1
|
Aqil A, Li Y, Wang Z, Islam S, Russell M, Kallak TK, Saitou M, Gokcumen O, Masuda N. Switch-like Gene Expression Modulates Disease Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609537. [PMID: 39229158 PMCID: PMC11370615 DOI: 10.1101/2024.08.24.609537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A fundamental challenge in biomedicine is understanding the mechanisms predisposing individuals to disease. While previous research has suggested that switch-like gene expression is crucial in driving biological variation and disease susceptibility, a systematic analysis across multiple tissues is still lacking. By analyzing transcriptomes from 943 individuals across 27 tissues, we identified 1,013 switch-like genes. We found that only 31 (3.1%) of these genes exhibit switch-like behavior across all tissues. These universally switch-like genes appear to be genetically driven, with large exonic genomic structural variants explaining five (~18%) of them. The remaining switch-like genes exhibit tissue-specific expression patterns. Notably, tissue-specific switch-like genes tend to be switched on or off in unison within individuals, likely under the influence of tissue-specific master regulators, including hormonal signals. Among our most significant findings, we identified hundreds of concordantly switched-off genes in the stomach and vagina that are linked to gastric cancer (41-fold, p<10-4) and vaginal atrophy (44-fold, p<10-4), respectively. Experimental analysis of vaginal tissues revealed that low systemic levels of estrogen lead to a significant reduction in both the epithelial thickness and the expression of the switch-like gene ALOX12. We propose a model wherein the switching off of driver genes in basal and parabasal epithelium suppresses cell proliferation therein, leading to epithelial thinning and, therefore, vaginal atrophy. Our findings underscore the significant biomedical implications of switch-like gene expression and lay the groundwork for potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yanyan Li
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhiliang Wang
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Saiful Islam
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| | - Madison Russell
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Xie Y, Yang A, Li N, Zheng H, Zhong Y, Jin Y, Li J, Ye R, Du L, Hu F. Lapagyl mitigates UV-induced inflammation and immunosuppression via Foxp3+ Tregs and CCL pathway: A single-cell transcriptomics study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155679. [PMID: 38701542 DOI: 10.1016/j.phymed.2024.155679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND As the largest organ of the body, the skin is constantly subjected to ultraviolet radiation (UVR), leading to inflammations and changes that mirror those seen in chronological aging. Although various small molecule drugs have been explored for treating skin photoaging, they typically suffer from low stability and a high incidence of adverse reactions. Consequently, the continued investigation of photoaging treatments, particularly those utilizing herbal products, remains a critical clinical endeavor. One such herbal product, Lapagyl, is derived from the bark of the lapacho tree and possesses antioxidant efficacies that could be beneficial in combating skin photoaging. PURPOSE This research aimed to evaluate the efficacy of the herbal product Lapagyl in combating UVR-induced skin photoaging. Additionally, it sought to unravel the mechanisms by which Lapagyl promotes the regeneration of the skin extracellular matrix. METHODS To investigate whether Lapagyl can alleviate skin aging and damage, a UVR radiation model was established using SKH-1 hairless mice. The dorsal skins of these mice were evaluated for wrinkle formation, texture, moisture, transepidermal water loss (TEWL), and elasticity. Pathological assessments were conducted to determine Lapagyl's efficacy. Additionally, single-cell sequencing and spectrum analysis were employed to elucidate the working mechanisms and primary components of Lapagyl in addressing UVR-induced skin aging and injury. RESULTS Lapagyl markedly reduced UVR-induced wrinkles, moisture loss, and elasticity decrease in SKH-1 mice. Single-cell sequencing demonstrated that Lapagyl corrected the imbalance in cell proportions caused by UVR, decreased UVR-induced ROS expression, and protected basal and spinous cells from skin damage. Additionally, Lapagyl effectively prevented the entry of inflammatory cells into the skin by reducing CCL8 expression and curtailed the UVR-induced formation of Foxp3+ regulatory T cells (Tregs) in the skin. Both pathological assessments and ex vivo skin model results demonstrated that Lapagyl effectively reduced UVR-induced damage to collagen and elastin. Spectrum analysis identified Salidroside as the primary compound remaining in the skin following Lapagyl treatment. Taken together, our study elucidated the skin protection mechanism of the herbal product Lapagyl against UVR damage at the cellular level, revealing its immunomodulatory effects, with salidroside identified as the primary active compound for skin. CONCLUSION Our study provided a thorough evaluation of Lapagyl's protective effects on skin against UVR damage, delving into the mechanisms at the cellular level. We discovered that Lapagyl mitigates skin inflammation and immunosuppression by regulating Foxp3+ Tregs and the CCL pathway. These insights indicate that Lapagyl has potential as a novel therapeutic option for addressing skin photoaging.
Collapse
Affiliation(s)
- Yicheng Xie
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China.
| | - Anqi Yang
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Nihong Li
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Huiwen Zheng
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Ye Zhong
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Yuting Jin
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Jiabin Li
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang Province, China
| | - Rui Ye
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Le Du
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China
| | - Fan Hu
- UNISKIN Research Institute on Skin Aging, Inertia Shanghai Biotechnology Co., Ltd., Shanghai, China; DermaHealth Shanghai Biotechnology Co., Ltd., Shanghai, China.
| |
Collapse
|
3
|
Hamilton M, Mars Z, Sedeuil M, Rolland M, Jean D, Boudreau F, Giroux V. ASCL2 is a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium. Biol Open 2024; 13:bio059919. [PMID: 38252116 PMCID: PMC10836648 DOI: 10.1242/bio.059919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/25/2023] [Indexed: 01/23/2024] Open
Abstract
The esophagus is protected from the hostile environment by a stratified epithelium, which renews rapidly. Homeostasis of this epithelium is ensured by a rare population of stem cells in the basal layer: Keratin 15+ (Krt15+) cells. However, little is known about the molecular mechanisms regulating their distinct features, namely self-renewal, potency and epithelial regeneration. Achaete-scute family BHLH transcription factor 2 (ASCL2) is strongly upregulated in Krt15+ stem cells and is known to contribute to stem cell maintenance in other tissues. Herein, we investigated the role of ASCL2 in maintaining homeostasis under normal and stress conditions in the esophageal epithelium. ASCL2 overexpression severely dysregulated cell differentiation and cell fate. Proliferation was also reduced due potentially to a blockage in the G1 phase of the cell cycle or an induction of quiescence. Mass spectrometry analysis confirmed alterations in several proteins associated with differentiation and the cell cycle. In addition, overexpression of ASCL2 enhanced resistance to radiation and chemotherapeutic drugs. Overall, these results denote the role of ASCL2 as a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium.
