1
|
Revisiting the Relationships Between Genomic G + C Content, RNA Secondary Structures, and Optimal Growth Temperature. J Mol Evol 2020; 89:165-171. [PMID: 33216148 DOI: 10.1007/s00239-020-09974-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Over twenty years ago Galtier and Lobry published a manuscript entitled "Relationships between Genomic G + C Content, RNA Secondary Structure, and Optimal Growth Temperature" in the Journal of Molecular Evolution that showcased the lack of a relationship between genomic G + C content and optimal growth temperature (OGT) in a set of about 200 prokaryotes. Galtier and Lobry also assessed the relationship between RNA secondary structures (rRNA stems, tRNAs) and OGT, and in this case a clear relationship emerged. Increasing structured RNA G + C content (particularly in regions that are double-stranded) correlates with increased OGT. Both of these fundamental relationships have withstood test of many additional sequences and spawned a variety of different applications that include prediction of OGT from rRNA sequence and computational ncRNA identification approaches. In this work, I present the motivation behind Galtier and Lobry's original paper and the larger questions addressed by the work, how these questions have evolved over the last two decades, and the impact of Galtier and Lobry's manuscript in fields beyond these questions.
Collapse
|
2
|
Osinski G, Cockell C, Pontefract A, Sapers H. The Role of Meteorite Impacts in the Origin of Life. ASTROBIOLOGY 2020; 20:1121-1149. [PMID: 32876492 PMCID: PMC7499892 DOI: 10.1089/ast.2019.2203] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The conditions, timing, and setting for the origin of life on Earth and whether life exists elsewhere in our solar system and beyond represent some of the most fundamental scientific questions of our time. Although the bombardment of planets and satellites by asteroids and comets has long been viewed as a destructive process that would have presented a barrier to the emergence of life and frustrated or extinguished life, we provide a comprehensive synthesis of data and observations on the beneficial role of impacts in a wide range of prebiotic and biological processes. In the context of previously proposed environments for the origin of life on Earth, we discuss how meteorite impacts can generate both subaerial and submarine hydrothermal vents, abundant hydrothermal-sedimentary settings, and impact analogues for volcanic pumice rafts and splash pools. Impact events can also deliver and/or generate many of the necessary chemical ingredients for life and catalytic substrates such as clays as well. The role that impact cratering plays in fracturing planetary crusts and its effects on deep subsurface habitats for life are also discussed. In summary, we propose that meteorite impact events are a fundamental geobiological process in planetary evolution that played an important role in the origin of life on Earth. We conclude with the recommendation that impact craters should be considered prime sites in the search for evidence of past life on Mars. Furthermore, unlike other geological processes such as volcanism or plate tectonics, impact cratering is ubiquitous on planetary bodies throughout the Universe and is independent of size, composition, and distance from the host star. Impact events thus provide a mechanism with the potential to generate habitable planets, moons, and asteroids throughout the Solar System and beyond.
Collapse
Affiliation(s)
- G.R. Osinski
- Institute for Earth and Space Exploration, University of Western Ontario, London, Canada
- Department of Earth Sciences, University of Western Ontario, London, Canada
- Address correspondence to: Dr. Gordon Osinski, Department of Earth Sciences, 1151 Richmond Street, University of Western Ontario, London ON, N6A 5B7, Canada
| | - C.S. Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - A. Pontefract
- Department of Biology, Georgetown University, Washington, DC, USA
| | - H.M. Sapers
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Yuan H, Wu J, Wang X, Chen J, Zhong Y, Huang Q, Nan P. Computational Identification of Amino-Acid Mutations that Further Improve the Activity of a Chalcone-Flavonone Isomerase from Glycine max. FRONTIERS IN PLANT SCIENCE 2017; 8:248. [PMID: 28286513 PMCID: PMC5323383 DOI: 10.3389/fpls.2017.00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/09/2017] [Indexed: 05/23/2023]
Abstract
Protein design for improving enzymatic activity remains a challenge in biochemistry, especially to identify target amino-acid sites for mutagenesis and to design beneficial mutations for those sites. Here, we employ a computational approach that combines multiple sequence alignment, positive selection detection, and molecular docking to identify and design beneficial amino-acid mutations that further improve the intramolecular-cyclization activity of a chalcone-flavonone isomerase from Glycine max (GmCHI). By this approach, two GmCHI mutants with higher activities were predicted and verified. The results demonstrate that this approach could determine the beneficial amino-acid mutations for improving the enzymatic activity, and may find more applications in engineering of enzymes.
