1
|
Yu R, Zhang Y, Lu Q, Cui L, Wang Y, Wang X, Cheng G, Liu Z, Dai M, Yuan Z. Differentially expressed genes in response to cyadox in swine liver analyzed by DDRT-PCR. Res Vet Sci 2018; 118:72-78. [DOI: 10.1016/j.rvsc.2018.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/24/2022]
|
2
|
García EM, Vázquez JM, Parrilla I, Ortega MD, Calvete JJ, Sanz L, Martínez EA, Roca J, Rodríguez-Martínez H. Localization and expression of spermadhesin PSP-I/PSP-II subunits in the reproductive organs of the boar. ACTA ACUST UNITED AC 2008; 31:408-17. [PMID: 17651403 DOI: 10.1111/j.1365-2605.2007.00784.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The epithelial localization and expression of the spermadhesin PSP-I and PSP-II subunits were determined in the testis, ductus epididymes (caput, corpus and cauda), seminal vesicles and bulbourethral glands of mature boars, using immunohistochemical, western blotting and RT-PCR methods. Immunohistochemistry showed positive labelling for PSP-I and PSP-II antibodies in the epithelium of seminal vesicles in all males tested. Positive immunolabelling, but with variable intensity, was also present in the epididymal epithelium (caput, corpus and cauda), although varying largely among segments and boars. Immunoreactivity was nearly or completely absent in the seminiferous epithelium and the bulbourethral gland, although SDS-PAGE and western blotting revealed the presence of PSP-I and PSP-II immunoreactive bands in all the tissue extracts, including the testis and the bulbourethral gland. mRNA amplification by RT-PCR using primers specific for PSP-I and PSP-II showed a trend similar to that observed for western blotting, i.e. intensity variation between tissues (even between segments of the same epididymis) and among boars. Our results indicate that the seminal vesicles are the main source of PSP-I and PSP-II spermadhesins, although epididymal segments, testis and the bulbourethral gland also participate in the expression of both proteins.
Collapse
Affiliation(s)
- E M García
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bonnet A, Iannuccelli E, Hugot K, Benne F, Bonaldo MF, Soares MB, Hatey F, Tosser-Klopp G. A pig multi-tissue normalised cDNA library: large-scale sequencing, cluster analysis and 9K micro-array resource generation. BMC Genomics 2008; 9:17. [PMID: 18194535 PMCID: PMC2257943 DOI: 10.1186/1471-2164-9-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 01/14/2008] [Indexed: 11/30/2022] Open
Abstract
Background Domestic animal breeding and product quality improvement require the control of reproduction, nutrition, health and welfare in these animals. It is thus necessary to improve our knowledge of the major physiological functions and their interactions. This would be greatly enhanced by the availability of expressed gene sequences in the databases and by cDNA arrays allowing the transcriptome analysis of any function. The objective within the AGENAE French program was to initiate a high-throughput cDNA sequencing program of a 38-tissue normalised library and generate a diverse microarray for transcriptome analysis in pig species. Results We constructed a multi-tissue cDNA library, which was normalised and subtracted to reduce the redundancy of the clones. Expressed Sequence Tags were produced and 24449 high-quality sequences were released in EMBL database. The assembly of all the public ESTs (available through SIGENAE website) resulted in 40786 contigs and 54653 singletons. At least one Agenae sequence is present in 11969 contigs (12.5%) and in 9291 of the deeper-than-one-contigs (22.8%). Sequence analysis showed that both normalisation and subtraction processes were successful and that the initial tissue complexity was maintained in the final libraries. A 9K nylon cDNA microarray was produced and is available through CRB-GADIE. It will allow high sensitivity transcriptome analyses in pigs. Conclusion In the present work, a pig multi-tissue cDNA library was constructed and a 9K cDNA microarray designed. It contributes to the Expressed Sequence Tags pig data, and offers a valuable tool for transcriptome analysis.