Collapse
Affiliation(s)
- Maude Hamilton
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Zoéline Mars
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
- Université Paris Cité, Magistère Européen de génétique, Paris 75006, France
| | - Molly Sedeuil
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Marjorie Rolland
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Dominique Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Véronique Giroux
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| |
Collapse
|
4
|
Heryanto YD, Imoto S. Identifying Key Regulators of Keratinization in Lung Squamous Cell Cancer Using Integrated TCGA Analysis. Cancers (Basel) 2023; 15:cancers15072066. [PMID: 37046726 PMCID: PMC10092975 DOI: 10.3390/cancers15072066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Keratinization is one of lung squamous cell cancer’s (LUSC) hallmark histopathology features. Epithelial cells produce keratin to protect their integrity from external harmful substances. In addition to their roles as cell protectors, recent studies have shown that keratins have important roles in regulating either normal cell or tumor cell functions. The objective of this study is to identify the genes and microRNAs (miRNAs) that act as key regulators of the keratinization process in LUSC. To address this goal, we classified LUSC samples from GDC-TCGA databases based on their keratinization molecular signatures. Then, we performed differential analyses of genes, methylation, and miRNA expression between high keratinization and low keratinization samples. By reconstruction and analysis of the differentially expressed genes (DEGs) network, we found that TP63 and SOX2 were the hub genes that were highly connected to other genes and displayed significant correlations with several keratin genes. Methylation analysis showed that the P63, P73, and P53 DNA-binding motif sites were significantly enriched for differentially methylated probes. We identified SNAI2, GRHL3, TP63, ZNF750, and FOXE1 as the top transcription factors associated with these binding sites. Finally, we identified 12 miRNAs that influence the keratinization process by using miRNA–mRNA correlation analysis.
Collapse
Affiliation(s)
- Yusri Dwi Heryanto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Correspondence:
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Laboratory of Sequence Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
5
|
Rossiter H, Copic D, Direder M, Gruber F, Zoratto S, Marchetti-Deschmann M, Kremslehner C, Sochorová M, Nagelreiter IM, Mlitz V, Buchberger M, Lengauer B, Golabi B, Sukseree S, Mildner M, Eckhart L, Tschachler E. Autophagy protects murine preputial glands against premature aging, and controls their sebum phospholipid and pheromone profile. Autophagy 2021; 18:1005-1019. [PMID: 34491140 DOI: 10.1080/15548627.2021.1966716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Preputial glands are large lipid and hormone secreting sebaceous organs of mice, and present a convenient model for the investigation of biological processes in sebocytes. Suppression of ATG7-dependent macroautophagy/autophagy in epithelial cells of murine skin causes enlargement of hair follicle-associated sebaceous glands and alters the lipid profile of sebum. We have now extended these studies to the preputial glands and find that autophagy significantly delays the onset of age-related ductal ectasia, influences lipid droplet morphology and contributes to the complete dissolution of the mature sebocytes during holocrine secretion. Single cell RNA sequencing showed that many genes involved in lipid metabolism and oxidative stress response were downregulated in immature and mature epithelial cells of ATG7-deficient glands. When analyzing the lipid composition of control and mutant glands, we found that levels of all phospholipid classes, except choline plasmalogen, were decreased in the mutant glands, with a concomitant accumulation of diacyl glycerides. Mass spectrometric imaging (MSI) demonstrated that phospholipid species, specifically the dominant phosphatidylcholine (PC 34:1), were decreased in immature and mature sebocytes. In addition, we found a strong reduction in the amounts of the pheromone, palmityl acetate. Thus, autophagy in the preputial gland is not only important for homeostasis of the gland as a whole and an orderly breakdown of cells during holocrine secretion, but also regulates phospholipid and fatty acid metabolism, as well as pheromone production.AbbreviationsATG7: autophagy related 7; BODIPY: boron dipyrromethene; DAG: diacyl glycerides; DBI: diazepam binding inhibitor; GFP: green fluorescent protein; KRT14: keratin 14; HPLC-MS: high performance liquid chromatography-mass spectrometry; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MSI: mass spectrometric imaging; ORO: Oil Red O; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: preputial gland; PLIN2: perilipin 2; PtdIns: phosphatidylinositol; PL: phospholipids; POPC: 1-palmitoyl-2-oleoyl-PC; PS: phosphatidylserine; qRT-PCR: quantitative reverse transcribed PCR; SG: sebaceous gland; scRNAseq: single-cell RNA sequencing; TAG: triacylglycerides; TLC: thin layer chromatography.
Collapse
Affiliation(s)
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Samuele Zoratto
- Institute of Chemical Technologies and Analytics, Technical University of Vienna, Vienna, Austria
| | | | | | - Michaela Sochorová
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Barbara Lengauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Su Y, Zeng Z, Rong D, Yang Y, Wu B, Cao Y. PSMC2, ORC5 and KRTDAP are specific biomarkers for HPV-negative head and neck squamous cell carcinoma. Oncol Lett 2021; 21:289. [PMID: 33732365 PMCID: PMC7905686 DOI: 10.3892/ol.2021.12550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The prognosis of patients with human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) is poorer than those with HPV-positive HNSCC. The present study aimed to identify novel and specific biomarkers of HPV-negative HNSCC using bioinformatics analysis and associated experiments. The gene expression profiles of HPV-negative HNSCC tissues and corresponding clinical data were downloaded from The Cancer Genome Atlas database and used in a weighted gene co-expression network analysis. Genes in clinically significant co-expression modules were used to construct a protein-protein interaction (PPI) network. The genes demonstrating a high degree score in the PPI network and a high correlation with tumor grade were considered hub genes. The diagnostic value of the hub genes associated with HPV-negative and HPV-positive HNSCC was analyzed using differential expression gene (DEG) analysis, immunohistochemical (IHC) staining and a receiver operating characteristic (ROC) curve analysis. Seven genes [Serrate RNA effector molecule (SRRT), checkpoint kinase 2 (CHEK2), small nuclear ribonucleoprotein polypeptide E (SNRPE), proteasome 26S subunit ATPase 2 (PSMC2), origin recognition complex subunit 5 (ORC5), S100 calcium binding protein A7 and keratinocyte differentiation associated protein (KRTDAP)] were demonstrated to be hub genes in clinically significant co-expression modules. DEG, IHC and ROC curve analyses revealed that SRRT, CHEK2 and SNRPE were significantly upregulated in HPV-negative and HPV-positive HNSCC tissues compared with in adjacent tissues, and these genes demonstrated a high diagnostic value for distinguishing HNSCC tissues. However, PSMC2, ORC5 and KRTDAP were the only differentially expressed genes identified in HPV-negative HNSCC tissues, and these genes demonstrated a high diagnostic value for HPV-negative HNSCC. PSMC2, ORC5 and KRTDAP may therefore serve as novel and specific biomarkers for HPV-negative HNSCC, potentially improving the diagnosis and treatment of patients with HPV-negative HNSCC.