Collapse
Affiliation(s)
- Hui Yuan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Jiaqi Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Xiaoqiang Wang
- Department of Biological Sciences, University of North Texas, DentonTX, USA
| | - Jiakuan Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Yang Zhong
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan UniversityShanghai, China
- Institute of Biodiversity Science and Geobiology, Tibet UniversityLhasa, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| | - Peng Nan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
4
|
Carels N, Ponce de Leon M. An Interpretation of the Ancestral Codon from Miller's Amino Acids and Nucleotide Correlations in Modern Coding Sequences. Bioinform Biol Insights 2015; 9:37-47. [PMID: 25922573 PMCID: PMC4401237 DOI: 10.4137/bbi.s24021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
Purine bias, which is usually referred to as an “ancestral codon”, is known to result in short-range correlations between nucleotides in coding sequences, and it is common in all species. We demonstrate that RWY is a more appropriate pattern than the classical RNY, and purine bias (Rrr) is the product of a network of nucleotide compensations induced by functional constraints on the physicochemical properties of proteins. Through deductions from universal correlation properties, we also demonstrate that amino acids from Miller’s spark discharge experiment are compatible with functional primeval proteins at the dawn of living cell radiation on earth. These amino acids match the hydropathy and secondary structures of modern proteins.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT/IDN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Miguel Ponce de Leon
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
5
|
Di Giulio M. The origin of the genetic code in the ocean abysses: new comparisons confirm old observations. J Theor Biol 2013; 333:109-16. [PMID: 23727280 DOI: 10.1016/j.jtbi.2013.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 11/26/2022]
Abstract
I have analysed the amino acid substitution pattern between two pairs of nonbarophilic-barophilic organisms in order to confirm previous results. Indeed, the pattern deriving from a different pair of such organisms led to establish that the origin of the genetic code might have occurred in the ocean abysses. The hydrostatic pressure asymmetry indices computable from these matrices of amino acid substitutions confirm the correlation previously observed, even when differences in GC content are accounted for. As the three substitution matrices are independent between them, the old conclusion that the genetic code originated in the ocean abysses is considerably strengthened.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Laboratory for Molecular Evolution, Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Via P Castellino 111, 80131 Naples, Napoli, Italy.
| |
Collapse
|
6
|
Jia B, Lee S, Pham BP, Cho YS, Yang JK, Byeon HS, Kim JC, Cheong GW. An archaeal NADH oxidase causes damage to both proteins and nucleic acids under oxidative stress. Mol Cells 2010; 29:363-71. [PMID: 20213313 DOI: 10.1007/s10059-010-0045-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 12/18/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022] Open
Abstract
NADH oxidases (NOXs) catalyze the two-electron reduction of oxygen to H2O2 or four-electron reduction of oxygen to H2O. In this report, we show that an NADH oxidase from Thermococcus profundus (NOXtp) displays two forms: a native dimeric protein under physiological conditions and an oxidized hexameric form under oxidative stress. Native NOXtp displays high NADH oxidase activity, and oxidized NOXtp can accelerate the aggregation of partially unfolded proteins. The aggregates formed by NOXtp have characteristics similar to beta-amyloid and Lewy bodies in neurodegenerative diseases, including an increase of beta-sheet content. Oxidized NOXtp can also bind nucleic acids and cause their degradation by oxidizing NADH to produce H2O2. Furthermore, Escherichia coli cells expressing NOXtp are less viable than cells not expressing NOXtp after treatment with H2O2. As NOXtp shares similar features with eukaryotic cell death isozymes and life may have originated from hyperthermophiles, we suggest that NOXtp may be an ancestor of cell death proteins.