Collapse
Affiliation(s)
- Agnès Bonnet
- Laboratoire de Génétique Cellulaire, INRA, UMR444, Institut National de la Recherche Agronomique, F-31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Wimmers K, Murani E, Ngu NT, Schellander K, Ponsuksili S. Structural and functional genomics to elucidate the genetic background of microstructural and biophysical muscle properties in the pig. J Anim Breed Genet 2007; 124 Suppl 1:27-34. [DOI: 10.1111/j.1439-0388.2007.00684.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Muráni E, Murániová M, Ponsuksili S, Schellander K, Wimmers K. Identification of genes differentially expressed during prenatal development of skeletal muscle in two pig breeds differing in muscularity. BMC DEVELOPMENTAL BIOLOGY 2007; 7:109. [PMID: 17908293 PMCID: PMC2147030 DOI: 10.1186/1471-213x-7-109] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 10/01/2007] [Indexed: 01/28/2023]
Abstract
Background Postnatal muscle growth is largely depending on the number and size of muscle fibers. The number of myofibers and to a large extent their metabolic and contractile properties, which also influence their size, are determined prenatally during the process of myogenesis. Hence identification of genes and their networks governing prenatal development of skeletal muscles will provide insight into the control of muscle growth and facilitate finding the source of its variation. So far most of the genes involved in myogenesis were identified by in vitro studies using gene targeting and transgenesis. Profiling of transcriptome changes during the myogenesis in vivo promises to obtain a more complete picture. In order to address this, we performed transcriptome profiling of prenatal skeletal muscle using differential display RT-PCR as on open system with the potential to detect novel transcripts. Seven key stages of myogenesis (days 14, 21, 35, 49, 63, 77 and 91 post conception) were studied in two breeds, Pietrain and Duroc, differing markedly in muscularity and muscle structure. Results Eighty prominent cDNA fragments were sequenced, 43 showing stage-associated and 37 showing breed-associated differences in the expression, respectively. Out of the resulting 85 unique expressed sequence tags, EST, 52 could be assigned to known genes. The most frequent functional categories represented genes encoding myofibrillar proteins (8), genes involved in cell adhesion, cell-cell signaling and extracellular matrix synthesis/remodeling (8), genes regulating gene expression (8), and metabolism genes (8). Some of the EST that showed no identity to any known transcripts in the databases are located in introns of known genes and most likely represent novel exons (e.g. HMGA2). Expression of thirteen transcripts along with five reference genes was further analyzed by means of real-time quantitative PCR. Nine of the target transcripts showed higher than twofold differences in the expression between the two breeds (GATA3, HMGA2, NRAP, SMC6L1, SPP1, RAB6IP2, TJP1 and two EST). Conclusion The present study revealed several genes and novel transcripts not previously associated with myogenesis and expands our knowledge of genetic factors operating during myogenesis. Genes that exhibited differences between the divergent breeds represent candidate genes for muscle growth and structure.
Collapse
Affiliation(s)
- Eduard Muráni
- Research Institute for the Biology of Farm Animals (FBN), Research Unit Molecular Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Mária Murániová
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Siriluck Ponsuksili
- Research Institute for the Biology of Farm Animals (FBN), Research Group Functional Genomics, 18196 Dummerstorf, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Klaus Wimmers
- Research Institute for the Biology of Farm Animals (FBN), Research Unit Molecular Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
6
|
Tuggle CK, Wang Y, Couture O. Advances in swine transcriptomics. Int J Biol Sci 2007; 3:132-52. [PMID: 17384733 PMCID: PMC1802012 DOI: 10.7150/ijbs.3.132] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/02/2007] [Indexed: 01/23/2023] Open
Abstract
The past five years have seen a tremendous rise in porcine transcriptomic data. Available porcine Expressed Sequence Tags (ESTs) have expanded greatly, with over 623,000 ESTs deposited in Genbank. ESTs have been used to expand the pig-human comparative maps, but such data has also been used in many ways to understand pig gene expression. Several methods have been used to identify genes differentially expressed (DE) in specific tissues or cell types under different treatments. These include open screening methods such as suppression subtractive hybridization, differential display, serial analysis of gene expression, and EST sequence frequency, as well as closed methods that measure expression of a defined set of sequences such as hybridization to membrane arrays and microarrays. The use of microarrays to begin large-scale transcriptome analysis has been recently reported, using either specialized or broad-coverage arrays. This review covers published results using the above techniques in the pig, as well as unpublished data provided by the research community, and reports on unpublished Affymetrix data from our group. Published and unpublished bioinformatics efforts are discussed, including recent work by our group to integrate two broad-coverage microarray platforms. We conclude by predicting experiments that will become possible with new anticipated tools and data, including the porcine genome sequence. We emphasize that the need for bioinformatics infrastructure to efficiently store and analyze the expanding amounts of gene expression data is critical, and that this deficit has emerged as a limiting factor for acceleration of genomic understanding in the pig.