Collapse
Affiliation(s)
- Yushen Su
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Dongyun Rong
- Clinical Medical School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Public Health School, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yushi Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China.,Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Bei Wu
- Department of Obstetrics and Gynecology, 925 Hospital of The Joint Logistics Support Force of The Chinese People's Liberation Army, Guiyang, Guizhou 550004, P.R. China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
7
|
Dohmen E, Klasberg S, Bornberg-Bauer E, Perrey S, Kemena C. The modular nature of protein evolution: domain rearrangement rates across eukaryotic life. BMC Evol Biol 2020; 20:30. [PMID: 32059645 PMCID: PMC7023805 DOI: 10.1186/s12862-020-1591-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/31/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Modularity is important for evolutionary innovation. The recombination of existing units to form larger complexes with new functionalities spares the need to create novel elements from scratch. In proteins, this principle can be observed at the level of protein domains, functional subunits which are regularly rearranged to acquire new functions. RESULTS In this study we analyse the mechanisms leading to new domain arrangements in five major eukaryotic clades (vertebrates, insects, fungi, monocots and eudicots) at unprecedented depth and breadth. This allows, for the first time, to directly compare rates of rearrangements between different clades and identify both lineage specific and general patterns of evolution in the context of domain rearrangements. We analyse arrangement changes along phylogenetic trees by reconstructing ancestral domain content in combination with feasible single step events, such as fusion or fission. Using this approach we explain up to 70% of all rearrangements by tracing them back to their precursors. We find that rates in general and the ratio between these rates for a given clade in particular, are highly consistent across all clades. In agreement with previous studies, fusions are the most frequent event leading to new domain arrangements. A lineage specific pattern in fungi reveals exceptionally high loss rates compared to other clades, supporting recent studies highlighting the importance of loss for evolutionary innovation. Furthermore, our methodology allows us to link domain emergences at specific nodes in the phylogenetic tree to important functional developments, such as the origin of hair in mammals. CONCLUSIONS Our results demonstrate that domain rearrangements are based on a canonical set of mutational events with rates which lie within a relatively narrow and consistent range. In addition, gained knowledge about these rates provides a basis for advanced domain-based methodologies for phylogenetics and homology analysis which complement current sequence-based methods.
Collapse
Affiliation(s)
- Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany.,Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen, 45665, Germany
| | - Steffen Klasberg
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany
| | - Sören Perrey
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen, 45665, Germany
| | - Carsten Kemena
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany.
| |
Collapse
|
8
|
Utheim TP, Islam R, Fostad IG, Eidet JR, Sehic A, Olstad OK, Dartt DA, Messelt EB, Griffith M, Pasovic L. Storage Temperature Alters the Expression of Differentiation-Related Genes in Cultured Oral Keratinocytes. PLoS One 2016; 11:e0152526. [PMID: 27023475 PMCID: PMC4811429 DOI: 10.1371/journal.pone.0152526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/15/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12°C compared to 4°C and 37°C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4°C, 12°C, and 37°C was assessed. Materials and Methods Cultured HOK were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium at 4°C, 12°C, and 37°C for one week. Total RNA was isolated and the gene expression profile was determined using DNA microarrays and analyzed with Partek Genomics Suite software and Ingenuity Pathway Analysis. Differentially expressed genes (fold change > 1.5 and P < 0.05) were identified by one-way ANOVA. Key genes were validated using qPCR. Results Gene expression of cultures stored at 4°C and 12°C clustered close to the unstored control cultures. Cultures stored at 37°C displayed substantial change in gene expression compared to the other groups. In comparison with 12°C, 2,981 genes were differentially expressed at 37°C. In contrast, only 67 genes were differentially expressed between the unstored control and the cells stored at 12°C. The 12°C and 37°C culture groups differed most significantly with regard to the expression of differentiation markers. The Hedgehog signaling pathway was significantly downregulated at 37°C compared to 12°C. Conclusion HOK cultures stored at 37°C showed considerably larger changes in gene expression compared to unstored cells than cultured HOK stored at 4°C and 12°C. The changes observed at 37°C consisted of differentiation of the cells towards a squamous epithelium-specific phenotype. Storing cultured ocular surface transplants at 37°C is therefore not recommended. This is particularly interesting as 37°C is the standard incubation temperature used for cell culture.
Collapse
Affiliation(s)
- Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Vestre Viken HF Trust, Drammen, Norway
- Faculty of Health Sciences, National Centre for Optics, Vision and Eye Care, Buskerud and Vestfold University College, Kongsberg, Norway
| | - Rakibul Islam
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Ida G. Fostad
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jon R. Eidet
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Ole K. Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Darlene A. Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward B. Messelt
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - May Griffith
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lara Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
9
|
Lee JS, Kim MR, Kim NS, Kim YS, Yang JM, Cho AY, Lee Y, Kim CD, Lee JH. Expression profiling of calcium induced genes in cultured human keratinocytes. J Korean Med Sci 2010; 25:619-25. [PMID: 20358008 PMCID: PMC2844606 DOI: 10.3346/jkms.2010.25.4.619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 07/27/2009] [Indexed: 11/20/2022] Open
Abstract
Terminal differentiation of skin keratinocytes is a vertically directed multi-step process that is tightly controlled by the sequential expression of a variety of genes. To examine the gene expression profile in calcium-induced keratinocyte differentiation, we constructed a normalized cDNA library using mRNA isolated from these calcium-treated keratinocytes. After sequencing about 10,000 clones, we were able to obtain 4,104 independent genes. They consisted of 3,699 annotated genes and 405 expressed sequence tags (ESTs). Some were the genes involved in constituting epidermal structures and others were unknown genes that are probably associated with keratinocytes. In particular, we were able to identify genes located at the chromosome 1q21, the locus for the epidermal differentiation complex, and 19q13.1, another probable locus for epidermal differentiation-related gene clusters. One EST located at the chromosome 19q13.1 showed increased expression by calcium treatment, suggesting a novel candidate gene relevant to keratinocyte differentiation. These results demonstrate the complexity of the transcriptional profile of keratinocytes, providing important clues on which to base further investigations of the molecular events underlying keratinocyte differentiation.
