1
|
Tan WLA, Neto LRP, Reverter A, McGowan M, Fortes MRS. Sequence level genome-wide associations for bull production and fertility traits in tropically adapted bulls. BMC Genomics 2023; 24:365. [PMID: 37386436 DOI: 10.1186/s12864-023-09475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The genetics of male fertility is complex and not fully understood. Male subfertility can adversely affect the economics of livestock production. For example, inadvertently mating bulls with poor fertility can result in reduced annual liveweight production and suboptimal husbandry management. Fertility traits, such as scrotal circumference and semen quality are commonly used to select bulls before mating and can be targeted in genomic studies. In this study, we conducted genome-wide association analyses using sequence-level data targeting seven bull production and fertility traits measured in a multi-breed population of 6,422 tropically adapted bulls. The beef bull production and fertility traits included body weight (Weight), body condition score (CS), scrotal circumference (SC), sheath score (Sheath), percentage of normal spermatozoa (PNS), percentage of spermatozoa with mid-piece abnormalities (MP) and percentage of spermatozoa with proximal droplets (PD). RESULTS After quality control, 13,398,171 polymorphisms were tested for their associations with each trait in a mixed-model approach, fitting a multi-breed genomic relationship matrix. A Bonferroni genome-wide significance threshold of 5 × 10- 8 was imposed. This effort led to identifying genetic variants and candidate genes underpinning bull fertility and production traits. Genetic variants in Bos taurus autosome (BTA) 5 were associated with SC, Sheath, PNS, PD and MP. Whereas chromosome X was significant for SC, PNS, and PD. The traits we studied are highly polygenic and had significant results across the genome (BTA 1, 2, 4, 6, 7, 8, 11, 12, 14, 16, 18, 19, 23, 28, and 29). We also highlighted potential high-impact variants and candidate genes associated with Scrotal Circumference (SC) and Sheath Score (Sheath), which warrants further investigation in future studies. CONCLUSION The work presented here is a step closer to identifying molecular mechanisms that underpin bull fertility and production. Our work also emphasises the importance of including the X chromosome in genomic analyses. Future research aims to investigate potential causative variants and genes in downstream analyses.
Collapse
Affiliation(s)
- Wei Liang Andre Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Bld, 68 Cooper Rd, Brisbane City, QLD, 4072, Australia.
| | | | - Antonio Reverter
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Michael McGowan
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Marina Rufino Salinas Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Bld, 68 Cooper Rd, Brisbane City, QLD, 4072, Australia
| |
Collapse
|
2
|
Liu Y, Jiang B, Lin C, Zhu W, Chen D, Sheng Y, Lou Z, Ji Z, Wu C, Wu M. m7G-related gene NUDT4 as a novel biomarker promoting cancer cell proliferation in lung adenocarcinoma. Front Oncol 2023; 12:1055605. [PMID: 36761423 PMCID: PMC9902657 DOI: 10.3389/fonc.2022.1055605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
Background Lung cancer is the leading cause of mortality in cancer patients. N7-methylguanosine (m7G) modification as a translational regulation pattern has been reported to participate in multiple types of cancer progression, but little is known in lung cancer. This study attempts to explore the role of m7G-related proteins in genetic and epigenetic variations in lung adenocarcinoma, and its relationship with clinical prognosis, immune infiltration, and immunotherapy. Methods Sequencing data were obtained from the Genomic Data Commons (GDC) Data Portal and Gene Expression Omnibus (GEO) databases. Consensus clustering was utilized to distinguish m7G clusters, and responses to immunotherapy were also evaluated. Moreover, univariate and multivariate Cox and Least absolute shrinkage and selection operator LASSO Cox regression analyses were used to screen independent prognostic factors and generated risk scores for constructing a survival prediction model. Multiple cell types such as epithelial cells and immune cells were identified to verify the bulk RNA results. Short hairpin RNA (shRNA) Tet-on plasmids, Clustered Regularly Interspaced Short Palindromic Repeats CRISPR/Cas9 for knockout plasmids, and nucleoside diphosphate linked to moiety X-type motif 4 (NUDT4) overexpression plasmids were constructed to inhibit or promote tumor cell NUDT4 expression, then RT-qPCR, Cell Counting Kit-8 CCK8 proliferation assay, and Transwell assay were used to observe tumor cell biological functions. Results Fifteen m7G-related genes were highly expressed in tumor samples, and 12 genes were associated with poor prognosis. m7G cluster-B had lower immune infiltration level, worse survival, and samples that predicted poor responses to immunotherapy. The multivariate Cox model showed that NUDT4 and WDR4 (WD repeat domain 4) were independent risk factors. Single-cell m7G gene set variation analysis (GSVA) scores also had a negative correlation tendency with immune infiltration level and T-cell