Collapse
MESH Headings
- Archaeal Proteins/chemistry
- Archaeal Proteins/metabolism
- Archaeal Proteins/ultrastructure
- Blotting, Western
- DNA Damage
- DNA, Archaeal/genetics
- DNA, Archaeal/metabolism
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Hydrogen Peroxide/metabolism
- Hydrogen Peroxide/pharmacology
- Microbial Viability/genetics
- Microscopy, Electron
- Multienzyme Complexes/chemistry
- Multienzyme Complexes/metabolism
- Multienzyme Complexes/ultrastructure
- NADH, NADPH Oxidoreductases/chemistry
- NADH, NADPH Oxidoreductases/metabolism
- NADH, NADPH Oxidoreductases/ultrastructure
- Oxidation-Reduction
- Oxidative Stress
- Protein Conformation/drug effects
- Protein Multimerization
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- Temperature
- Thermococcus/enzymology
Collapse
Affiliation(s)
- Baolei Jia
- Division of Applied Life Sciences (Brain Korea 21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Di Giulio M. A methanogen hosted the origin of the genetic code. J Theor Biol 2009; 260:77-82. [DOI: 10.1016/j.jtbi.2009.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/26/2009] [Accepted: 05/29/2009] [Indexed: 11/17/2022]
|
8
|
Lemke KH, Rosenbauer RJ, Bird DK. Peptide synthesis in early Earth hydrothermal systems. ASTROBIOLOGY 2009; 9:141-146. [PMID: 19371157 DOI: 10.1089/ast.2008.0166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260 degrees C with those obtained at more moderate temperatures (160 degrees C) gives evidence of a significant (13 kJ . mol(-1)) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life.
Collapse
Affiliation(s)
- Kono H Lemke
- Department of Geological and Environmental Sciences, Stanford University, Stanford, California, USA.
| | | | | |
Collapse
|
9
|
|
10
|
Kawamura K, Maeda J. Kinetics and activation parameter analysis for the prebiotic oligocytidylate formation on Na(+)-montmorillonite at 0-100 degrees C. J Phys Chem A 2008; 112:8015-23. [PMID: 18693705 DOI: 10.1021/jp801969g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetic analysis of the temperature dependence of the formation of oligocytidylate (oligo(C)) from the 5'-monophosphorimidazolide moiety of cytidine (ImpC) in the presence of Na (+)-montmorillonite (Na (+)-Mont) catalyst has been carried out at 0-100 degrees C. The rate constants for the formation of oligo(C), hydrolysis of ImpC with and without Na (+)-Mont and degradation of oligo(C) were determined. The apparent activation parameters were 30.8 +/- 3.9 kJ mol (-1) ( Ea), 28.3 +/- 4.0 kJ mol (-1) (Delta H++), and -231 +/- 13 J mol (-1) K (-1) (Delta S++) for the formation of the 2-mer; 45.6 +/- 2.9 kJ mol (-1) ( Ea), 43.0 +/- 3.0 kJ mol (-1) (Delta H++), -164 +/- 10 J mol (-1) K (-1) (Delta S++) for the 3-mer; and 45.2 +/- 0.6 kJ mol (-1) ( Ea), 42.7 +/- 0.7 kJ mol (-1) (Delta H++), -159 +/- 2 J mol (-1) K (-1) (Delta S++) for the 4-mer in the presence of Na (+)-Mont. An increasing trend for the rate constants for the formation of oligo(C) in the order 2-mer << 3-mer <4-mer was observed at high temperatures, which is consistent with that observed at low temperatures. These analyses implied for the first time that the associate formation between an activated nucleotide monomer and an elongating oligonucleotide prior to the phosphodiester bond formation during the elongation of an oligonucleotide on a clay surface would be based on the interaction between the two reactants at the phosphoester and/or ribose moieties rather than at the nucleotide bases. The hydrolysis rate of ImpC at 25-100 degrees C was 5.3-10.6 times greater in the presence of Na (+)-Mont than in its absence. Although the degradation of oligo(C) in the presence of Na (+)-Mont was slower than the formation of the 3-mer and longer oligo(C) on Na (+)-Mont, its yield decreased with temperature. This is mainly because the ratios of the rate constant of the 2-mer formation to those of ImpC hydrolysis and the 3-mer and 4-mer formation decrease with an increase in temperature, which is attributed to the enthalpy and entropy changes for the formation of the 2-mer. This trend resembles the case of the template-directed formation of oligo(G) on a poly(C) template but is different from the Pb (2+)-ion-catalyzed oligo(C) formation. According to the kinetics and activation parameter analyses regarding the clay reaction and other prebiotic polymerase models, the possible pathways for the oligonucleotide formation are discussed and compared.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka, Japan 599-8531.