Collapse
Affiliation(s)
- Jung-Suk Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Mi-Rang Kim
- Human Genomics Laboratory, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Nam-Soon Kim
- Human Genomics Laboratory, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yong Sung Kim
- Human Genomics Laboratory, Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
| | - Ah Young Cho
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Deok Kim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
10
|
Lonergan KM, Chari R, Coe BP, Wilson IM, Tsao MS, Ng RT, MacAulay C, Lam S, Lam WL. Transcriptome profiles of carcinoma-in-situ and invasive non-small cell lung cancer as revealed by SAGE. PLoS One 2010; 5:e9162. [PMID: 20161782 PMCID: PMC2820080 DOI: 10.1371/journal.pone.0009162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 01/07/2010] [Indexed: 12/29/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) presents as a progressive disease spanning precancerous, preinvasive, locally invasive, and metastatic lesions. Identification of biological pathways reflective of these progressive stages, and aberrantly expressed genes associated with these pathways, would conceivably enhance therapeutic approaches to this devastating disease. Methodology/Principal Findings Through the construction and analysis of SAGE libraries, we have determined transcriptome profiles for preinvasive carcinoma-in-situ (CIS) and invasive squamous cell carcinoma (SCC) of the lung, and compared these with expression profiles generated from both bronchial epithelium, and precancerous metaplastic and dysplastic lesions using Ingenuity Pathway Analysis. Expression of genes associated with epidermal development, and loss of expression of genes associated with mucociliary biology, are predominant features of CIS, largely shared with precancerous lesions. Additionally, expression of genes associated with xenobiotic metabolism/detoxification is a notable feature of CIS, and is largely maintained in invasive cancer. Genes related to tissue fibrosis and acute phase immune response are characteristic of the invasive SCC phenotype. Moreover, the data presented here suggests that tissue remodeling/fibrosis is initiated at the early stages of CIS. Additionally, this study indicates that alteration in copy-number status represents a plausible mechanism for differential gene expression in CIS and invasive SCC. Conclusions/Significance This study is the first report of large-scale expression profiling of CIS of the lung. Unbiased expression profiling of these preinvasive and invasive lesions provides a platform for further investigations into the molecular genetic events relevant to early stages of squamous NSCLC development. Additionally, up-regulated genes detected at extreme differences between CIS and invasive cancer may have potential to serve as biomarkers for early detection.
Collapse
Affiliation(s)
- Kim M. Lonergan
- Genetics Unit, Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- * E-mail:
| | - Raj Chari
- Genetics Unit, Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Bradley P. Coe
- Genetics Unit, Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ian M. Wilson
- Genetics Unit, Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ming-Sound Tsao
- Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Raymond T. Ng
- Genetics Unit, Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Computer Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Calum MacAulay
- Imaging Unit, Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Imaging Unit, Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L. Lam
- Genetics Unit, Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Thompson CC. Hairless is a nuclear receptor corepressor essential for skin function. NUCLEAR RECEPTOR SIGNALING 2009; 7:e010. [PMID: 20087431 PMCID: PMC2807636 DOI: 10.1621/nrs.07010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/11/2009] [Indexed: 12/25/2022]
Abstract
The activity of nuclear receptors is modulated by numerous coregulatory factors. Corepressors can either mediate the ability of nuclear receptors to repress transcription, or can inhibit transactivation by nuclear receptors. As we learn more about the mechanisms of transcriptional repression, the importance of repression by nuclear receptors in development and disease has become clear. The protein encoded by the mammalian Hairless (Hr) gene was shown to be a corepressor by virtue of its functional similarity to the well-established corepressors N-CoR and SMRT. Mutation of the Hr gene results in congenital hair loss in both mice and men. Investigation of Hairless function both in vitro and in mouse models in vivo has revealed a critical role in maintaining skin and hair by regulating the differentiation of epithelial stem cells, as well as a putative role in regulating gene expression via chromatin remodeling.
Collapse
|
12
|
Yagihara H, Kinjo E, Kobayashi Y, Tsuji A, Nishimura Y, Shinozaki N, Tamura K, Isotani M, Nakagaki K, Takahashi K, Ono K, Washizu T, Bonkobara M. Expression of canine Kdap in normal, hyperplastic and neoplastic epidermis. Vet J 2008; 180:348-55. [PMID: 18691918 DOI: 10.1016/j.tvjl.2008.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 12/21/2007] [Accepted: 01/12/2008] [Indexed: 11/19/2022]
Abstract
Keratinocyte differentiation-associated protein, Kdap, is a recently identified small secretory protein that may act as a soluble regulator for the cornification and/or desquamation of keratinocytes. To clarify the role of Kdap in the terminal differentiation of keratinocytes, detailed in situ localisation of Kdap was studied using canine skin with normal, hyperplastic and neoplastic epidermis. In normal canine trunk skin, Kdap was expressed by granular keratinocytes, with polarity to the apical side of the cells, suggesting that canine Kdap is present in lamellar granules, as in humans. Expression of Kdap was widespread in the spinous layers in hyperplastic epidermis, but was undetectable in squamous cell carcinomas. These findings suggest that Kdap is closely related to the delay of terminal differentiation and/or release of cells in hyperplastic epidermis.