Programmed Death-1 PD-1 expression, but the statistics were not significant. Knocking down and knocking out the NUDT4 expression significantly inhibited cell proliferation capability in A549 and H1299 cells. In contrast, overexpressing NUDT4 promoted tumor cell proliferation. However, there was no difference in migration capability in the knockdown, knockout, or overexpression groups. Conclusions Our study revealed that m7G modification-related proteins are closely related to the tumor microenvironment, immune cell infiltration, responses to immunotherapy, and patients' prognosis in lung adenocarcinoma and could be useful biomarkers for the identification of patients who could benefit from immunotherapy. The m7G modification protein NUDT4 may be a novel biomarker in promoting the progression of lung cancer.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hang Zhou, China
| | - Bin Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hang Zhou, China
| | - Chunjie Lin
- Life Sciences Institute, Zhejiang University, Hang Zhou, China
| | - Wanyinhui Zhu
- Life Sciences Institute, Zhejiang University, Hang Zhou, China
| | - Dingrui Chen
- Life Sciences Institute, Zhejiang University, Hang Zhou, China
| | - Yinuo Sheng
- Life Sciences Institute, Zhejiang University, Hang Zhou, China
| | - Zhiling Lou
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hang Zhou, China
| | - Zhiheng Ji
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hang Zhou, China
| | - Chuanqiang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hang Zhou, China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hang Zhou, China,*Correspondence: Ming Wu,
| |
Collapse
|
3
|
Chakraborty A. The inositol pyrophosphate pathway in health and diseases. Biol Rev Camb Philos Soc 2018; 93:1203-1227. [PMID: 29282838 PMCID: PMC6383672 DOI: 10.1111/brv.12392] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates (IPPs) are present in organisms ranging from plants, slime moulds and fungi to mammals. Distinct classes of kinases generate different forms of energetic diphosphate-containing IPPs from inositol phosphates (IPs). Conversely, polyphosphate phosphohydrolase enzymes dephosphorylate IPPs to regenerate the respective IPs. IPPs and/or their metabolizing enzymes regulate various cell biological processes by modulating many proteins via diverse mechanisms. In the last decade, extensive research has been conducted in mammalian systems, particularly in knockout mouse models of relevant enzymes. Results obtained from these studies suggest impacts of the IPP pathway on organ development, especially of brain and testis. Conversely, deletion of specific enzymes in the pathway protects mice from various diseases such as diet-induced obesity (DIO), type-2 diabetes (T2D), fatty liver, bacterial infection, thromboembolism, cancer metastasis and aging. Furthermore, pharmacological inhibition of the same class of enzymes in mice validates the therapeutic importance of this pathway in cardio-metabolic diseases. This review critically analyses these findings and summarizes the significance of the IPP pathway in mammalian health and diseases. It also evaluates benefits and risks of targeting this pathway in disease therapies. Finally, future directions of mammalian IPP research are discussed.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO 63104, U.S.A
| |
Collapse
|
4
|
Singh G, Roy J, Rout P, Mallick B. Genome-wide profiling of the PIWI-interacting RNA-mRNA regulatory networks in epithelial ovarian cancers. PLoS One 2018; 13:e0190485. [PMID: 29320577 PMCID: PMC5761873 DOI: 10.1371/journal.pone.0190485] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2017] [Accepted: 12/17/2017] [Indexed: 12/27/2022] Open
Abstract
PIWI-interacting (piRNAs), ~23–36 nucleotide-long small non-coding RNAs (sncRNAs), earlier believed to be germline-specific, have now been identified in somatic cells, including cancer cells. These sncRNAs impact critical biological processes by fine-tuning gene expression at post-transcriptional and epigenetic levels. The expression of piRNAs in ovarian cancer, the most lethal gynecologic cancer is largely uncharted. In this study, we investigated the expression of PIWILs by qRT-PCR and western blotting and then identified piRNA transcriptomes in tissues of normal ovary and two most prevalent epithelial ovarian cancer subtypes, serous and endometrioid by small RNA sequencing. We detected 219, 256 and 234 piRNAs in normal ovary, endometrioid and serous ovarian cancer samples respectively. We observed piRNAs are encoded from various genomic regions, among which introns harbor the majority of them. Surprisingly, piRNAs originated from different genomic contexts showed the varied level of conservations across vertebrates. The functional analysis of predicted targets of differentially expressed piRNAs revealed these could modulate key processes and pathways involved in ovarian oncogenesis. Our study provides the first comprehensive piRNA landscape in these samples and a useful resource for further functional studies to decipher new mechanistic views of piRNA-mediated gene regulatory networks affecting ovarian oncogenesis. The RNA-seq data is submitted to GEO database (GSE83794).