| | | |
Collapse
|
11
|
Glansdorff N, Xu Y, Labedan B. The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 2008; 3:29. [PMID: 18613974 PMCID: PMC2478661 DOI: 10.1186/1745-6150-3-29] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the reclassification of all life forms in three Domains (Archaea, Bacteria, Eukarya), the identity of their alleged forerunner (Last Universal Common Ancestor or LUCA) has been the subject of extensive controversies: progenote or already complex organism, prokaryote or protoeukaryote, thermophile or mesophile, product of a protracted progression from simple replicators to complex cells or born in the cradle of "catalytically closed" entities? We present a critical survey of the topic and suggest a scenario. RESULTS LUCA does not appear to have been a simple, primitive, hyperthermophilic prokaryote but rather a complex community of protoeukaryotes with a RNA genome, adapted to a broad range of moderate temperatures, genetically redundant, morphologically and metabolically diverse. LUCA's genetic redundancy predicts loss of paralogous gene copies in divergent lineages to be a significant source of phylogenetic anomalies, i.e. instances where a protein tree departs from the SSU-rRNA genealogy; consequently, horizontal gene transfer may not have the rampant character assumed by many. Examining membrane lipids suggest LUCA had sn1,2 ester fatty acid lipids from which Archaea emerged from the outset as thermophilic by "thermoreduction," with a new type of membrane, composed of sn2,3 ether isoprenoid lipids; this occurred without major enzymatic reconversion. Bacteria emerged by reductive evolution from LUCA and some lineages further acquired extreme thermophily by convergent evolution. This scenario is compatible with the hypothesis that the RNA to DNA transition resulted from different viral invasions as proposed by Forterre. Beyond the controversy opposing "replication first" to metabolism first", the predictive arguments of theories on "catalytic closure" or "compositional heredity" heavily weigh in favour of LUCA's ancestors having emerged as complex, self-replicating entities from which a genetic code arose under natural selection. CONCLUSION Life was born complex and the LUCA displayed that heritage. It had the "body "of a mesophilic eukaryote well before maturing by endosymbiosis into an organism adapted to an atmosphere rich in oxygen. Abundant indications suggest reductive evolution of this complex and heterogeneous entity towards the "prokaryotic" Domains Archaea and Bacteria. The word "prokaryote" should be abandoned because epistemologically unsound. REVIEWERS This article was reviewed by Anthony Poole, Patrick Forterre, and Nicolas Galtier.
Collapse
Affiliation(s)
- Nicolas Glansdorff
- JM Wiame Research Institute for Microbiology and Vrije Universiteit Brussel, 1 ave E. Gryzon, B-1070 Brussels, Belgium.
| | | | | |
Collapse
|
12
|
Bershtein S, Goldin K, Tawfik DS. Intense neutral drifts yield robust and evolvable consensus proteins. J Mol Biol 2008; 379:1029-44. [PMID: 18495157 DOI: 10.1016/j.jmb.2008.04.024] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 11/27/2022]
Abstract
What changes occur when a natural protein that had been under low mutation rates is subjected to a neutral drift at high mutational loads, thus generating genetically diverse (polymorphic) gene ensembles that all maintain the protein's original function and structure? To address this question we subjected large populations of TEM-1 beta-lactamase to a prolonged neutral drift, applying high mutation rates and purifying selection to maintain TEM-1's existing penicillinase activity. Purging of deleterious mutations and enrichment of beneficial ones maintained the sequence of these ensembles closer to TEM-1's family consensus and inferred ancestor. In particular, back-to-consensus/ancestor mutations that increase TEM-1's kinetic and thermodynamic stability were enriched. These acted as global suppressors and enabled the tolerance of a broad range of deleterious mutations, thus further increasing the genetic diversity of the drifting populations. The probability of a new function emerging (cefotaxime degradation) was also substantially increased in these ensembles owing to the presence of many gene variants carrying the global suppressors. Our findings indicate the unique features of large, polymorphic neutral ensembles generated under high mutational loads and prompt the speculation that the progenitors of today's proteins may have evolved under high mutational loads. The results also suggest that predictable back-to-consensus/ancestor changes can be used in the laboratory to generate highly diverse and evolvable gene libraries.