Collapse
Affiliation(s)
- Hiroko Yagihara
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Niderla-Bielinska J, Jankowska-Steifer E, Moskalewski S. Keratinization of outer root sheath cells is prevented by contact with inner root sheath of rat hair follicles. Arch Dermatol Res 2008; 301:337-45. [PMID: 18648826 DOI: 10.1007/s00403-008-0876-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/13/2008] [Accepted: 06/26/2008] [Indexed: 12/17/2022]
Abstract
The purpose of the present study was to elucidate why keratinocytes of the outer root sheath (ORS) do not keratinize in situ. Two possibilities were considered--inhibition of keratinization is caused by contact of ORS with inner root sheath (IRS) or insufficient supply of keratinization promoting factors from the surrounding tissues to the ORS. In order to distinguish between these possibilities mid-segments of hair follicles were liberated from the dermis by dissection followed by collagenase digestion. ORS cells were then either allowed to migrate from the mid-segments or were kept on the agarose layer which prevented cell spreading and preserved three dimensional structure of hair root. Cultures were stimulated with calcium or EGF, and studied morphologically at the light and transmission electron microscope level. The level of mRNA for differentiation cell markers was also studied by RealTime PCR. ORS cells growing in a medium with low Ca2+ content formed monolayers, which after elevation of Ca2+ produced multilayers with cells containing keratohyalin-like granules. Ca2+ or EGF treatment upregulated expression of involucrin, filaggrin and keratinocyte differentiation associated protein (Kdap). Culture of mid-segments of hair follicles in low calcium culture medium kept on agarose increased expression of filaggrin and Kdap, but downregulated expression of involucrin. Stimulation by Ca2+ further increased expression of filaggrin and Kdap, but had no effect on the level of involucrin expression. EGF stimulated expression of filaggrin only. It is concluded that IRS exerted an inhibitory effect on the expression of involucrin, an essential component of the cornified envelope, thus preventing keratinization of ORS cells in situ. On the other hand, improved access of nutrients or promoting factors of keratinization to the mid-segment of hair follicles augmented expression of filaggrin and Kdap, proteins engaged in the differentiation of keratinocytes but not involved in its terminal phase.
Collapse
Affiliation(s)
- Justyna Niderla-Bielinska
- Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | | | | |
Collapse
|
14
|
Toulza E, Mattiuzzo NR, Galliano MF, Jonca N, Dossat C, Jacob D, de Daruvar A, Wincker P, Serre G, Guerrin M. Large-scale identification of human genes implicated in epidermal barrier function. Genome Biol 2008; 8:R107. [PMID: 17562024 PMCID: PMC2394760 DOI: 10.1186/gb-2007-8-6-r107] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 05/24/2007] [Accepted: 06/11/2007] [Indexed: 11/19/2022] Open
Abstract
Identification of genes expressed in epidermal granular keratinocytes by ORESTES, including a number that are highly specific for these cells. Background During epidermal differentiation, keratinocytes progressing through the suprabasal layers undergo complex and tightly regulated biochemical modifications leading to cornification and desquamation. The last living cells, the granular keratinocytes (GKs), produce almost all of the proteins and lipids required for the protective barrier function before their programmed cell death gives rise to corneocytes. We present here the first analysis of the transcriptome of human GKs, purified from healthy epidermis by an original approach. Results Using the ORESTES method, 22,585 expressed sequence tags (ESTs) were produced that matched 3,387 genes. Despite normalization provided by this method (mean 4.6 ORESTES per gene), some highly transcribed genes, including that encoding dermokine, were overrepresented. About 330 expressed genes displayed less than 100 ESTs in UniGene clusters and are most likely to be specific for GKs and potentially involved in barrier function. This hypothesis was tested by comparing the relative expression of 73 genes in the basal and granular layers of epidermis by quantitative RT-PCR. Among these, 33 were identified as new, highly specific markers of GKs, including those encoding a protease, protease inhibitors and proteins involved in lipid metabolism and transport. We identified filaggrin 2 (also called ifapsoriasin), a poorly characterized member of the epidermal differentiation complex, as well as three new lipase genes clustered with paralogous genes on chromosome 10q23.31. A new gene of unknown function, C1orf81, is specifically disrupted in the human genome by a frameshift mutation. Conclusion These data increase the present knowledge of genes responsible for the formation of the skin barrier and suggest new candidates for genodermatoses of unknown origin.
Collapse
Affiliation(s)
- Eve Toulza
- UMR 5165 "Epidermis Differentiation and Rheumatoid Autoimmunity", CNRS - Toulouse III University (IFR 30, INSERM - CNRS - Toulouse III University - CHU), allées Jules Guesde, 31073 Toulouse, France
| | - Nicolas R Mattiuzzo
- UMR 5165 "Epidermis Differentiation and Rheumatoid Autoimmunity", CNRS - Toulouse III University (IFR 30, INSERM - CNRS - Toulouse III University - CHU), allées Jules Guesde, 31073 Toulouse, France
| | - Marie-Florence Galliano
- UMR 5165 "Epidermis Differentiation and Rheumatoid Autoimmunity", CNRS - Toulouse III University (IFR 30, INSERM - CNRS - Toulouse III University - CHU), allées Jules Guesde, 31073 Toulouse, France
| | - Nathalie Jonca
- UMR 5165 "Epidermis Differentiation and Rheumatoid Autoimmunity", CNRS - Toulouse III University (IFR 30, INSERM - CNRS - Toulouse III University - CHU), allées Jules Guesde, 31073 Toulouse, France
| | - Carole Dossat
- Genoscope and CNRS UMR 8030, rue Gaston Crémieux, 91057 Evry, France
| | - Daniel Jacob
- Centre de Bioinformatique Bordeaux, Université V. Segalen Bordeaux 2, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Antoine de Daruvar
- Centre de Bioinformatique Bordeaux, Université V. Segalen Bordeaux 2, rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Patrick Wincker
- Genoscope and CNRS UMR 8030, rue Gaston Crémieux, 91057 Evry, France
| | - Guy Serre
- UMR 5165 "Epidermis Differentiation and Rheumatoid Autoimmunity", CNRS - Toulouse III University (IFR 30, INSERM - CNRS - Toulouse III University - CHU), allées Jules Guesde, 31073 Toulouse, France
| | - Marina Guerrin
- UMR 5165 "Epidermis Differentiation and Rheumatoid Autoimmunity", CNRS - Toulouse III University (IFR 30, INSERM - CNRS - Toulouse III University - CHU), allées Jules Guesde, 31073 Toulouse, France
| |
Collapse
|
15
|
Bazzi H, Fantauzzo KA, Richardson GD, Jahoda CAB, Christiano AM. Transcriptional profiling of developing mouse epidermis reveals novel patterns of coordinated gene expression. Dev Dyn 2007; 236:961-70. [PMID: 17330888 DOI: 10.1002/dvdy.21099] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mammalian epidermis is the first line of defense against external environmental challenges including dehydration. The epidermis undergoes a highly intricate developmental program in utero, transforming from a simple to a complex stratified epithelium. During this process of stratification and differentiation, epidermal keratinocytes express a defined set of structural proteins, mainly keratins, whose expression is controlled by largely unknown mechanisms. In order to identify novel factors contributing to epidermal morphogenesis, we performed a global transcriptional analysis of the developing mouse epidermis after separating it from the underlying dermis (E12.5-E15.5). Unexpectedly, the recently identified genes encoding secreted peptides dermokine (Dmkn), keratinocyte differentiation-associated protein (krtdap), and suprabasin (Sbsn) as well as a largely uncharacterized embryonic keratin (Krt77), were among the most highly differentially expressed genes. The three genes encoding the secreted proteins form a cluster in an approximately 40-Kb locus on human chromosome 19 and the syntenic region on mouse chromosome 7 known as the stratified epithelium secreted peptides complex (SSC). Using whole mount in situ hybridization, we show that these genes show a coordinated spatio-temporal expression pattern during epidermal morphogenesis. The expression of these genes initiates in the nasal epithelium and correlates with the initiation of other epidermal differentiation markers such as K1 and loricrin (Byrne et al. [1994] Development 120:2369-2383), as well as the initiation of barrier formation. Our observations reveal a coordinated mode of expression of the SSC genes as well as the correlation of their initiation in the nasal epithelium with the initiation of barrier formation at this site.