Collapse
Affiliation(s)
- Christopher K Tuggle
- Center for Integrated Animal Genomics, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
7
|
Ponsuksili S, Chomdej S, Murani E, Bläser U, Schreinemachers HJ, Schellander K, Wimmers K. SNP detection and genetic mapping of porcine genes encoding enzymes in hepatic metabolic pathways and evaluation of linkage with carcass traits. Anim Genet 2006; 36:477-83. [PMID: 16293120 DOI: 10.1111/j.1365-2052.2005.01351.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously identified and mapped porcine expressed sequence tags (ESTs) derived from genes that are preferentially expressed in liver. The aim of the present study was to identify single nucleotide polymorphisms (SNPs) in porcine genes encoding enzymes in hepatic metabolic pathways and use the SNPs for mapping. Furthermore, these genes, which are involved in utilization and partitioning of nutrients, were examined for their effects on carcass and meat quality traits by linkage analyses. In total, 100 ESTs were screened for SNPs by single strand conformation polymorphism analyses across a diverse panel of animals with a 36% success rate. Twelve of 36 polymorphic loci segregated in a three-generation Duroc x Berlin Miniature Pig (F2) resource population, the DUMI resource population, and were genetically mapped. Interval mapping of the corresponding chromosomes was performed to verify mapping of the genes within quantitative trait loci (QTL) regions detected in this resource population. QTL with genome-wide significance were detected in the vicinity of GNMT, ESTL147 and HGD. These loci therefore are positional candidate genes.
Collapse
Affiliation(s)
- S Ponsuksili
- Institute of Animal Breeding and Genetics, University of Bonn, 53115 Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Kim TH, Kim NS, Lim D, Lee KT, Oh JH, Park HS, Jang GW, Kim HY, Jeon M, Choi BH, Lee HY, Chung HY, Kim H. Generation and analysis of large-scale expressed sequence tags (ESTs) from a full-length enriched cDNA library of porcine backfat tissue. BMC Genomics 2006; 7:36. [PMID: 16504160 PMCID: PMC1444929 DOI: 10.1186/1471-2164-7-36] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 02/27/2006] [Indexed: 11/13/2022] Open
Abstract
Background Genome research in farm animals will expand our basic knowledge of the genetic control of complex traits, and the results will be applied in the livestock industry to improve meat quality and productivity, as well as to reduce the incidence of disease. A combination of quantitative trait locus mapping and microarray analysis is a useful approach to reduce the overall effort needed to identify genes associated with quantitative traits of interest. Results We constructed a full-length enriched cDNA library from porcine backfat tissue. The estimated average size of the cDNA inserts was 1.7 kb, and the cDNA fullness ratio was 70%. In total, we deposited 16,110 high-quality sequences in the dbEST division of GenBank (accession numbers: DT319652-DT335761). For all the expressed sequence tags (ESTs), approximately 10.9 Mb of porcine sequence were generated with an average length of 674 bp per EST (range: 200–952 bp). Clustering and assembly of these ESTs resulted in a total of 5,008 unique sequences with 1,776 contigs (35.46%) and 3,232 singleton (65.54%) ESTs. From a total of 5,008 unique sequences, 3,154 (62.98%) were similar to other sequences, and 1,854 (37.02%) were identified as having no hit or low identity (<95%) and 60% coverage in The Institute for Genomic Research (TIGR) gene index of Sus scrofa. Gene ontology (GO) annotation of unique sequences showed that approximately 31.7, 32.3, and 30.8% were assigned molecular function, biological process, and cellular component GO terms, respectively. A total of 1,854 putative novel transcripts resulted after comparison and filtering with the TIGR SsGI; these included a large percentage of singletons (80.64%) and a small proportion of contigs (13.36%). Conclusion The sequence data generated in this study will provide valuable information for studying expression profiles using EST-based microarrays and assist in the condensation of current pig TCs into clusters representing longer stretches of cDNA sequences. The isolation of genes expressed in backfat tissue is the first step toward a better understanding of backfat tissue on a genomic basis.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Nam-Soon Kim
- Laboratory of Human Genomics, Genome Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Dajeong Lim
- School of Agricultural Biotechnology, Seoul National University San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| | - Kyung-Tai Lee
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Jung-Hwa Oh
- Laboratory of Human Genomics, Genome Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Hye-Sook Park
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Gil-Won Jang
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Hyung-Yong Kim
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Mina Jeon
- School of Agricultural Biotechnology, Seoul National University San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| | - Bong-Hwan Choi
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Hae-Young Lee
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - HY Chung
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Heebal Kim
- School of Agricultural Biotechnology, Seoul National University San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| |
Collapse
|
9
|
Ponsuksili S, Murani E, Schellander K, Schwerin M, Wimmers K. Identification of functional candidate genes for body composition by expression analyses and evidencing impact by association analysis and mapping. ACTA ACUST UNITED AC 2005; 1730:31-40. [PMID: 16005530 DOI: 10.1016/j.bbaexp.2005.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/27/2005] [Accepted: 06/02/2005] [Indexed: 11/28/2022]
