring known protein interactions and uncovering novel interactions. Since many disease states have altered membrane protein function, one can use these systems to recreate interactions involving disease causing membrane proteins. Once established, screens for small molecules, peptides and/or single chain antibodies which disrupt such interactions can provide insight into the biology of the interaction and thus help guide therapeutical research. In this review, we speculate on the feasibility of using inhibitors of protein interactions as drugs and the adaptation of these techniques to select for inhibitors of defined protein interactions.
Collapse
Affiliation(s)
- Michael Fetchko
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich-Irchel, Zurich, Switzerland
| | | | | |
Collapse
|
35
|
Immink RGH, Angenent GC. Transcription factors do it together: the hows and whys of studying protein-protein interactions. TRENDS IN PLANT SCIENCE 2002; 7:531-534. [PMID: 12475492 DOI: 10.1016/s1360-1385(02)02343-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions are intrinsic to virtually every cellular process. Recent breakthroughs in techniques to study protein-interaction and the availability of fully sequenced plant genomes have attracted many plant scientists to undertake the first steps in the field of protein interactions. High-throughput screening systems allow the discovery of protein functions. Even without performing laborious functional assays, in planta functional homologues and redundant proteins can be accurately predicted based on protein-interaction maps. Therefore, protein-protein-interaction screenings are an essential supplement to the current functional-genomics toolbox.
Collapse
Affiliation(s)
- Richard G H Immink
- Business Unit Plant Development and Reproduction, Plant Research International, Bornsesteeg 65, 6708 PD Wageningen, The Netherlands
| | | |
Collapse
|
36
|
Immink RGH, Gadella TWJ, Ferrario S, Busscher M, Angenent GC. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A 2002; 99:2416-21. [PMID: 11854533 PMCID: PMC122379 DOI: 10.1073/pnas.042677699] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Over the last decade, the yeast two-hybrid system has become the tool to use for the identification of protein-protein interactions and recently, even complete interactomes were elucidated by this method. Nevertheless, it is an artificial system that is sensitive to errors resulting in the identification of false-positive and false-negative interactions. In this study, plant MADS box transcription factor interactions identified by yeast two-hybrid systems where studied in living plant cells by a technique based on fluorescence resonance energy transfer (FRET). Petunia MADS box proteins were fused to either cyan fluorescent protein or yellow fluorescent protein and transiently expressed in protoplasts followed by FRET-spectral imaging microscopy and FRET-fluorescence lifetime imaging microscopy to detect FRET and hence protein-protein interactions. All petunia MADS box heterodimers identified in yeast were confirmed in protoplasts. However, in contrast to the yeast two-hybrid results, homodimerization was demonstrated in plant cells for three petunia MADS box proteins. Heterodimers were identified between the ovule-specific MADS box protein FLORAL BINDING PROTEIN 11 and members of the petunia FLORAL BINDING PROTEIN 2 subfamily, which are also expressed in ovules, suggesting that these dimers play a role in ovule development. Furthermore, the role of dimerization in translocation of MADS box protein dimers to the nucleus is demonstrated, and the nuclear localization signal of MADS box proteins has been mapped to the N-terminal region of the MADS domain by means of mutant analyses.
Collapse
Affiliation(s)
- Richard G H Immink
- Plant Research International, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Auerbach D, Galeuchet-Schenk B, Hottiger MO, Stagljar I. Genetic approaches to the identification of interactions between membrane proteins in yeast. J Recept Signal Transduct Res 2002; 22:471-81. [PMID: 12503635 DOI: 10.1081/rrs-120014615] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The recent sequencing of entire eukaryotic genomes has renewed the interest in identifying and characterizing all gene products that are expressed in a given organism. The characterization of unknown gene products is facilitated by the knowledge of its binding partners. Thus, a novel protein may be classified by identifying previously characterized proteins that interact with it. If such an approach is carried out on a large scale, it may allow the rapid characterization of the thousands of predicted open reading frames identified by recent sequencing projects. Currently, the yeast two-hybrid system is the most widely used genetic assay for the detection of protein-protein interactions. The yeast two-hybrid system has become popular because it requires little individual optimization and because, as compared to conventional biochemical methods, the identification and characterization of protein-protein interactions can be completed in a relatively short time span. In this review, we briefly discuss the yeast two-hybrid system and its application to large scale screening studies that aim at deciphering all protein-protein interactions taking place in a given cell type or organism. We then focus on a class of proteins that is unsuitable for conventional yeast two-hybrid systems, namely integral membrane proteins and membrane-associated proteins, and describe several novel genetic systems that combine the advantages of the yeast two-hybrid system with the potential to identify interaction partners of membrane-associated proteins in their natural setting.