Collapse
Affiliation(s)
- Hisham Bazzi
- Departments of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
16
|
Timmons BC, Mitchell SM, Gilpin C, Mahendroo MS. Dynamic changes in the cervical epithelial tight junction complex and differentiation occur during cervical ripening and parturition. Endocrinology 2007; 148:1278-87. [PMID: 17138657 DOI: 10.1210/en.2006-0851] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cervical epithelia have numerous functions that include proliferation, differentiation, maintenance of fluid balance, protection from environmental hazards, and paracellular transport of solutes via tight junctions (TJs). Epithelial functions must be tightly regulated during pregnancy and parturition as the cervix undergoes extensive growth and remodeling. This study evaluated TJ proteins, as well as markers of epithelial cell differentiation in normal and cervical ripening defective mice to gain insights into how the permeability barrier is regulated during pregnancy and parturition. Although numerous TJ proteins are expressed in the nonpregnant cervix, claudins 1 and 2 are temporally regulated in pregnancy. Claudin 1 mRNA expression is increased, whereas claudin 2 expression declines. The cellular localization of claudin 1 shifts at the end of pregnancy (gestation d 18.75) to the plasma membrane in a lattice pattern, consistent with TJs in the apical cells. The timing of claudin 1-enriched TJs coincides with initiation of terminal differentiation of cervical squamous epithelia as evidenced by the increased expression of genes by differentiated epithelia late on gestation d 18. The cervical ripening defective steroid 5alpha-reductase type 1 deficient mouse, which has an elevated local progesterone concentration, also has aberrant claudin 1 and 2 expressions, fails to form claudin 1-enriched TJs, and lacks normal expression of genes involved in epithelial terminal differentiation. These data suggest that changes in permeability barrier properties during cervical ripening are, in part, negatively regulated by progesterone, and that dynamic changes in barrier properties of the cervix occur during pregnancy and parturition.
Collapse
Affiliation(s)
- Brenda C Timmons
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9032, USA
| | | | | | | |
Collapse
|
17
|
Yagihara H, Terada Y, Sugimoto S, Hidaka F, Yamada O, Ono K, Washizu T, Ariizumi K, Bonkobara M. Identification and cornification-related gene expression of canine keratinocyte differentiation-associated protein, Kdap. Vet J 2006; 172:141-6. [PMID: 15927493 DOI: 10.1016/j.tvjl.2005.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The outermost layer of skin, the epidermis, is cornified epithelial tissue composed of keratinocytes. To maintain the structure and function of the epidermis, the regulation of proliferation, differentiation, and cornification of keratinocytes is crucial, and various soluble factors secreted by keratinocytes are involved in these regulations. Previously, work has shown that keratinocytes secreted the protein Kdap (keratinocyte differentiation-associated protein) associated with the formation of cornified cell envelopes, a specialized protective barrier structure on the periphery of terminally differentiating keratinocytes. In the present report, the canine counterpart of human Kdap is identified and an attempt has been made to define its physiological role in canine keratinization. Canine Kdap (cKdap) showed structural features commonly observed in other counterparts and is secreted from transfected cells. The expression profile of cKdap mRNA, which was restrictively expressed in cornified epithelial tissues besides skin has also been determined. These findings indicate that there is a strong association between cKdap expression and cornification, which supports previous observations that Kdap is involved in the synthesis and/or degradation of cornified cell envelopes in humans and mice.
Collapse
Affiliation(s)
- H Yagihara
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Animal Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wolk K, Witte E, Wallace E, Döcke WD, Kunz S, Asadullah K, Volk HD, Sterry W, Sabat R. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol 2006; 36:1309-23. [PMID: 16619290 DOI: 10.1002/eji.200535503] [Citation(s) in RCA: 720] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IL-22 is an IFN-IL-10 cytokine family member, which is produced by activated Th1 and NK cells and acts primarily on epithelial cells. Here we demonstrate that IL-22, in contrast to its relative IFN-gamma, regulates the expression of only a few genes in keratinocytes. This is due to varied signal transduction. Gene expressions regulated by IL-22 should enhance antimicrobial defense [psoriasin (S100A7), calgranulin A (S100A8), calgranulin B (S100A9)], inhibit cellular differentiation (e.g., profilaggrin, keratins 1 and 10, kallikrein 7), and increase cellular mobility [e.g., matrix metalloproteinease 1 (MMP1, collagenase 1), MMP3 (stromelysin 1), desmocollin 1]. In contrast, IFN-gamma favored the expression of MHC pathway molecules, adhesion molecules, cytokines, chemokines, and their receptors. The IL-22 effects were transcriptional and either independent of protein synthesis and secretion, or mediated by a secreted protein. Inflammatory conditions, but not keratinocyte differentiation, amplified the IL-22 effects. IL-22 application in mice enhanced cutaneous S100A9 and MMP1 expression. High IL-22 levels in psoriatic skin were associated with strongly up-regulated cutaneous S100A7, S100A8, S100A9, and MMP1 expression. Psoriatic patients showed strongly elevated IL-22 plasma levels, which correlated with the disease severity. Expression of IL-22 and IL-22-regulated genes was reduced by anti-psoriatic therapy. In summary, despite similarities, IFN-gamma primarily amplifies inflammation, while IL-22 may be important in the innate immunity and reorganization of epithelia.