Collapse
Affiliation(s)
- Garima Singh
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology – Rourkela, Odisha, India
| | - Jyoti Roy
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology – Rourkela, Odisha, India
| | - Pratiti Rout
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology – Rourkela, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology – Rourkela, Odisha, India
- * E-mail: ,
| |
Collapse
|
5
|
Thomas MP, Potter BVL. The enzymes of human diphosphoinositol polyphosphate metabolism. FEBS J 2013; 281:14-33. [PMID: 24152294 PMCID: PMC4063336 DOI: 10.1111/febs.12575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2013] [Revised: 09/10/2013] [Accepted: 10/15/2013] [Indexed: 12/22/2022]
Abstract
Diphospho-myo-inositol polyphosphates have many roles to play, including roles in apoptosis, vesicle trafficking, the response of cells to stress, the regulation of telomere length and DNA damage repair, and inhibition of the cyclin-dependent kinase Pho85 system that monitors phosphate levels. This review focuses on the three classes of enzymes involved in the metabolism of these compounds: inositol hexakisphosphate kinases, inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases and diphosphoinositol polyphosphate phosphohydrolases. However, these enzymes have roles beyond being mere catalysts, and their interactions with other proteins have cellular consequences. Through their interactions, the three inositol hexakisphosphate kinases have roles in exocytosis, diabetes, the response to infection, and apoptosis. The two inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinases influence the cellular response to phosphatidylinositol (3,4,5)-trisphosphate and the migration of pleckstrin homology domain-containing proteins to the plasma membrane. The five diphosphoinositol polyphosphate phosphohydrolases interact with ribosomal proteins and transcription factors, as well as proteins involved in membrane trafficking, exocytosis, ubiquitination and the proteasomal degradation of target proteins. Possible directions for future research aiming to determine the roles of these enzymes are highlighted.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, UK
| | | |
Collapse
|
6
|
Barker CJ, Illies C, Gaboardi GC, Berggren PO. Inositol pyrophosphates: structure, enzymology and function. Cell Mol Life Sci 2009; 66:3851-71. [PMID: 19714294 PMCID: PMC11115731 DOI: 10.1007/s00018-009-0115-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2009] [Revised: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 02/04/2023]
Abstract
The stereochemistry of the inositol backbone provides a platform on which to generate a vast array of distinct molecular motifs that are used to convey information both in signal transduction and many other critical areas of cell biology. Diphosphoinositol phosphates, or inositol pyrophosphates, are the most recently characterized members of the inositide family. They represent a new frontier with both novel targets within the cell and novel modes of action. This includes the proposed pyrophosphorylation of a unique subset of proteins. We review recent insights into the structures of these molecules and the properties of the enzymes which regulate their concentration. These enzymes also act independently of their catalytic activity via protein-protein interactions. This unique combination of enzymes and products has an important role in diverse cellular processes including vesicle trafficking, endo- and exocytosis, apoptosis, telomere length regulation, chromatin hyperrecombination, the response to osmotic stress, and elements of nucleolar function.