Abstract
This study aims to identify hepatic genes affecting traits related to muscularity and obesity by combining expression analyses, association studies, and gene mapping. Functional candidate genes with trait-associated expression were obtained by hybridising custom made application-specific cDNA microarrays with targets of discordant sib pairs of a porcine experimental population. Out of 238 genes addressed, nine genes were regulated by the factor>or=2 between the sib pairs. Differential gene expression was independently confirmed for selected genes by real time RT-PCR. Transcript levels of four genes (APOH, PEDF, SLCO1B3, TBG) were significantly different between the phenotype groups. Screening for trait associated markers within TBG and APOH by comparative sequencing of discordant sib pairs revealed a SNP at position nt 778 (A>C) (N229H) of TBG. No polymorphism in APOH was detected. Association analysis confirmed effects of TBG on carcass traits statistically. Allocating TBG to a QTL region on chromosome X revealed genetic evidence for the effect. Moreover, our results indicate that there are probably two polymorphisms segregating-one (N229H) altering binding capability of TBG and another still to be detected altering the transcription rate of TBG.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Institute of Animal Breeding and Genetics, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany; Research Institute for the Biology of Farm Animals, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
10
|
Ponsuksili S, Tesfaye D, El-Halawany N, Schellander K, Wimmers K. Stage-specific expressed sequence tags obtained during preimplantation bovine development by differential display RT-PCR and suppression subtractive hybridization. Prenat Diagn 2002; 22:1135-42. [PMID: 12454973 DOI: 10.1002/pd.501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Differential display RT-PCR (DDRT-PCR) and suppression subtractive hybridization (SSH) were applied in order to detect preimplantation stage-specific expressed sequence tags (ESTs) of bovine embryos. Seventeen ESTs were detected from the differential display RT-PCR approach. All clones but two showed homology to genes or ESTs known in human, cattle or other species. One of the clones similar to H. sapiens mRNA for KIAA1764 protein was used exemplarily to quantify the transcripts by real-time PCR. The result of quantitative differential screening was found to be in agreement with DDRT-PCR banding patterns. In the second approach, a blastocyst-stage enriched cDNA library was constructed using SSH of blastocyst versus morula transcripts. The 71 clones that were analysed represent 33 distinct loci including candidate genes for the regulative processes during differentiation of inner cell mass (ICM) and trophoblast cells and the initial phase of embryo implantation, such as galectin-3 and fibronectin. As revealed by real-time PCR, the mRNA level of galectin-3 was three times higher in the blastocyst stage than in the morula stage. DDRT-PCR and SSH are both powerful tools for the identification of stage-specific expressed gene in preimplantation bovine embryos. Real-time PCR allows to test and confirm the outcome and to add quantitative data of selected transcripts of interest.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Institute of Animal Breeding Science, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
11
|
Wimmers K, Ponsuksili S, Bläser U, Gellin J, Schellander K. Chromosomal assignments for porcine genes encoding enzymes in hepatic metabolic pathways. Anim Genet 2002; 33:255-63. [PMID: 12139504 DOI: 10.1046/j.1365-2052.2002.00859.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Increasing the number of mapped genes will facilitate (1) the identification of potential candidate genes for a trait of interest within quantitative trait loci regions and (2) comparative mapping. The metabolic activities of the liver are essential for providing fuel to peripheral organs, for regulation of amino acid, carbohydrate and lipid metabolism and for homoeostasis of vitamins, minerals and electrolytes. We aimed to identify and map genes coding for enzymes active in the liver by somatic cell genetics in order to contribute to the improvement of the porcine gene map. We mapped 28 genes of hepatic metabolic pathways including six genes whose locations could be confirmed and 22 new assignments. Localization information in human was available for all but one gene. In total 24 genes were assigned to in the expected chromosomal regions on the basis of the currently available information on the comparative human and pig map while for four genes our results suggest a new correspondence or extended regions of conservation between porcine and human chromosomes.
Collapse
Affiliation(s)
- K Wimmers
- Institute of Animal Breeding Science, University of Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
12
|
Ponsuksili S, Chomdej S, Schellander K, Wimmers K. SNP detection and linkage mapping of the porcine ferritin heavy-chain gene. Anim Genet 2002; 33:325-6. [PMID: 12139524 DOI: 10.1046/j.1365-2052.2002.t01-13-00886.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S Ponsuksili
- Institute of Animal Breeding Science, University of Bonn, Germany.
| | | | | | | |
Collapse
|
13
|
Ponsuksili S, Schellander K, Wimmers K. Isolation, polymorphism identification and linkage mapping of the porcine haptoglobin locus. Anim Genet 2002; 33:324-5. [PMID: 12139523 DOI: 10.1046/j.1365-2052.2002.t01-10-00886.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S Ponsuksili
- Institute of Animal Breeding Science, University of Bonn, Germany.
| | | | | |
Collapse
|