Collapse
Affiliation(s)
- Kerstin Wolk
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shimizu T, Ogata A, Honda A, Nishihira J, Watanabe H, Abe R, Zhao Y, Shimizu H. Expression of macrophage migration inhibitory factor in rat skin during embryonic development. Exp Dermatol 2005; 14:819-23. [PMID: 16232303 DOI: 10.1111/j.1600-0625.2005.00357.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown that human epidermal keratinocytes express macrophage migration inhibitory factor (MIF) mRNA, and immunohistochemical studies showed that MIF is expressed in human epidermis. To explore the possible pathophysiological roles of MIF in skin during rat fetal development, we examined the expression patterns of MIF during rat epidermal development using Northern blot analysis and in situ hybridization. Expression of MIF mRNA was first detected by in situ hybridization in the developing epidermis and hair germ cells from embryonic day (ED) 16. From ED 19, moderate levels of MIF expression were detected in the epidermis and epithelial sheath cells of growing hair follicles. In postnatal rat skin, higher MIF expression was detected in the epidermis and hair follicles on postnatal day 3. These observations were also confirmed by Northern blot analysis. Immunohistochemical analysis with an anti-MIF antibody showed a similar distribution to that of the mRNA. Our results suggest that MIF is associated with epidermal and hair follicle development.
Collapse
Affiliation(s)
- Tadamichi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Adachi T, Tomita M, Yoshizato K. Synthesis of prolyl 4-hydroxylase alpha subunit and type IV collagen in hemocytic granular cells of silkworm, Bombyx mori: Involvement of type IV collagen in self-defense reaction and metamorphosis. Matrix Biol 2005; 24:136-54. [PMID: 15890264 DOI: 10.1016/j.matbio.2005.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 12/13/2004] [Accepted: 01/24/2005] [Indexed: 11/28/2022]
Abstract
The present study shows that hemocytic granular cells synthesize and secrete type IV collagen (ColIV) in the silkworm Bombyx mori (B. mori) and suggests that these cells play roles in the formation of basement membrane, the encapsulation of foreign bodies, and the metamorphic remodeling of the gut. The full- and partial-length cDNA of B. mori prolyl 4-hydroxylase alpha subunit (BmP4Halpha) and B. mori ColIV (BmColIV) were cloned, respectively. In situ hybridization and immunocytochemistry on larval tissues and cells identified hemocytic granular cells as the cells that express mRNAs and proteins of both BmP4Halpha and BmColIV. Immunohistochemistry and immunocytochemistry demonstrated that BmColIV was present in the basement membrane and in the secretory granules of granular cells, respectively. Granular cells in culture secreted BmColIV without accompanying the degranulation and discharged it from the granules when the cells were degranulated. Nylon threads were inserted into the hemocoel of larvae. Granular cells concentrated around the nylon threads and encapsulated them as a self-defense reaction. BmColIV was found to be a component of the capsules. Furthermore, the present study showed that actively BmColIV-expressing granular cells accumulated around the midgut epithelium and formed BmColIV-rich thick basal lamina-like structures there in larval to pupal metamorphosis.
Collapse
Affiliation(s)
- Takahiro Adachi
- Yoshizato Project, Cooperative Link of Unique Science and Technology for Economy Revitalization, Hiroshima Prefectural Institute of Industrial Science and Technology, 3-10-32, Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | | | | |
Collapse
|
21
|
Moffatt P, Salois P, St-Amant N, Gaumond MH, Lanctôt C. Identification of a conserved cluster of skin-specific genes encoding secreted proteins. Gene 2004; 334:123-31. [PMID: 15256262 DOI: 10.1016/j.gene.2004.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 02/16/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
Terminal differentiation of keratinocytes results in the formation of a cornified layer composed of cross-linked intracellular and extracellular material. Using a signal trap expression screening strategy, we have identified four cDNAs encoding secreted proteins potentially involved in this process. One of the cDNAs is identical to the short isoform of suprabasin, a recently described epidermis-specific protein, which is shown here to contain a functional secretory signal. The second cDNA, sk89, encodes a protein of 493 amino acids, rich in glycine and serine residues. The third cDNA encodes a C-terminal fragment of SK89 (amino acids 410-493). It comprises exons 13 to 18 of the sk89 locus but transcription starts at an isoform-specific exon encoding a distinct secretory signal. The fourth cDNA encodes keratinocyte differentiation-associated protein (KDAP), a precursor protein of 102 amino acids. Subcellular localization by immunofluorescence and detection of the tagged proteins by Western blotting confirmed that the four proteins are secreted. Northern analysis and in situ hybridization revealed that expression of the corresponding genes was restricted to the suprabasal keratinocytes of the epidermis. These genes encoding epidermis-specific secreted products are found in a conserved cluster on human chromosome 19q13.12 and on mouse chromosome 7A3.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Aspartic Acid Endopeptidases/genetics
- Aspartic Acid Endopeptidases/metabolism
- Base Sequence
- Blotting, Western
- Cell Line
- Chromosome Mapping/methods
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Mammalian/genetics
- Cloning, Molecular
- Conserved Sequence/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Gene Expression Profiling
- Gene Order
- Genes/genetics
- Green Fluorescent Proteins
- Humans
- Introns
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Multigene Family/genetics
- Proteins/genetics
- Proteins/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Skin/metabolism
- Transfection
Collapse
Affiliation(s)
- Pierre Moffatt
- Phenogene Therapeutics Inc., 416 de Maisonneuve West, Suite 1020, Montreal, Quebec, Canada H3A 1L2.
| | | | | | | | | |
Collapse
|
22
|
Zarach JM, Beaudoin GMJ, Coulombe PA, Thompson CC. The co-repressor hairless has a role in epithelial cell differentiation in the skin. Development 2004; 131:4189-200. [PMID: 15280217 DOI: 10.1242/dev.01303] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although mutations in the mammalian hairless (Hr) gene result in congenital hair loss disorders in both mice and humans, the precise role of Hr in skin biology remains unknown. We have shown that the protein encoded by Hr (HR) functions as a nuclear receptor co-repressor. To address the role of HR in vivo, we generated a loss-of-function (Hr-/-) mouse model. The Hr-/- phenotype includes both hair loss and severe wrinkling of the skin. Wrinkling is correlated with increased cell proliferation in the epidermis and the presence of dermal cysts. In addition,a normally undifferentiated region, the infundibulum, is transformed into a morphologically distinct structure (utricle) that maintains epidermal function. Analysis of gene expression revealed upregulation of keratinocyte terminal differentiation markers and a novel caspase in Hr-/- skin, substantiating HR action as a co-repressor in vivo. Differences in gene expression occur prior to morphological changes in vivo, as well as in cultured keratinocytes, indicating that aberrant transcriptional regulation contributes to the Hr-/-phenotype. The properties of the cell types present in Hr-/- skin suggest that the normal balance of cell proliferation and differentiation is disrupted, supporting a model in which HR regulates the timing of epithelial cell differentiation in both the epidermis and hair follicle.