Collapse
Affiliation(s)
- Shimon Bershtein
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
13
|
|
14
|
Kawamura K, Shimahashi M. One-step formation of oligopeptide-like molecules from Glu and Asp in hydrothermal environments. Naturwissenschaften 2008; 95:449-54. [DOI: 10.1007/s00114-008-0342-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 12/03/2007] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
|
15
|
Becerra A, Delaye L, Islas S, Lazcano A. The Very Early Stages of Biological Evolution and the Nature of the Last Common Ancestor of the Three Major Cell Domains. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095825] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative estimates of the gene complement of the last common ancestor of all extant organisms, that is, the cenancestor, may be hindered by ancient horizontal gene transfer events and polyphyletic gene losses, as well as by biases in genome databases and methodological artifacts. Nevertheless, most reports agree that the last common ancestor resembled extant prokaryotes. A significant number of the highly conserved genes are sequences involved in the synthesis, degradation, and binding of RNA, including transcription and translation. Although the gene complement of the cenancestor includes sequences that may have originated in different epochs, the extraordinary conservation of RNA-related sequences supports the hypothesis that the last common ancestor was an evolutionary outcome of the so-called RNA/protein world. The available evidence suggests that the cenancestor was not a hyperthermophile, but it is currently not possible to assess its ecological niche or its mode of energy acquisition and carbon sources.
Collapse
Affiliation(s)
- Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México, D.F., Mexico
| | - Luis Delaye
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México, D.F., Mexico
| | - Sara Islas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México, D.F., Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 México, D.F., Mexico
| |
Collapse
|
16
|
Shimizu H, Yokobori SI, Ohkuri T, Yokogawa T, Nishikawa K, Yamagishi A. Extremely thermophilic translation system in the common ancestor commonote: ancestral mutants of Glycyl-tRNA synthetase from the extreme thermophile Thermus thermophilus. J Mol Biol 2007; 369:1060-9. [PMID: 17477933 DOI: 10.1016/j.jmb.2007.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 03/29/2007] [Accepted: 04/02/2007] [Indexed: 11/16/2022]
Abstract
Based on phylogenetic analysis of 16 S and 18 S rRNAs, the common ancestor of all organisms (Commonote) was proposed to be hyperthermophilic. We have previously tested this hypothesis using enzymes with ancestral residues that are inferred by molecular phylogenetic analysis. The ancestral mutant enzymes involved in metabolic systems show higher thermal stability than wild-type enzymes, consistent with the hyperthermophile common ancestor hypothesis. Here, we have extended the experiments to include an enzyme of the translation system, glycyl-tRNA synthetase (GlyRS). The translation system often shows a phylogenetic tree that is similar to the rRNA tree. Thus, it is likely that the tree represents the evolutionary route of the organisms. The maximum-likelihood tree of alpha(2) type GlyRS was constructed. From this analysis the ancestral sequence of GlyRS was deduced and individual or pairs of ancestral residues were introduced into Thermus thermophilus GlyRS. The ancestral mutants were expressed in Escherichia coli, purified and activity measured. The thermostability of eight mutated proteins was evaluated by CD (circular dichroism) measurements. Six mutants showed higher thermostability than wild-type enzyme and seven mutants showed higher activity than wild-type enzyme at 70 degrees C, suggesting an extremely thermophilic translation system in the common ancestor Commonote.
Collapse
Affiliation(s)
- Hideaki Shimizu
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Di Giulio M. The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J Evol Biol 2007; 20:543-8. [PMID: 17305820 DOI: 10.1111/j.1420-9101.2006.01259.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of an oxyphobic index (OI) based on the propensity of amino acids to enter more frequently the proteins of anaerobes makes it possible to make inferences on the environment in which the last universal common ancestor (LUCA) lived. The reconstruction of the ancestral sequences of proteins using a method based on maximum likelihood and their attribution by means of the OI to the set of aerobe or anaerobe sequences has led to the following conclusions: the LUCA was an anaerobic 'organism', as were the ancestors of Archaea and Bacteria, whereas the ancestor of Eukarya was an aerobe. These observations seem to falsify the hypothesis that the LUCA was an aerobe and help to identify better the environment in which the first organisms lived.