Collapse
Affiliation(s)
- Christopher John Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
7
|
Shears SB. Diphosphoinositol polyphosphates: metabolic messengers? Mol Pharmacol 2009; 76:236-52. [PMID: 19439500 PMCID: PMC2713120 DOI: 10.1124/mol.109.055897] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2009] [Accepted: 05/12/2009] [Indexed: 12/18/2022] Open
Abstract
The diphosphoinositol polyphosphates ("inositol pyrophosphates") are a specialized subgroup of the inositol phosphate signaling family. This review proposes that many of the current data concerning the metabolic turnover and biological effects of the diphosphoinositol polyphosphates are linked by a common theme: these polyphosphates act as metabolic messengers. This review will also discuss the latest proposals concerning possible molecular mechanisms of action of this intriguing class of molecules.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositide Signaling Group, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
Fisher DI, Safrany ST, Strike P, McLennan AG, Cartwright JL. Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1,5-bisphosphate. J Biol Chem 2002; 277:47313-7. [PMID: 12370170 DOI: 10.1074/jbc.m209795200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
A total of 17 Nudix hydrolases were tested for their ability to hydrolyze 5-phosphoribosyl 1-pyrophosphate (PRPP). All 11 enzymes that were active toward dinucleoside polyphosphates with 4 or more phosphate groups as substrates were also able to hydrolyze PRPP, whereas the 6 that could not and that have coenzyme A, NDP-sugars, or pyridine nucleotides as preferred substrates did not degrade PRPP. The products of hydrolysis were ribose 1,5-bisphosphate and P(i). Active PRPP pyrophosphatases included the diphosphoinositol polyphosphate phosphohydrolase (DIPP) subfamily of Nudix hydrolases, which also degrade the non-nucleotide diphosphoinositol polyphosphates. K(m) and k(cat) values for PRPP hydrolysis for the Deinococcus radiodurans DR2356 (di)nucleoside polyphosphate hydrolase, the human diadenosine tetraphosphate hydrolase, and human DIPP-1 (diadenosine hexaphosphate and diphosphoinositol polyphosphate hydrolase) were 1 mm and 1.5 s(-1), 0.13 mm and 0.057 s(-1), and 0.38 mm and 1.0 s(-1), respectively. Active site mutants of the Caenorhabditis elegans diadenosine tetraphosphate hydrolase had no activity, confirming that the same active site is responsible for nucleotide and PRPP hydrolysis. Comparison of the specificity constants for nucleotide, diphosphoinositol polyphosphate, and PRPP hydrolysis suggests that PRPP is a significant substrate for the D. radiodurans DR2356 enzyme and for the DIPP subfamily. In the latter case, generation of the glycolytic activator ribose 1,5-bisphosphate may be a new function for these enzymes.
Collapse
Affiliation(s)
- David I Fisher
- Cell Regulation and Signalling Group, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Hidaka K, Caffrey JJ, Hua L, Zhang T, Falck JR, Nickel GC, Carrel L, Barnes LD, Shears SB. An adjacent pair of human NUDT genes on chromosome X are preferentially expressed in testis and encode two new isoforms of diphosphoinositol polyphosphate phosphohydrolase. J Biol Chem 2002; 277:32730-8. [PMID: 12105228 DOI: 10.1074/jbc.m205476200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Combinatorial expression of the various isoforms of diphosphoinositol synthases and phosphohydrolases determines the rates of phosphorylation/dephosphorylation cycles that have been functionally linked to vesicle trafficking, stress responses, DNA repair, and apoptosis. We now describe two new 19-kDa diphosphoinositol polyphosphate phosphohydrolases (DIPPs), named types 3alpha and 3beta, which possess the canonical Nudix-type catalytic motif flanked on either side by short Gly-rich sequences. The two enzymes differ only in that Pro-89 in the alpha form is replaced by Arg-89 in the beta form, making the latter approximately 2-fold more active in vitro. Another Nudix substrate, diadenosine hexaphosphate, was hydrolyzed less efficiently (k(cat)/K(m) = 0.2 x 10(5) m(-1) s(-1)) compared with diphosphoinositol polyphosphates (k(cat)/K(m) = 2-40 x 10(5) m(-1) s(-1)). Catalytic activity in vivo was established by individual overexpression of the human (h) DIPP3 isoforms in HEK293 cells, which reduced cellular levels of diphosphoinositol polyphosphates by 40-50%. The hDIPP3 mRNA is preferentially expressed in testis, accompanied by relatively weak expression in the brain, contrasting with hDIPP1 and hDIPP2 which are widely expressed. The hDIPP3 genes (NUDT10 encodes hDIPP3alpha; NUDT11 encodes hDIPP3beta) are only 152 kbp apart at p11.22 on chromosome X and probably arose by duplication. Transcription of both genes is inactivated on one of the X chromosomes of human females to maintain appropriate gene dosage. The hDIPP3 pair add tissue-specific diversity to the molecular mechanisms regulating diphosphoinositol polyphosphate turnover.
Collapse
Affiliation(s)
- Kiyoshi Hidaka
- Inositide Signaling Section, Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|