Collapse
Affiliation(s)
- Joanna M Zarach
- Kennedy Krieger Research Institute, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
23
|
Elomaa O, Majuri I, Suomela S, Asumalahti K, Jiao H, Mirzaei Z, Rozell B, Dahlman-Wright K, Pispa J, Kere J, Saarialho-Kere U. Transgenic mouse models support HCR as an effector gene in the PSORS1 locus. Hum Mol Genet 2004; 13:1551-61. [PMID: 15190014 DOI: 10.1093/hmg/ddh178] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genetic susceptibility for psoriasis is regulated to the greatest extent by the PSORS1 locus. Three psoriasis-associated susceptibility alleles have been identified within it, namely, HLACw6, HCR*WWCC and CDSN*5, but strong linkage disequilibrium between them has made it difficult to distinguish their individual genetic effects, and animal models to study their effects are not known. To study the function of HCR, we engineered transgenic mice with either a non-risk allele of HCR or the HCR*WWCC risk allele under the control of the cytokeratin-14 promoter. These choices were motivated by the apparently dominant effect of PSORS1 on psoriasis susceptibility and the physiological expression of HCR in basal keratinocytes. Transgenic mice appeared phenotypically normal and histologically their skin was indistinguishable from wild-type mice. Expression studies using Affymetrix arrays suggested that the HCR risk allele has specific functional consequences relevant to the pathogenesis of psoriasis. Comparison of gene expression changes between non-risk and risk allele mice revealed similarities to previous observations in human psoriatic skin, including upregulation of cytokeratins 6, 16 and 17 in risk allele mice. We also observed changes in the expression of genes associated with terminal differentiation and formation of the cornified cell envelope. Our results support the concept that HCR may constitute an essential gene in the PSORS1 locus. These observations are also compatible with a model that a susceptibility gene for psoriasis induces changes that are contributory but not sufficient by itself to produce the clinical phenotype.
Collapse
Affiliation(s)
- Outi Elomaa
- Department of Medical Genetics, University of Helsinki, Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsuchida S, Bonkobara M, McMillan JR, Akiyama M, Yudate T, Aragane Y, Tezuka T, Shimizu H, Cruz PD, Ariizumi K. Characterization of Kdap, A Protein Secreted by Keratinocytes. J Invest Dermatol 2004; 122:1225-34. [PMID: 15140226 DOI: 10.1111/j.0022-202x.2004.22511.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a signal sequence-trap we identified a human gene encoding a polypeptide of 99 amino acids with a putative signal sequence. The gene was identical to keratinocyte differentiation-associated protein (Kdap), which was reported previously by Oomizu et al (Gene 256: 19-27, 2000) to be expressed in embryonal rat epidermis at the mRNA level. In humans, we found Kdap mRNA expression to be restricted to epithelial tissue at high levels. The 12.5 kDa protein was detected in culture supernatant of keratinocytes and those transfected adenovirally with the Kdap gene. In normal skin, Kdap protein was found exclusively within lamellar granules of granular keratinocytes and in the intercellular space of the stratum corneum. By contrast, in lesional skin of patients with psoriasis, Kdap was expressed more widely throughout suprabasal keratinocytes. When induced to differentiate in vitro, keratinocytes showed marked upregulation of Kdap mRNA expression similar to that of involucrin mRNA, but with differing kinetics. Finally, a spliced variant of Kdap mRNA was generated by alternative splicing mechanisms. Our studies indicate that human Kdap resembles rat Kdap with respect to tissue and cell expression at the mRNA level and that Kdap is a low-molecular-weight protein secreted by keratinocytes. Thus Kdap may serve as a soluble regulator of keratinocyte differentiation.
Collapse
Affiliation(s)
- Shuichi Tsuchida
- Department of Dermatology, The University of Texas Southwestern Medical Center, and the Dallas Veterans Affairs Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang B, Nie X, Xiao B, Xiang J, Shen S, Gong J, Zhou M, Zhu S, Zhou J, Qian J, Lu H, He X, Li X, Hu G, Li G. Identification of tissue-specific genes in nasopharyngeal epithelial tissue and differentially expressed genes in nasopharyngeal carcinoma by suppression subtractive hybridization and cDNA microarray. Genes Chromosomes Cancer 2003; 38:80-90. [PMID: 12874788 DOI: 10.1002/gcc.10247] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Suppression subtractive hybridization (SSH) was performed for isolation of tissue-specific genes in nasopharyngeal epithelial tissue, by use of cDNAs from human adult nasopharyngeal epithelial tissue as tester and mixed cDNAs from esophagus, lung, liver, heart, stomach, spleen, skeletal muscle, kidney, and skin as drivers. Fourteen differentially expressed genes in nasopharyngeal epithelial tissue were obtained. Among these genes, LPLUNC1 and SPLUNC1 were confirmed to be specifically expressed in nasopharyngeal epithelial tissue and the trachea. A novel transcript of SPLUNC1, which we designate NASG, was found. We also combined SSH and cDNA microarray hybridization to identify genes whose expressions were altered in nasopharyngeal carcinoma (NPC). We used NPC cell line HNE1 and primary human embryo nasopharyngeal epithelial cells in one SSH experiment, and NPC biopsies and normal adult nasopharyngeal epithelial tissue in another. Some 1,200 SSH inserts from four subtractive cDNA libraries were arrayed onto nylon membranes by use of robotic printing. Differential gene expression was verified by hybridizing of the membranes with radioactively labeled first-strand cDNA from NPC cell line HNE1, primary human embryo nasopharyngeal epithelial cells, NPC biopsies, and normal adult nasopharyngeal epithelial tissue. Seventeen differentially expressed genes in NPC were obtained. Among these genes, we identified SPLUNC1 and LPLUNC1 to be down-expressed in NPC biopsies (34/48, 33/48).
Collapse
Affiliation(s)
- Bicheng Zhang
- Cancer Research Institute, Xiang-Ya School of Medicine, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|