Collapse
Affiliation(s)
- M Di Giulio
- Laboratory of Molecular Evolution, Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Napoli, Italy.
| |
Collapse
|
18
|
Di Giulio M. Structuring of the genetic code took place at acidic pH. J Theor Biol 2005; 237:219-26. [PMID: 15978625 DOI: 10.1016/j.jtbi.2005.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 04/11/2005] [Indexed: 11/21/2022]
Abstract
I have observed that in multiple regression the number of codons specifying amino acids in the genetic code is positively correlated with the isoelectric point of amino acids and their molecular weight. Therefore basic amino acids are, on average, codified in the genetic code by a larger number of codons, which seems to imply that the genetic code originated in an acidic 'intracellular' environment. Moreover, I compare the proteins from Picrophilus torridus and Thermoplasma volcanium, which have different intracellular pH and I define the ranks of acidophily for the amino acids. A simple index of acidophily (AI), which can be easily obtained from acidophily ranks, can be associated to any protein and, therefore, can also be associated to the genetic code if the number of synonymous codons attributed to the amino acids in the code is assumed to be the frequency with which the amino acids appeared in ancestral proteins. Finally, the sampling of the variable AI among organisms having an intracellular pH less than or equal to 6.6 and those having a non-acidic intracellular pH leads to the conclusion that the value of the genetic code's AI is not typical of proteins of the latter organisms. As the genetic code's AI value is also statistically not different from that of proteins of the organisms having an acidic intracellular pH, this supports the hypothesis that the structuring of the genetic code took place in acidic pH conditions.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Via G. Marconi 10, 80125 Naples, Napoli, Italy.
| |
Collapse
|
19
|
Di Giulio M. A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyssi: barophily in the physicochemical properties of amino acids and in the genetic code. Gene 2005; 346:1-6. [PMID: 15716096 DOI: 10.1016/j.gene.2004.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/30/2004] [Accepted: 10/05/2004] [Indexed: 11/26/2022]
Abstract
A comparison is made between orthologous proteins from a nonbarophile (Pyrococcus furiosus) and a barophile (Pyrococcus abyssi) organism. The pattern of asymmetries in the amino acid substitution process identifies the amino acids arginine, serine, glycine, valine and aspartic acid as those having the most barophilic behaviour, and tyrosine and glutamine as the least barophilic. The construction of a hydrostatic pressure asymmetry index (PAI) which orders the amino acids from the most barophilic to the least barophilic makes it possible to visualise the amino acid properties that best explain barophily. The polarity of amino acids is positively correlated to the PAI values, i.e., on average, the more polar amino acids possess a higher PAI value, that is to say they are more barophilic. Moreover, the "size" of amino acids (molecular weight) is negatively correlated to the PAI value, that is to say that, on average, high PAI values are associated to "small" amino acids which are therefore more barophilic than "larger" ones. These two amino acid properties are the same ones that are known for having been important in affecting the origin of genetic code organisation. All the above, as well as the significant and positive correlation between the number of codons attributed to the amino acids in the genetic code and the PAI values, seem to favour the hypothesis that genetic code structuring took place under high hydrostatic pressure.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Institute of Genetics and Biophysics 'Adriano Buzzati Traverso', CNR, Via G. Marconi 10, 80125 Naples, Napoli, Italy.
| |
Collapse
|
20
|
Di Giulio M. The ocean abysses witnessed the origin of the genetic code. Gene 2005; 346:7-12. [PMID: 15716095 DOI: 10.1016/j.gene.2004.07.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Accepted: 07/26/2004] [Indexed: 11/15/2022]
Abstract
The comparison of proteins from a non-barophilous and a barophilous organism makes it possible to define the barophily ranks of amino acids. The correlation of these ranks with the number of codons attributed to amino acids in the genetic code, together with another straightforward argument based on an optimisation percentage of a barophily index (BI) (easily defined by barophily ranks) which can be associated to the genetic code table, suggest that the genetic code originated under high hydrostatic pressure. Moreover, as the BI value can be calculated for the sequence of any protein, it also makes it possible to define the BI for the genetic code if the number of codons attributed to the amino acids in the code is assumed to be the frequency with which the amino acids appeared in ancestral proteins. Finally, sampling the BI variable between many non-barophile organisms and from many proteins of a single non-barophile organism leads to the conclusion that the BI value of the genetic code is not typical of these organisms. Whereas, since the genetic code BI value is statistically higher than that of these non-barophile organisms, it supports the hypothesis that genetic code structuring took place under high hydrostatic pressure.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Institute of Genetics and Biophysics 'Adriano Buzzati Traverso', CNR, Via G. Marconi 10, 80125 Naples, Napoli, Italy.