Collapse
Affiliation(s)
- Daniel Auerbach
- DUALSYSTEMS BIOTECH Inc., Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
38
|
Kelly MA, McLellan TJ, Rosner PJ. Strategic use of affinity-based mass spectrometry techniques in the drug discovery process. Anal Chem 2002; 74:1-9. [PMID: 11795774 DOI: 10.1021/ac010569y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in biomolecular mass spectrometry (Bio-MS) have made this technique an invaluable tool for analytical chemists and biochemists alike. The applicability of Bio-MS approaches in drug discovery now encompasses in vitro, cellular, and in vivo pharmacological and clinical applications in an unprecedented expansion of utility. As a result, the role of Bio-MS in pharmaceutical discovery continues to proliferate for both structural and functional characterization of biomolecules. From target characterization to lead optimization, affinity techniques have been used to purify, probe, and enrich analytes of interest. Affinity selection employed prior to MS analysis can "edit" out extraneous noise and enable the researcher to examine only what is important. These affinity-based methods can be used as an alternative strategy when classical biochemical techniques are insufficient in advancing difficult projects. We have applied various affinity techniques in conjunction with mass spectrometry throughout the drug discovery process. This perspective will describe affinity-based mass spectrometry methodologies and related concepts, illustrated with original results.
Collapse
Affiliation(s)
- Michele A Kelly
- Exploratory Medicinal Sciences, Pfizer Global R&D, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
39
|
Discovery of protein—protein interaction using two-hybrid systems. METHODS IN MICROBIOLOGY 2002. [DOI: 10.1016/s0580-9517(02)33013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
40
|
Abstract
In spite of its apparent weakness as a clock model, the budding yeast has spawned a technique that has revolutionized our ability to study specific protein-protein interactions like those at the core of the molecular timekeeping mechanisms. Here, the author will summarize the evolution, power, and limitations of this technique and highlight its potential and actual contributions to the field of chronobiology.
Collapse
Affiliation(s)
- R Baler
- Unit on Temporal Gene Expression, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Ito T, Chiba T, Yoshida M. Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol 2001. [DOI: 10.1016/s0167-7799(01)00005-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Ito T, Chiba T, Yoshida M. Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol 2001; 19:S23-7. [PMID: 11780966 DOI: 10.1016/s0167-7799(01)01790-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Large-scale two-hybrid projects were used in an approach to examine protein-protein interactions. Despite the various limitations of this approach, these projects revealed a wealth of novel interactions, and the protein interactome may be much larger than expected.
Collapse
Affiliation(s)
- T Ito
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, Japan.
| | | | | |
Collapse
|
43
|
Abstract
Extremely diverse, DNA-encoded libraries of peptides and proteins have been constructed that include a linkage between each polypeptide and the encoding DNA. Library members can be selected by virtue of a particular binding specificity, and their protein sequence can be deduced from the sequence of the cognate DNA. Such combinatorial biology methods have proven invaluable in both identifying natural protein-protein interactions and also in mapping the specificities and energetics of these interactions in fine detail.
Collapse
Affiliation(s)
- J Pelletier
- Université de Montréal, Département de Chimie, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada.
| | | |
Collapse
|
44
|
Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 2001; 98:4569-74. [PMID: 11283351 PMCID: PMC31875 DOI: 10.1073/pnas.061034498] [Citation(s) in RCA: 2335] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein-protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the approximately 6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P., et al. (2000) Nature (London) 403, 623-627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.
Collapse
Affiliation(s)
- T Ito
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
In recent years, the use of surface-display vectors for displaying polypeptides on the surface of bacteriophage and bacteria, combined with in vitro selection technologies, has transformed the way in which we generate and manipulate ligands, such as enzymes, antibodies and peptides. Phage display is based on expressing recombinant proteins or peptides fused to a phage coat protein. Bacterial display is based on expressing recombinant proteins fused to sorting signals that direct their incorporation on the cell surface. In both systems, the genetic information encoding for the displayed molecule is physically linked to its product via the displaying particle. Using these two complementary technologies, we are now able to design repertoires of ligands from scratch and use the power of affinity selection to select those ligands having the desired (biological) properties from a large excess of irrelevant ones. With phage display, tailor-made proteins (fused peptides, antibodies, enzymes, DNA-binding proteins) may be synthesized and selected to acquire the desired catalytic properties or affinity of binding and specificity for in vitro and in vivo diagnosis, for immunotherapy of human disease or for biocatalysis. Bacterial surface display has found a range of applications in the expression of various antigenic determinants, heterologous enzymes, single-chain antibodies, and combinatorial peptide libraries. This review explains the basis of phage and bacterial surface display and discusses the contributions made by these two leading technologies to biotechnological applications. This review focuses mainly on three areas where phage and cell display have had the greatest impact, namely, antibody engineering, enzyme technology and vaccine development.
Collapse
Affiliation(s)
- I Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Green Building, Room 202, Tel-Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
46
|
Serebriiskii IG, Golemis EA. Uses of lacZ to study gene function: evaluation of beta-galactosidase assays employed in the yeast two-hybrid system. Anal Biochem 2000; 285:1-15. [PMID: 10998258 DOI: 10.1006/abio.2000.4672] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- I G Serebriiskii
- Division of Basic Science, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|