| |
Collapse
|
21
|
Marashi SA, Ghalanbor Z. Correlations between genomic GC levels and optimal growth temperatures are not ‘robust’. Biochem Biophys Res Commun 2004; 325:381-3. [PMID: 15530402 DOI: 10.1016/j.bbrc.2004.10.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2004] [Indexed: 11/22/2022]
Abstract
Musto et al. [FEBS Lett. 573 (2004) 73] studied the correlations between GC levels and optimal growth temperatures in 20 prokaryotic families. They reported that positive correlations are generally observed, and many of these are significant. Here, we have shown that these correlations are not "robust," i.e., correlation coefficients and/or significance of correlations can be considerably influenced by exclusion of very few (even as small as one) species from each dataset. The sensitivity of correlations is assumed as a result of high levels of bias in the family datasets. We concluded that solely based on these data, one cannot establish that GC contents of prokaryotic genomes increase as a result of growth temperature increments.
Collapse
Affiliation(s)
- Sayed-Amir Marashi
- Department of Biotechnology, Faculty of Science, University of Tehran, Enghelab Ave., Tehran, Iran.
| | | |
Collapse
|
22
|
Cejchan PA. LUCA, or just a conserved Archaeon?: Comments on Xue et al. (2003). Gene 2004; 333:47-50. [PMID: 15177679 DOI: 10.1016/j.gene.2004.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 09/24/2003] [Accepted: 02/05/2004] [Indexed: 11/24/2022]
Abstract
In their recent paper, Xue et al. used an unusual technique of rooting the universal phylogenetic tree, which resulted in positioning of the last universal common ancestor within Archaea. The present paper brings some criticisms on the methods and results achieved.
Collapse
Affiliation(s)
- Peter A Cejchan
- Laboratory of Paleobiology and Paleoecology, IG ASCR, Rozvojova 135, Prague CZ-16502, Czech Republic.
| |
Collapse
|
23
|
Abstract
Brochier and Philippe have recently re-analysed the phylogeny of ribosomal RNA using only multiple alignment positions with no phylogenetic noise. They conclude that the first branch of divergence in the Bacteria domain comprises Planctomycetales and not hyperthermophile bacteria as in classic phylogeny. In the present paper I examine the robustness of their conclusions. (1) A site-by-site reading of the RNA alignments of Brochier and Philippe seems to suggest that the number of nucleotide positions used in their analysis is not sufficiently high and their phylogenetic analysis is consequently not robust. Furthermore, (2) a different method for selecting positions with no phylogenetic noise from the rRNA alignment relocates the Aquificales and the Thermotogales as the first lines of divergence in the Bacteria domain, and sets Planctomycetales as the third branch of divergence in the phylogenetic tree built from these selected positions. These findings consolidate the hypothesis that the ancestor of the Bacteria domain was a hyperthermophile and, more generally, that the last universal common ancestor might also have been one.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Institute of Genetics and Biophysics 'Adriano Buzzati Traverso', CNR, Via G. Marconi 10, Naples 80125, Napoli, Italy.
| |
Collapse
|
24
|
Xue H, Tong KL, Marck C, Grosjean H, Wong JTF. Transfer RNA paralogs: evidence for genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene 2003; 310:59-66. [PMID: 12801633 DOI: 10.1016/s0378-1119(03)00552-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A search has been performed on 2878 tRNA sequences from 60 different genomes in order to detect the existence of closely related 'alloacceptor' tRNAs accepting dissimilar amino acids that could be paralogs generated by gene duplications. This has led to the identification of extremely conserved tRNA(Phe)-tRNA(Tyr) pairs displaying as high as 94% identity between them, and also other potentially paralogous tRNA pairs in archaeal species. These paralogous pairs are enriched for amino acid pairs belonging to the same amino acid biosynthetic family, thus providing evidence for the coevolution of genetic code and amino acid biosynthesis. Overall, the genetic distances between alloacceptor tRNAs yield estimates of how closely clustered in sequence space are the tRNAs in a genome. Among 34 Bacteria, 18 Archaea and 8 Eukarya, Methanopyrus kandleri and Aeropyrum pernix have yielded the lowest alloacceptor distances and largest number of paralogous pairs. Based on a cluster-dispersion model of tRNA evolution, such tight alloacceptor clustering is a measure of primitiveness of tRNA genotypes, and places last universal common ancestor (LUCA) between the branches leading to these two archaea in the tRNA phylogenetic tree.
Collapse
Affiliation(s)
- Hong Xue
- Department of Biochemistry and Applied Genomics Center, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | | | | | |
Collapse
|
25
|
Di Giulio M. The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 2003; 221:425-36. [PMID: 12642117 DOI: 10.1006/jtbi.2003.3197] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The existence of a correlation between the optimal growth temperature of various organisms and a thermophily index (based on the propensity of amino acids to enter more frequently into the proteins of thermophiles/hyperthermophiles) allows inferences to be made on the mesophilic or thermophilic nature of the last universal common ancestor (LUCA). By reconstructing the ancestral sequences of the various ancestors using methods based on maximum likelihood and maximum parsimony, these sequences can be attributed to the mesophiles or (hyper)thermophiles and the following conclusions can be drawn. (1) There is no evidence that the LUCA might have been a mesophile and observations seem to imply that the LUCA was a thermophile or a hyperthermophile; (2) The ancestors of the Archaea and Bacteria domains seem to be (hyper)thermophiles while that of the Eukarya domain turns out to be a mesophile. These conclusions are independent of both (i) where the root is located on the topology of the universal tree (based on that of the small subunit ribosomal RNA) and (ii) the presence of hyperthermophile bacteria near the node of the Bacteria domain ancestor. These conclusions are easier to interpret in the light of the hypotheses that see the origin of life taking place at a high temperature.
Collapse
Affiliation(s)
- Massimo Di Giulio
- Institute of Genetics and Biophysics Adriano Buzzati Traverso CNR, Via G Marconi 10, 80125 Naples, Napoli, Italy.
| |
Collapse
|
26
|
Abstract
Popular hypotheses that attempt to explain the origin of prebiotic molecules and cellular life capable of growth and division are not always agreed upon. In this manuscript, information on early bacterial life on Earth is examined using information from several disciplines. For example, knowledge can be integrated from physics, thermodynamics, planetary sciences, geology, biogeochemistry, lipid chemistry, primordial cell structures, cell and molecular biology, microbiology, metabolism and genetics. The origin of life also required a combination of elements, compounds and environmental physical-chemical conditions that allowed cells to assemble in less than a billion years. This may have been widespread in the subsurface of the early Earth located at microscopic physical domains.
Collapse
Affiliation(s)
- J T Trevors
- Laboratory of Microbial Technology, Department of Environmental Biology, University of Guelph, Guelph, Ont., Canada N1G 2W1.
| |
Collapse
|
27
|
Mirkin BG, Fenner TI, Galperin MY, Koonin EV. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol Biol 2003; 3:2. [PMID: 12515582 PMCID: PMC149225 DOI: 10.1186/1471-2148-3-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 01/06/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT), at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task. RESULTS We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs). We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes) of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains). We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain) are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA) of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties indicates that, even with a gain penalty of 1 (equal weights assigned to a gain and a loss), the set of 572 genes assigned to LUCA might be nearly sufficient to sustain a functioning organism. Under this gain penalty value, the numbers of horizontal gene transfer and gene loss events are nearly identical. This result holds true for two alternative topologies of the species tree and even under random shuffling of the tree. Therefore, the results seem to be compatible with approximately equal likelihoods of HGT and gene loss in the evolution of prokaryotes. CONCLUSIONS The notion that gene loss and HGT are major aspects of prokaryotic evolution was supported by quantitative analysis of the mapping of the phyletic patterns of COGs onto a hypothetical species tree. Algorithms were developed for constructing parsimonious evolutionary scenarios, which include gene loss and gain events, for orthologous gene sets, given a species tree. This analysis shows, contrary to expectations, that the number of predicted HGT events that occurred during the evolution of prokaryotes might be approximately the same as the number of gene losses. The approach to the reconstruction of evolutionary scenarios employed here is conservative with regard to the detection of HGT because only patterns of gene presence-absence in sequenced genomes are taken into account. In reality, horizontal transfer might have contributed to the evolution of many other genes also, which makes it a dominant force in prokaryotic evolution.
Collapse
Affiliation(s)
- Boris G Mirkin
- School of Information Systems and Computer Science, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Trevor I Fenner
- School of Information Systems and Computer Science, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|